
Features
• High Performance, Low Power 32-Bit Atmel® AVR® Microcontroller

– Compact Single-cycle RISC Instruction Set Including DSP Instruction Set
– Read-Modify-Write Instructions and Atomic Bit Manipulation
– Performing 1.49 DMIPS / MHz

Up to 91 DMIPS Running at 66 MHz from Flash (1 Wait-State)
Up to 49 DMIPS Running at 33MHz from Flash (0 Wait-State)

– Memory Protection Unit
• Multi-hierarchy Bus System

– High-Performance Data Transfers on Separate Buses for Increased Performance
– 15 Peripheral DMA Channels Improves Speed for Peripheral Communication

• Internal High-Speed Flash
– 512K Bytes, 256K Bytes, 128K Bytes Versions
– Single Cycle Access up to 33 MHz
– Prefetch Buffer Optimizing Instruction Execution at Maximum Speed
– 4ms Page Programming Time and 8ms Full-Chip Erase Time
– 100,000 Write Cycles, 15-year Data Retention Capability
– Flash Security Locks and User Defined Configuration Area

• Internal High-Speed SRAM, Single-Cycle Access at Full Speed
– 64K Bytes (512KB and 256KB Flash), 32K Bytes (128KB Flash)

• External Memory Interface on AT32UC3A0 Derivatives
– SDRAM / SRAM Compatible Memory Bus (16-bit Data and 24-bit Address Buses)

• Interrupt Controller
– Autovectored Low Latency Interrupt Service with Programmable Priority

• System Functions
– Power and Clock Manager Including Internal RC Clock and One 32KHz Oscillator
– Two Multipurpose Oscillators and Two Phase-Lock-Loop (PLL) allowing

Independant CPU Frequency from USB Frequency
– Watchdog Timer, Real-Time Clock Timer

• Universal Serial Bus (USB)
– Device 2.0 Full Speed and On-The-Go (OTG) Low Speed and Full Speed
– Flexible End-Point Configuration and Management with Dedicated DMA Channels
– On-chip Transceivers Including Pull-Ups

• Ethernet MAC 10/100 Mbps interface
– 802.3 Ethernet Media Access Controller
– Supports Media Independent Interface (MII) and Reduced MII (RMII)

• One Three-Channel 16-bit Timer/Counter (TC)
– Three External Clock Inputs, PWM, Capture and Various Counting Capabilities

• One 7-Channel 16-bit Pulse Width Modulation Controller (PWM)
• Four Universal Synchronous/Asynchronous Receiver/Transmitters (USART)

– Independant Baudrate Generator, Support for SPI, IrDA and ISO7816 interfaces
– Support for Hardware Handshaking, RS485 Interfaces and Modem Line

• Two Master/Slave Serial Peripheral Interfaces (SPI) with Chip Select Signals
• One Synchronous Serial Protocol Controller

– Supports I2S and Generic Frame-Based Protocols
• One Master/Slave Two-Wire Interface (TWI), 400kbit/s I2C-compatible
• One 8-channel 10-bit Analog-To-Digital Converter
• 16-bit Stereo Audio Bitstream

– Sample Rate Up to 50 KHz

32-Bit Atmel AVR
Microcontroller

AT32UC3A0512
AT32UC3A0256
AT32UC3A0128
AT32UC3A1512
AT32UC3A1256
AT32UC3A1128

32058K-AVR32-01/12

2

AT32UC3A

• On-Chip Debug System (JTAG interface)
– Nexus Class 2+, Runtime Control, Non-Intrusive Data and Program Trace

• 100-pin TQFP (69 GPIO pins), 144-pin LQFP (109 GPIO pins) , 144 BGA (109 GPIO pins)
• 5V Input Tolerant I/Os
• Single 3.3V Power Supply or Dual 1.8V-3.3V Power Supply

32058K AVR32-01/12

3

AT32UC3A

1. Description

The AT32UC3A is a complete System-On-Chip microcontroller based on the AVR32 UC RISC
processor running at frequencies up to 66 MHz. AVR32 UC is a high-performance 32-bit RISC
microprocessor core, designed for cost-sensitive embedded applications, with particular empha-
sis on low power consumption, high code density and high performance.

The processor implements a Memory Protection Unit (MPU) and a fast and flexible interrupt con-
troller for supporting modern operating systems and real-time operating systems. Higher
computation capabilities are achievable using a rich set of DSP instructions.

The AT32UC3A incorporates on-chip Flash and SRAM memories for secure and fast access.
For applications requiring additional memory, an external memory interface is provided on
AT32UC3A0 derivatives.

The Peripheral Direct Memory Access controller (PDCA) enables data transfers between periph-
erals and memories without processor involvement. PDCA drastically reduces processing
overhead when transferring continuous and large data streams between modules within the
MCU.

The PowerManager improves design flexibility and security: the on-chip Brown-Out Detector
monitors the power supply, the CPU runs from the on-chip RC oscillator or from one of external
oscillator sources, a Real-Time Clock and its associated timer keeps track of the time.

