MOS FET Relays

Four-pin Analog-switching MOS FET

Relays with SPST-NC Contact.

General-purpose Models Added.

- Switches minute analog signals.
- Switching AC and DC.
- General-purpose models (models with high ON resistance) added to the series.

RoHS compliant

4 Refer to "Common Precautions".

Application Examples

- Electronic automatic exchange systems
- Security systems
- Datacom (modem) systems
- FA systems
- Measurement devices

List of Models

Contact form	Terminals	Load voltage (peak value)	Model	Number per stick	Number per tape
SPST-NC	PCB terminals	350 VAC	G3VM-353A	100	---
			G3VM-353A1		
	Surface-mounting terminals		G3VM-353D		
			G3VM-353D1		
			G3VM-353D(TR)	---	1,500
			G3VM-353D1(TR)		

Dimensions

Note: All units are in millimeters unless otherwise indicated.
G3VM-353A/A1

Note: The actual product is marked differently from the image shown here.

G3VM-353D/D1

7
Note: The actual product is marked differently from the image shown here.

This announcement is based on product catalogue information previously shown before its discontinuation

■ Absolute Maximum Ratings ($\mathrm{Ta}=25^{\circ} \mathrm{C}$)

Item		Symbol	Rating	Unit	Measurement Conditions
Input	LED forward current	I_{F}	50	mA	
	Repetitive peak LED forward current	I_{FP}	1	A	$100 \mu \mathrm{~s}$ pulses, 100 pps
	LED forward current reduction rate	$\Delta \mathrm{I}_{\mathrm{F}} /{ }^{\circ} \mathrm{C}$	-0.5	$\mathrm{~mA} /{ }^{\circ} \mathrm{C}$	$\mathrm{Ta} \geq 25^{\circ} \mathrm{C}$
	LED reverse voltage	V_{R}	5	V	
	Connection temperature	T_{j}	125	${ }^{\circ} \mathrm{C}$	
	Output dielectric strength	$\mathrm{V}_{\mathrm{OFF}}$	350	V	
	Continuous load current	I_{O}	$150(100)$	mA	
	ON current reduction rate	$\Delta \mathrm{I}_{\mathrm{ON}} /{ }^{\circ} \mathrm{C}$	$-1.5(-1)$	$\mathrm{mA} /{ }^{\circ} \mathrm{C}$	$\mathrm{Ta} \geq 25^{\circ} \mathrm{C}$
	Connection temperature	T_{j}	125	${ }^{\circ} \mathrm{C}$	
Dielectric strength between input and output (See note 1.)	$\mathrm{V}_{\mathrm{I}} \mathrm{O}$	2,500	Vrms	AC for 1 min	
Operating temperature	T_{a}	-40 to +85	${ }^{\circ} \mathrm{C}$	With no icing or condensation	
Storage temperature	$\mathrm{T}_{\mathrm{stg}}$	-55 to +125	${ }^{\circ} \mathrm{C}$	With no icing or condensation	
Soldering temperature (10 s)	---	260	${ }^{\circ} \mathrm{C}$	10 s	

Note: 1. The dielectric strength between the input and output was checked by applying voltage between all pins as a group on the LED side and all pins as a group on the light-receiving side.

Electrical Characteristics ($\mathbf{T a}=25^{\circ} \mathrm{C}$)

Item		Symbol	Minimum	Typical	Maximum	Unit	Measurement conditions
Input	LED forward voltage	V_{F}	1.0	1.15	1.3	V	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$
	Reverse current	I_{R}	---	---	10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{R}}=5 \mathrm{~V}$
	Capacity between terminals	$\mathrm{C}_{\text {T }}$	---	30	---	pF	$\mathrm{V}=0, \mathrm{f}=1 \mathrm{MHz}$
	Trigger LED forward current	I_{FT}	---	1	3	mA	$\mathrm{l}_{\text {OFF }}=10 \mu \mathrm{~A}$
Output	Maximum resistance with output ON	R_{ON}	---	15 (30)	25 (50)	Ω	$\mathrm{I}_{\mathrm{O}}=150 \mathrm{~mA}(100 \mathrm{~mA})$
	Current leakage when the relay is open	$\mathrm{I}_{\text {LEAK }}$	---	---	1.0	$\mu \mathrm{A}$	$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}, \mathrm{~V}_{\text {OFF }}=350 \mathrm{~V}$
Capacity between I/O terminals		$\mathrm{Cl}_{1-\mathrm{O}}$	---	0.8	---	pF	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{Vs}=0 \mathrm{~V}$
Insulation resistance		$\mathrm{R}_{\mathrm{l}-\mathrm{O}}$	1,000	---	---	$\mathrm{M} \Omega$	$\begin{aligned} & \mathrm{V}_{\mathrm{I}-\mathrm{O}}=500 \mathrm{VDC}, \\ & \mathrm{RoH} \leq 60 \% \end{aligned}$
Turn-ON time		tON	---	0.1 (0.25)	1.0 (0.5)	ms	$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=200 \Omega$,
Turn-OFF time		tOFF	---	1.0 (0.5)	3.0 (1)	ms	$\mathrm{V}_{\mathrm{DD}}=20 \mathrm{~V}$ (See note 2.)

Note: 2. Turn-ON and Turn-OFF Times

Values in parentheses are for the G3VM-353A1/D1.
Recommended Operating Conditions
Use the G3VM under the following conditions so that the Relay will operate properly.

Item	Symbol	Minimum	Typical	Maximum	Unit
Output dielectric strength	V_{DD}	---	---	280	V
Operating LED forward current	I_{F}	5	---	25	mA
Continuous load current	I_{O}	---	---	$150(100)$	mA
Operating temperature	T_{a}	-20	---	65	${ }^{\circ} \mathrm{C}$

Values in parentheses are for the G3VM-353A1/D1.

Engineering Data

Load Current vs. Ambient Temperature
G3VM-353A(D)
G3VM-353A1/D1

Safety Precautions

Refer to "Common Precautions" for all G3VM models.

