Honeywell

Interactive Catalog Replaces Catalog Pages

Honeywell Sensing and Control has replaced the PDF product catalog with the new Interactive Catalog. The Interactive Catalog is a power search tool that makes it easier to find product information. It includes more installation, application, and technical information than ever before.

Click this icon to try the new Interactive Catalog.

Sensing and Control Honeywell Inc. 11 West Spring Street Freeport, Illinois 61032

Temperature Sensors

Platinum RTDs

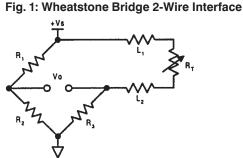
HEL-776/HEL-777

FEATURES

- Linear resistance vs temperature
- Accurate and Interchangeable
- Excellent stability • Small size
- Printed circuit mountable •
- Ceramic SIP package

TYPICAL APPLICATIONS

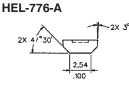
- HVAC room, duct and refrigerant equipment
- Instrument and probe assemblies
- Electronic assemblies temperature compensation
- Process control temperature regulation


HEL-776 and HEL-777 platinum RTDs are designed to measure temperatures from -55° to +150°C (-67° to 302°F) in printed circuit boards, temperature probes, or other lower temperature applications. Solderable leads in 0.050" or 0.100" spacing provide strong connections for wires or printed circuits.

The 1000 Ω , 375 alpha version, provides 10x greater sensitivity and signal-tonoise. Both are ideal for air temperature sensing.

ORDER GUIDE

	_		
HEL-776-A	Molde	d SIP pk	g. 0.100" lead spacing
HEL-777-A	Molde	d SIP pk	g. 0.100" lead spacing
	-U	1000Ω	, 0.00375 Ω/Ω/°C
	-T	100Ω,	0.00385 Ω/Ω/°C
		-0	±0.2% Resistance Trim (Standard)
		-1	±0.1% Resistance Trim (Optional)


MOUNTING DIMENSIONS (for reference only) mm/in.

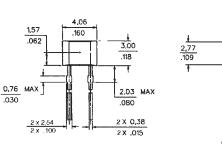
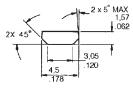
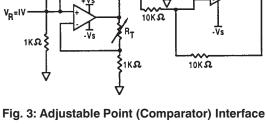
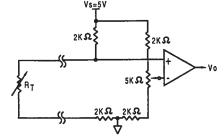


Fig. 2: Linear Output Voltage


+10V

9K**N**


HEL-777-A


14,99 .590 2 X 0.38 2 X .015 0,79 .031

1,57 .062

10K

10K Ω

CAUTION PRODUCT DAMAGE

The inherent design of this component causes it to be sensitive to electrostatic discharge (ESD). To prevent ESD-induced damage and/or degradation, take normal ESD precautions when handling this product.

Temperature

Vo=.001R_T

0.38 2 × 015

91

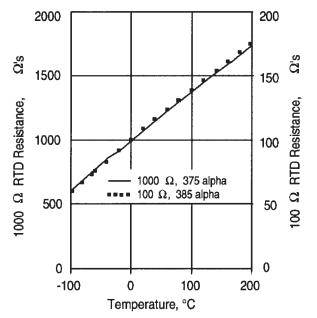
Temperature Sensors Platinum RTDs

FUNCTIONAL BEHAVIOR

$R_{T} = R_{0}(1 + AT + BT^{2})$	–100CT³+CT⁴)									
$RT = Resistance (\Omega)$ at temperature T (°C)										
$R_0 = \text{Resistance}(\Omega) \text{ at } 0^{\circ}\text{C}$										
T = Temperature in	ı °C									
$A = \alpha + \alpha \delta$	$B = -\alpha\delta$	$C_{T<0} = -\alpha \beta$								
100	100 ²	1004								

CONSTANTS

Alpha, α (°C ⁻¹)	0.00375 ±0.000029	0.003850 ±0.000010
Delta, δ (°C)	1.605 ± 0.009	1.4999 ± 0.007
Beta, β (°C)	0.16	0.10863
A (°C ⁻¹)	3.81×10 ^{-₃}	3.908×10 ⁻³
B (°C ⁻²)	-6.02×10 ⁻⁷	-5.775×10 ⁻⁷
C (°C-4)	-6.0×10 ⁻¹²	-4.183×10 ⁻¹²


Both $\beta = 0$ and C = 0 for T>0°C

ACCURACY VS TEMPERATURE

Tolerance	Standard	d ±0.2%	Optiona	l ±0.1%
Temperature (°C)	$\pm \Delta R^*$ (Ω)	±ΔT (°C)	$\pm \Delta R^*$ (Ω)	±ΔT (°C)
-200	6.8	1.6	5.1	1.2
-100	2.9	0.8	2.4	0.6
0	2.0	0.5	1.0	0.3
100	2.9	0.8	2.2	0.6
200	5.6	1.6	4.3	1.2
300	8.2	2.4	6.2	1.8
400	11.0	3.2	8.3	2.5
500	12.5	4.0	9.6	3.0
600	15.1	4.8	10.4	3.3

* 1000 Ω RTD. Divide ΔR by 10 for 100 Ω RTD.

RESISTANCE VS TEMPERATURE CURVE

SPECIFICATIONS

																					_																					_	_								_
000 Ω (00 Ω @):	D:	D:	D:	D:	D:):):																																									
-320° to 00° to																																																			
² C (R ₀ ± ² C (R ₀ ±										•										•	-															-					or	oti	tic	or	nal)					
$\begin{array}{c} 00\ \pm\ 0.\ 00\ \pm\ 0. \end{array}$																																			pt	io	na	ıl)													
ires spa ires spa																																																			
r at 3 ft/	in wa	D. ir	D.	.D.	.D.	.D.	.D	.D	.D	D.).	. i	in	٦v	wa	ate	e	r	a	t 3	3 f	ft/	se	ес	; <	<1	.(0	s	e	c,	0.	85	ir	Ich	l C).C	Э.	in	st	till	I١	w	/a	ter						
errors o	eatin	hea	lf h	lf h	lf h	lf h	lf ł	lf ł	lf ł	f h	h	٦e	ea	ati	tin	g	e	ər	rc	ors	s	o	f <	<1	٥(С;	1	r	n	A	r	ec	on	nm	er	nd	ed							_							
rs in oc	r 5 ye	ber	ре	ре	ре	ре	р	р	р	ре	be	er	٢Ę	5	ye	ea	ar	ſS	; iı	n	0	СС	cu	pi	ec	d e	en	۱V	١r	0	n	me	ent	s										_							
	typic	D. ty	.D.	.D	.D	.D	.D	.D	.D	D.	D.). 1	ty	ур	oic	ca	al																											_							
	°℃	25°	25	2	2	2	2 (2 (2	2	25	25	;°(C	;																																				
flon lea	ting (otti	oot	po	00	00	ро	ро	po	00	ot	ott	tir	ng	g ((T	е	efl	lo	n	le	ea	d	s);	C)e	ra	an	ni	ic	; p	ot	tin	g	(fik	bei	rg	las	ss	le	a	d	ls	3)							
Teflon (oppe	со	d c	d c	d d	d d	d (d	d (d d	С	СС	op	pp	рє	ər,	; -	Т	ef	flc	n	10	or	Fi	be	ərq	gl	a	S	s	in	su	lat	e	ł																
								-	_					-		-								÷										-	-	bei	rg	las	s	le		a	ac	ads	ads)						