The Timer/Counter includes three identical 16-bit timer/counter channels. Each channel can be
independently programmed to perform frequency measurement, event counting, interval mea-
surement, pulse generation, delay timing and pulse width modulation.

The PWM modules provides seven independent channels with many configuration options
including polarity, edge alignment and waveform non overlap control. One PWM channel can
trigger ADC conversions for more accurate close loop control implementations.

The AT32UC3A also features many communication interfaces for communication intensive
applications. In addition to standard serial interfaces like UART, SPI or TWI, other interfaces like
flexible Synchronous Serial Controller, USB and Ethernet MAC are available.

The Synchronous Serial Controller provides easy access to serial communication protocols and
audio standards like I2S.

The Full-Speed USB 2.0 Device interface supports several USB Classes at the same time
thanks to the rich End-Point configuration. The On-The-GO (OTG) Host interface allows device
like a USB Flash disk or a USB printer to be directly connected to the processor.

The media-independent interface (MII) and reduced MII (RMII) 10/100 Ethernet MAC module
provides on-chip solutions for network-connected devices.

AT32UC3A integrates a class 2+ Nexus 2.0 On-Chip Debug (OCD) System, with non-intrusive
real-time trace, full-speed read/write memory access in addition to basic runtime control.

32058K AVR32-01/12

4

AT32UC3A

2. Configuration Summary

The table below lists all AT32UC3A memory and package configurations:

3. Abbreviations

• GCLK: Power Manager Generic Clock
• GPIO: General Purpose Input/Output
• HSB: High Speed Bus
• MPU: Memory Protection Unit
• OCD: On Chip Debug
• PB: Peripheral Bus
• PDCA: Peripheral Direct Memory Access Controller (PDC) version A
• USBB: USB On-The-GO Controller version B

Device Flash SRAM Ext. Bus Interface
Ethernet
MAC Package

AT32UC3A0512 512 Kbytes 64 Kbytes yes yes 144 pin LQFP
144 pin BGA

AT32UC3A0256 256 Kbytes 64 Kbytes yes yes 144 pin LQFP
144 pin BGA

AT32UC3A0128 128 Kbytes 32 Kbytes yes yes 144 pin LQFP
144 pin BGA

AT32UC3A1512 512 Kbytes 64 Kbytes no yes 100 pin TQFP

AT32UC3A1256 256 Kbytes 64 Kbytes no yes 100 pin TQFP

AT32UC3A1128 128 Kbytes 32 Kbytes no yes 100 pin TQFP

32058K AVR32-01/12

5

AT32UC3A

4. Blockdiagram

Figure 4-1. Blockdiagram

UC CPUNEXUS
CLASS 2+

OCD
INSTR

INTERFACE
DATA

INTERFACE

TIMER/COUNTER

INTERRUPT
CONTROLLER

REAL TIME
COUNTER

PERIPHERAL
DMA

CONTROLLER

512 KB
FLASH

HSB-PB
BRIDGE B

HSB-PB
BRIDGE A

M
EM

O
R

Y
IN

TE
R

FA
C

E

S

M M M
M

M

S

S

S
S

S
M

EXTERNAL
INTERRUPT

CONTROLLER

HIGH SPEED
BUS MATRIX

FAST GPIO

G
E

N
ER

A
L

P
U

R
P

O
S

E
 IO

s

64 KB
SRAM

G
E

N
E

R
AL

 P
U

R
P

O
S

E
 IO

sPA
PB
PC
PX

A[2..0]
B[2..0]

CLK[2..0]

EXTINT[7..0]
KPS[7..0]

NMI_N

GCLK[3..0]

XIN32
XOUT32

XIN0

XOUT0

PA
PB
PC
PX

RESET_N

E
X

TE
R

N
A

L
B

U
S

 IN
TE

R
FA

C
E

(S
D

R
A

M
 &

 S
TA

TI
C

 M
E

M
O

R
Y

C

O
N

TR
O

LL
E

R
)

CAS
RAS

SDA10
SDCK

SDCKE
SDCS0
SDWE

NCS[3..0]
NRD

NWAIT
NWE0

DATA[15..0]

USB
INTERFACE

DMA

ID
VBOF

VBUS

D-
D+

ETHERNET
 MAC

DMA

32 KHz
OSC

115 kHz
RCOSC

OSC0

PLL0
PULSE WIDTH
MODULATION
CONTROLLER

SERIAL
PERIPHERAL

INTERFACE 0/1

TWO-WIRE
INTERFACE

P
D

C
PD

C
P

D
C

M ISO, MOSI

NPCS[3..1]

PWM[6..0]

SCL

SDA

USART1

P
D

C

RXD
TXD
CLK

RTS, CTS
DSR, DTR, DCD, RI

USART0
USART2
USART3P

D
C

RXD
TXD
CLK

RTS, CTS

SYNCHRONOUS
SERIAL

CONTROLLER

PD
C

TX_CLOCK, TX_FRAME_SYNC

RX_DATA

TX_DATA

RX_CLOCK, RX_FRAME_SYNC

ANALOG TO
DIGITAL

CONVERTER

PD
C

AD[7..0]

ADVREF

WATCHDOG
TIMER

XIN1

XOUT1
OSC1

PLL1

SCK

JTAG
INTERFACE

MCKO
MDO[5..0]

MSEO[1..0]
EVTI_N

EVTO_N

TCK
TDO
TDI

TMS

POWER
MANAGER

RESET
CONTROLLER

ADDR[23..0]

SLEEP
CONTROLLER

CLOCK
CONTROLLER

CLOCK
GENERATOR

COL,
CRS,

RXD[3..0],
RX_CLK,
RX_DV,
RX_ER

MDC,
TXD[3..0],
TX_CLK,
TX_EN,
TX_ER,
SPEED

MDIO

FL
A

S
H

C
O

N
TR

O
LL

E
R

CONFIGURATION REGISTERS BUS

MEMORY PROTECTION UNIT

PB

PB

HSBHS
B

NWE1
NWE3

P
BA

P
BB

NPCS0

LOCAL BUS
INTERFACE

AUDIO
BITSTREAM

DAC

PD
C DATA[1..0]

DATAN[1..0]

32058K AVR32-01/12

6

AT32UC3A

4.1 Processor and architecture

4.1.1 AVR32 UC CPU

• 32-bit load/store AVR32A RISC architecture.
– 15 general-purpose 32-bit registers.
– 32-bit Stack Pointer, Program Counter and Link Register reside in register file.
– Fully orthogonal instruction set.
– Privileged and unprivileged modes enabling efficient and secure Operating Systems.
– Innovative instruction set together with variable instruction length ensuring industry leading

code density.
– DSP extention with saturating arithmetic, and a wide variety of multiply instructions.

• 3 stage pipeline allows one instruction per clock cycle for most instructions.
– Byte, half-word, word and double word memory access.
– Multiple interrupt priority levels.

• MPU allows for operating systems with memory protection.

4.1.2 Debug and Test system

• IEEE1149.1 compliant JTAG and boundary scan
• Direct memory access and programming capabilities through JTAG interface
• Extensive On-Chip Debug features in compliance with IEEE-ISTO 5001-2003 (Nexus 2.0) Class 2+

– Low-cost NanoTrace supported.
• Auxiliary port for high-speed trace information
• Hardware support for 6 Program and 2 data breakpoints
• Unlimited number of software breakpoints supported
• Advanced Program, Data, Ownership, and Watchpoint trace supported

4.1.3 Peripheral DMA Controller

• Transfers from/to peripheral to/from any memory space without intervention of the processor.
• Next Pointer Support, forbids strong real-time constraints on buffer management.
• Fifteen channels

– Two for each USART
– Two for each Serial Synchronous Controller
– Two for each Serial Peripheral Interface
– One for each ADC
– Two for each TWI Interface

4.1.4 Bus system

• High Speed Bus (HSB) matrix with 6 Masters and 6 Slaves handled
– Handles Requests from the CPU Data Fetch, CPU Instruction Fetch, PDCA, USBB, Ethernet

Controller, CPU SAB, and to internal Flash, internal SRAM, Peripheral Bus A, Peripheral Bus
B, EBI.

– Round-Robin Arbitration (three modes supported: no default master, last accessed default
master, fixed default master)

– Burst Breaking with Slot Cycle Limit
– One Address Decoder Provided per Master

32058K AVR32-01/12

7

AT32UC3A

• Peripheral Bus A able to run on at divided bus speeds compared to the High Speed Bus

Figure 4-1 gives an overview of the bus system. All modules connected to the same bus use the
same clock, but the clock to each module can be individually shut off by the Power Manager.
The figure identifies the number of master and slave interfaces of each module connected to the
High Speed Bus, and which DMA controller is connected to which peripheral.

32058K AVR32-01/12

8

AT32UC3A

5. Signals Description

The following table gives details on the signal name classified by peripheral

The signals are multiplexed with GPIO pins as described in ”Peripheral Multiplexing on I/O lines”
on page 45.

Table 5-1. Signal Description List

Signal Name Function Type
Active
Level Comments

Power

VDDPLL Power supply for PLL Power
Input 1.65V to 1.95 V

VDDCORE Core Power Supply
Power
Input

1.65V to 1.95 V

VDDIO I/O Power Supply Power
Input 3.0V to 3.6V

VDDANA Analog Power Supply Power
Input 3.0V to 3.6V

VDDIN Voltage Regulator Input Supply Power
Input 3.0V to 3.6V

VDDOUT Voltage Regulator Output Power
Output 1.65V to 1.95 V

GNDANA Analog Ground Ground

GND Ground Ground

Clocks, Oscillators, and PLL’s

XIN0, XIN1, XIN32 Crystal 0, 1, 32 Input Analog

XOUT0, XOUT1,
XOUT32 Crystal 0, 1, 32 Output Analog

JTAG

TCK Test Clock Input

TDI Test Data In Input

TDO Test Data Out Output

TMS Test Mode Select Input

Auxiliary Port - AUX

MCKO Trace Data Output Clock Output

MDO0 - MDO5 Trace Data Output Output

32058K AVR32-01/12

9

AT32UC3A

MSEO0 - MSEO1 Trace Frame Control Output

EVTI_N Event In Output Low

EVTO_N Event Out Output Low

Power Manager - PM

GCLK0 - GCLK3 Generic Clock Pins Output

RESET_N Reset Pin Input Low

Real Time Counter - RTC

RTC_CLOCK RTC clock Output

Watchdog Timer - WDT

WDTEXT External Watchdog Pin Output

External Interrupt Controller - EIC

EXTINT0 - EXTINT7 External Interrupt Pins Input

KPS0 - KPS7 Keypad Scan Pins Output

NMI_N Non-Maskable Interrupt Pin Input Low

Ethernet MAC - MACB

COL Collision Detect Input

CRS Carrier Sense and Data Valid Input

MDC Management Data Clock Output

MDIO Management Data Input/Output I/O

RXD0 - RXD3 Receive Data Input

RX_CLK Receive Clock Input

RX_DV Receive Data Valid Input

RX_ER Receive Coding Error Input

SPEED Speed

TXD0 - TXD3 Transmit Data Output

TX_CLK Transmit Clock or Reference Clock Output

TX_EN Transmit Enable Output

TX_ER Transmit Coding Error Output

Table 5-1. Signal Description List

Signal Name Function Type
Active
Level Comments

32058K AVR32-01/12

10

AT32UC3A

External Bus Interface - HEBI

ADDR0 - ADDR23 Address Bus Output

CAS Column Signal Output Low

DATA0 - DATA15 Data Bus I/O

NCS0 - NCS3 Chip Select Output Low

NRD Read Signal Output Low

NWAIT External Wait Signal Input Low

NWE0 Write Enable 0 Output Low

NWE1 Write Enable 1 Output Low

NWE3 Write Enable 3 Output Low

RAS Row Signal Output Low

SDA10 SDRAM Address 10 Line Output

SDCK SDRAM Clock Output

SDCKE SDRAM Clock Enable Output

SDCS0 SDRAM Chip Select Output Low

SDWE SDRAM Write Enable Output Low

General Purpose Input/Output 2 - GPIOA, GPIOB, GPIOC

P0 - P31 Parallel I/O Controller GPIOA I/O

P0 - P31 Parallel I/O Controller GPIOB I/O

P0 - P5 Parallel I/O Controller GPIOC I/O

P0 - P31 Parallel I/O Controller GPIOX I/O

Serial Peripheral Interface - SPI0, SPI1

MISO Master In Slave Out I/O

MOSI Master Out Slave In I/O

NPCS0 - NPCS3 SPI Peripheral Chip Select I/O Low

SCK Clock Output

Synchronous Serial Controller - SSC

RX_CLOCK SSC Receive Clock I/O

Table 5-1. Signal Description List

Signal Name Function Type
Active
Level Comments

32058K AVR32-01/12

11

AT32UC3A

RX_DATA SSC Receive Data Input

RX_FRAME_SYNC SSC Receive Frame Sync I/O

TX_CLOCK SSC Transmit Clock I/O

TX_DATA SSC Transmit Data Output

TX_FRAME_SYNC SSC Transmit Frame Sync I/O

Timer/Counter - TIMER

A0 Channel 0 Line A I/O

A1 Channel 1 Line A I/O

A2 Channel 2 Line A I/O

B0 Channel 0 Line B I/O

B1 Channel 1 Line B I/O

B2 Channel 2 Line B I/O

CLK0 Channel 0 External Clock Input Input

CLK1 Channel 1 External Clock Input Input

CLK2 Channel 2 External Clock Input Input

Two-wire Interface - TWI

SCL Serial Clock I/O

SDA Serial Data I/O

Universal Synchronous Asynchronous Receiver Transmitter - USART0, USART1, USART2, USART3

CLK Clock I/O

CTS Clear To Send Input

DCD Data Carrier Detect Only USART1

DSR Data Set Ready Only USART1

DTR Data Terminal Ready Only USART1

RI Ring Indicator Only USART1

RTS Request To Send Output

RXD Receive Data Input

TXD Transmit Data Output

Table 5-1. Signal Description List

Signal Name Function Type
Active
Level Comments

32058K AVR32-01/12

12

AT32UC3A

Analog to Digital Converter - ADC

AD0 - AD7 Analog input pins Analog
input

ADVREF Analog positive reference voltage input Analog
input 2.6 to 3.6V

Pulse Width Modulator - PWM

PWM0 - PWM6 PWM Output Pins Output

Universal Serial Bus Device - USB

DDM USB Device Port Data - Analog

DDP USB Device Port Data + Analog

VBUS USB VBUS Monitor and OTG Negociation Analog
Input

USBID ID Pin of the USB Bus Input

USB_VBOF USB VBUS On/off: bus power control port output

Audio Bitstream DAC (ABDAC)

DATA0-DATA1 D/A Data out Outpu

DATAN0-DATAN1 D/A Data inverted out Outpu

Table 5-1. Signal Description List

Signal Name Function Type
Active
Level Comments

32058K AVR32-01/12

13

AT32UC3A

6. Power Considerations

6.1 Power Supplies

The AT32UC3A has several types of power supply pins:

• VDDIO: Powers I/O lines. Voltage is 3.3V nominal.
• VDDANA: Powers the ADC Voltage is 3.3V nominal.
• VDDIN: Input voltage for the voltage regulator. Voltage is 3.3V nominal.
• VDDCORE: Powers the core, memories, and peripherals. Voltage is 1.8V nominal.
• VDDPLL: Powers the PLL. Voltage is 1.8V nominal.

The ground pins GND are common to VDDCORE, VDDIO, VDDPLL. The ground pin for
VDDANA is GNDANA.

Refer to ”Power Consumption” on page 767 for power consumption on the various supply pins.

3.3V VDDANA

VDDIO

VDDIN

VDDCORE

VDDOUT

VDDPLL

ADVREF

3.3V

1.8V

VDDANA

VDDIO

VDDIN

VDDCORE

VDDOUT

VDDPLL

ADVREF

Single Power Supply
Dual Power Supply

1.8V
Regulator1.8V

Regulator

32058K AVR32-01/12

14

AT32UC3A

6.2 Voltage Regulator

6.2.1 Single Power Supply

The AT32UC3A embeds a voltage regulator that converts from 3.3V to 1.8V. The regulator takes
its input voltage from VDDIN, and supplies the output voltage on VDDOUT. VDDOUT should be
externally connected to the 1.8V domains.

Adequate input supply decoupling is mandatory for VDDIN in order to improve startup stability
and reduce source voltage drop. Two input decoupling capacitors must be placed close to the
chip.

Adequate output supply decoupling is mandatory for VDDOUT to reduce ripple and avoid oscil-
lations. The best way to achieve this is to use two capacitors in parallel between VDDOUT and
GND as close to the chip as possible

Refer to Section 38.3 on page 765 for decoupling capacitors values and regulator characteristics

6.2.2 Dual Power Supply

In case of dual power supply, VDDIN and VDDOUT should be connected to ground to prevent
from leakage current.

3.3V

1.8V

VDDIN

VDDOUT

1.8V
Regulator

CIN1

COUT1COUT2

CIN2

VDDIN

VDDOUT

32058K AVR32-01/12

15

AT32UC3A

6.3 Analog-to-Digital Converter (A.D.C) reference.

The ADC reference (ADVREF) must be provided from an external source. Two decoupling
capacitors must be used to insure proper decoupling.

Refer to Section 38.4 on page 765 for decoupling capacitors values and electrical
characteristics.

In case ADC is not used, the ADVREF pin should be connected to GND to avoid extra
consumption.

ADVREF

CC
VREF1VREF2

3.3V

32058K AVR32-01/12

16

AT32UC3A

7. Package and Pinout

The device pins are multiplexed with peripheral functions as described in ”Peripheral Multiplexing on I/O lines” on page 45.

Figure 7-1. TQFP100 Pinout

1 25

26

50

5175

76

100

Table 7-1. TQFP100 Package Pinout

1 PB20 26 PA05 51 PA21 76 PB08

2 PB21 27 PA06 52 PA22 77 PB09

3 PB22 28 PA07 53 PA23 78 PB10

4 VDDIO 29 PA08 54 PA24 79 VDDIO

5 GND 30 PA09 55 PA25 80 GND

6 PB23 31 PA10 56 PA26 81 PB11

7 PB24 32 N/C 57 PA27 82 PB12

8 PB25 33 PA11 58 PA28 83 PA29

9 PB26 34 VDDCORE 59 VDDANA 84 PA30

10 PB27 35 GND 60 ADVREF 85 PC02

11 VDDOUT 36 PA12 61 GNDANA 86 PC03

12 VDDIN 37 PA13 62 VDDPLL 87 PB13

13 GND 38 VDDCORE 63 PC00 88 PB14

14 PB28 39 PA14 64 PC01 89 TMS

15 PB29 40 PA15 65 PB00 90 TCK

16 PB30 41 PA16 66 PB01 91 TDO

17 PB31 42 PA17 67 VDDIO 92 TDI

18 RESET_N 43 PA18 68 VDDIO 93 PC04

19 PA00 44 PA19 69 GND 94 PC05

20 PA01 45 PA20 70 PB02 95 PB15

21 GND 46 VBUS 71 PB03 96 PB16

22 VDDCORE 47 VDDIO 72 PB04 97 VDDCORE

32058K AVR32-01/12

17

AT32UC3A

Figure 7-2. LQFP144 Pinout

23 PA02 48 DM 73 PB05 98 PB17

24 PA03 49 DP 74 PB06 99 PB18

25 PA04 50 GND 75 PB07 100 PB19

Table 7-1. TQFP100 Package Pinout

1 36

37

72

73108

109

144

Table 7-2. VQFP144 Package Pinout

1 PX00 37 GND 73 PA21 109 GND

2 PX01 38 PX10 74 PA22 110 PX30

3 PB20 39 PA05 75 PA23 111 PB08

4 PX02 40 PX11 76 PA24 112 PX31

5 PB21 41 PA06 77 PA25 113 PB09

6 PB22 42 PX12 78 PA26 114 PX32

7 VDDIO 43 PA07 79 PA27 115 PB10

8 GND 44 PX13 80 PA28 116 VDDIO

9 PB23 45 PA08 81 VDDANA 117 GND

10 PX03 46 PX14 82 ADVREF 118 PX33

11 PB24 47 PA09 83 GNDANA 119 PB11

12 PX04 48 PA10 84 VDDPLL 120 PX34

13 PB25 49 N/C 85 PC00 121 PB12

14 PB26 50 PA11 86 PC01 122 PA29

15 PB27 51 VDDCORE 87 PX20 123 PA30

16 VDDOUT 52 GND 88 PB00 124 PC02

17 VDDIN 53 PA12 89 PX21 125 PC03

18 GND 54 PA13 90 PB01 126 PB13

19 PB28 55 VDDCORE 91 PX22 127 PB14

20 PB29 56 PA14 92 VDDIO 128 TMS

21 PB30 57 PA15 93 VDDIO 129 TCK

32058K AVR32-01/12

18

AT32UC3A

Figure 7-3. BGA144 Pinout

22 PB31 58 PA16 94 GND 130 TDO

23 RESET_N 59 PX15 95 PX23 131 TDI

24 PX05 60 PA17 96 PB02 132 PC04

25 PA00 61 PX16 97 PX24 133 PC05

26 PX06 62 PA18 98 PB03 134 PB15

27 PA01 63 PX17 99 PX25 135 PX35

28 GND 64 PA19 100 PB04 136 PB16

29 VDDCORE 65 PX18 101 PX26 137 PX36

30 PA02 66 PA20 102 PB05 138 VDDCORE

31 PX07 67 PX19 103 PX27 139 PB17

32 PA03 68 VBUS 104 PB06 140 PX37

33 PX08 69 VDDIO 105 PX28 141 PB18

34 PA04 70 DM 106 PB07 142 PX38

35 PX09 71 DP 107 PX29 143 PB19

36 VDDIO 72 GND 108 VDDIO 144 PX39

Table 7-2. VQFP144 Package Pinout

32058K AVR32-01/12

19

AT32UC3A

Note: NC is not connected.

Table 7-3. BGA144 Package Pinout A1..M8

1 2 3 4 5 6 7 8

A VDDIO PB07 PB05 PB02 PB03 PB01 PC00 PA28

B PB08 GND PB06 PB04 VDDIO PB00 PC01 VDDPLL

C PB09 PX33 PA29 PC02 PX28 PX26 PX22 PX21

D PB11 PB13 PB12 PX30 PX29 PX25 PX24 PX20

E PB10 VDDIO PX32 PX31 VDDIO PX27 PX23 VDDANA

F PA30 PB14 PX34 PB16 TCK GND GND PX16

G TMS PC03 PX36 PX35 PX37 GND GND PA16

H TDO VDDCORE PX38 PX39 VDDIO PA01 PA10 VDDCORE

J TDI PB17 PB15 PX00 PX01 PA00 PA03 PA04

K PC05 PC04 PB19 PB20 PX02 PB29 PB30 PA02

L PB21 GND PB18 PB24 VDDOUT PX04 PB31 VDDIN

M PB22 PB23 PB25 PB26 PX03 PB27 PB28 RESET_N

Table 7-4. BGA144 Package Pinout A9..M12

9 10 11 12

A PA26 PA25 PA24 PA23

B PA27 PA21 GND PA22

C ADVREF GNDANA PX19 PA19

D PA18 PA20 DP DM

E PX18 PX17 VDDIO VBUS

F PA17 PX15 PA15 PA14

G PA13 PA12 PA11 NC

H PX11 PA08 VDDCORE VDDCORE

J PX14 PA07 PX13 PA09

K PX08 GND PA05 PX12

L PX06 PX10 GND PA06

M PX05 PX07 PX09 VDDIO

32058K AVR32-01/12

20

AT32UC3A

8. I/O Line Considerations

8.1 JTAG pins

TMS, TDI and TCK have pull-up resistors. TDO is an output, driven at up to VDDIO, and has no
pull-up resistor.

8.2 RESET_N pin

The RESET_N pin is a schmitt input and integrates a permanent pull-up resistor to VDDIO. As
the product integrates a power-on reset cell, the RESET_N pin can be left unconnected in case
no reset from the system needs to be applied to the product.

8.3 TWI pins

When these pins are used for TWI, the pins are open-drain outputs with slew-rate limitation and
inputs with inputs with spike-filtering. When used as GPIO-pins or used for other peripherals, the
pins have the same characteristics as PIO pins.

8.4 GPIO pins

All the I/O lines integrate a programmable pull-up resistor. Programming of this pull-up resistor is
performed independently for each I/O line through the GPIO Controllers. After reset, I/O lines
default as inputs with pull-up resistors disabled, except when indicated otherwise in the column
“Reset State” of the GPIO Controller multiplexing tables.

32058K AVR32-01/12

21

AT32UC3A

9. Processor and Architecture
This chapter gives an overview of the AVR32UC CPU. AVR32UC is an implementation of the
AVR32 architecture. A summary of the programming model, instruction set and MPU is pre-
sented. For further details, see the AVR32 Architecture Manual and the AVR32UC Technical
Reference Manual.

9.1 AVR32 Architecture
AVR32 is a new, high-performance 32-bit RISC microprocessor architecture, designed for cost-
sensitive embedded applications, with particular emphasis on low power consumption and high
code density. In addition, the instruction set architecture has been tuned to allow a variety of
microarchitectures, enabling the AVR32 to be implemented as low-, mid- or high-performance
processors. AVR32 extends the AVR family into the world of 32- and 64-bit applications.

Through a quantitative approach, a large set of industry recognized benchmarks has been com-
piled and analyzed to achieve the best code density in its class. In addition to lowering the
memory requirements, a compact code size also contributes to the core’s low power characteris-
tics. The processor supports byte and half-word data types without penalty in code size and
performance.

Memory load and store operations are provided for byte, half-word, word and double word data
with automatic sign- or zero extension of half-word and byte data. The C-compiler is closely
linked to the architecture and is able to exploit code optimization features, both for size and
speed.

In order to reduce code size to a minimum, some instructions have multiple addressing modes.
As an example, instructions with immediates often have a compact format with a smaller imme-
diate, and an extended format with a larger immediate. In this way, the compiler is able to use
the format giving the smallest code size.

Another feature of the instruction set is that frequently used instructions, like add, have a com-
pact format with two operands as well as an extended format with three operands. The larger
format increases performance, allowing an addition and a data move in the same instruction in a
single cycle. Load and store instructions have several different formats in order to reduce code
size and speed up execution.

The register file is organized as sixteen 32-bit registers and includes the Program Counter, the
Link Register, and the Stack Pointer. In addition, register R12 is designed to hold return values
from function calls and is used implicitly by some instructions.

9.2 The AVR32UC CPU
The AVR32 UC CPU targets low- and medium-performance applications, and provides an
advanced OCD system, no caches, and a Memory Protection Unit (MPU). Java acceleration
hardware is not implemented.

AVR32 UC provides three memory interfaces, one High Speed Bus master for instruction fetch,
one High Speed Bus master for data access, and one High Speed Bus slave interface allowing
other bus masters to access data RAMs internal to the CPU. Keeping data RAMs internal to the
CPU allows fast access to the RAMs, reduces latency and guarantees deterministic timing. Also,
power consumption is reduced by not needing a full High Speed Bus access for memory
accesses. A dedicated data RAM interface is provided for communicating with the internal data
RAMs.

32058K AVR32-01/12

22

AT32UC3A

A local bus interface is provided for connecting the CPU to device-specific high-speed systems,
such as floating-point units and fast GPIO ports. This local bus has to be enabled by writing the
LOCEN bit in the CPUCR system register. The local bus is able to transfer data between the
CPU and the local bus slave in a single clock cycle. The local bus has a dedicated memory
range allocated to it, and data transfers are performed using regular load and store instructions.
Details on which devices that are mapped into the local bus space is given in the device-specific
“Peripherals” chapter of this data sheet.

Figure 9-1 on page 22 displays the contents of AVR32UC.

Figure 9-1. Overview of the AVR32UC CPU

9.2.1 Pipeline Overview
AVR32 UC is a pipelined processor with three pipeline stages. There are three pipeline stages,
Instruction Fetch (IF), Instruction Decode (ID) and Instruction Execute (EX). The EX stage is
split into three parallel subsections, one arithmetic/logic (ALU) section, one multiply (MUL) sec-
tion and one load/store (LS) section.

Instructions are issued and complete in order. Certain operations require several clock cycles to
complete, and in this case, the instruction resides in the ID and EX stages for the required num-
ber of clock cycles. Since there is only three pipeline stages, no internal data forwarding is
required, and no data dependencies can arise in the pipeline.

Figure 9-2 on page 23 shows an overview of the AVR32 UC pipeline stages.

AVR32UC CPU pipeline

Instruction memory controller

High
Speed

Bus
master

MPU

H
ig

h
S

pe
ed

 B
us

H
ig

h
S

pe
ed

 B
us

OCD
system

O
C

D
 in

te
rfa

ce

In
te

rr
up

t c
on

tro
lle

r i
nt

er
fa

ce

High
Speed

Bus slave

H
ig

h
S

pe
ed

 B
us

D
at

a
R

A
M

 in
te

rfa
ce

High Speed Bus master

Power/
Reset
control

R
es

et
 in

te
rfa

ce
CPU Local

Bus
master

C
P

U
 L

oc
al

 B
us

Data memory controller

32058K AVR32-01/12

23

AT32UC3A

Figure 9-2. The AVR32UC Pipeline

9.2.2 AVR32A Microarchitecture Compliance
AVR32UC implements an AVR32A microarchitecture. The AVR32A microarchitecture is tar-
geted at cost-sensitive, lower-end applications l ike smaller microcontrollers. This
microarchitecture does not provide dedicated hardware registers for shadowing of register file
registers in interrupt contexts. Additionally, it does not provide hardware registers for the return
address registers and return status registers. Instead, all this information is stored on the system
stack. This saves chip area at the expense of slower interrupt handling.

Upon interrupt initiation, registers R8-R12 are automatically pushed to the system stack. These
registers are pushed regardless of the priority level of the pending interrupt. The return address
and status register are also automatically pushed to stack. The interrupt handler can therefore
use R8-R12 freely. Upon interrupt completion, the old R8-R12 registers and status register are
restored, and execution continues at the return address stored popped from stack.

The stack is also used to store the status register and return address for exceptions and scall.
Executing the rete or rets instruction at the completion of an exception or system call will pop
this status register and continue execution at the popped return address.

9.2.3 Java Support
AVR32UC does not provide Java hardware acceleration.

9.2.4 Memory protection
The MPU allows the user to check all memory accesses for privilege violations. If an access is
attempted to an illegal memory address, the access is aborted and an exception is taken. The
MPU in AVR32UC is specified in the AVR32UC Technical Reference manual.

9.2.5 Unaligned reference handling
AVR32UC does not support unaligned accesses, except for doubleword accesses. AVR32UC is
able to perform word-aligned st.d and ld.d. Any other unaligned memory access will cause an
address exception. Doubleword-sized accesses with word-aligned pointers will automatically be
performed as two word-sized accesses.

IF ID ALU

MUL

Regf ile
w rite

Prefetch unit Decode unit

ALU unit

Multiply unit

Load-store
unitLS

Regf ile
Read

32058K AVR32-01/12

24

AT32UC3A

The following table shows the instructions with support for unaligned addresses. All other
instructions require aligned addresses.

9.2.6 Unimplemented instructions
The following instructions are unimplemented in AVR32UC, and will cause an Unimplemented
Instruction Exception if executed:

• All SIMD instructions
• All coprocessor instructions
• retj, incjosp, popjc, pushjc
• tlbr, tlbs, tlbw
• cache

9.2.7 CPU and Architecture revision
Two major revisions of the AVR32UC CPU currently exist. The device described in this
datasheet uses CPU revision 2.

The Architecture Revision field in the CONFIG0 system register identifies which architecture
revision is implemented in a specific device.

AVR32UC CPU revision 2 is fully backward-compatible with revision 1, ie. code compiled for
revision 1 is binary-compatible with revision 2 CPUs.

Table 9-1. Instructions with unaligned reference support

Instruction Supported alignment

ld.d Word

st.d Word

32058K AVR32-01/12

25

AT32UC3A

9.3 Programming Model

9.3.1 Register file configuration
The AVR32UC register file is shown below.

Figure 9-3. The AVR32UC Register File

9.3.2 Status register configuration
The Status Register (SR) is split into two halfwords, one upper and one lower, see Figure 9-4 on
page 25 and Figure 9-5 on page 26. The lower word contains the C, Z, N, V and Q condition
code flags and the R, T and L bits, while the upper halfword contains information about the
mode and state the processor executes in. Refer to the AVR32 Architecture Manual for details.

Figure 9-4. The Status Register High Halfword

Application

Bit 0

Superv isor

Bit 31

PC

SR

INT0PC

FINTPC
INT1PC

SM PC

R7

R5
R6

R4
R3

R1
R2

R0

Bit 0Bit 31

PC

SR

R12

INT0PC

FINTPC
INT1PC

SM PC

R7

R5
R6

R4

R11

R9
R10

R8

R3

R1
R2

R0

INT0

SP_APP SP_SYS
R12
R11

R9
R10

R8

Exception NMIINT1 INT2 INT3

LRLR

Bit 0Bit 31

PC

SR

R12

INT0PC

FINTPC
INT1PC

SM PC

R7

R5
R6

R4

R11

R9
R10

R8

R3

R1
R2

R0

SP_SYS
LR

Bit 0Bit 31

PC

SR

R12

INT0PC

FINTPC
INT1PC

SM PC

R7

R5
R6

R4

R11

R9
R10

R8

R3

R1
R2

R0

SP_SYS
LR

Bit 0Bit 31

PC

SR

R12

INT0PC

FINTPC
INT1PC

SM PC

R7

R5
R6

R4

R11

R9
R10

R8

R3

R1
R2

R0

SP_SYS
LR

Bit 0Bit 31

PC

SR

R12

INT0PC

FINTPC
INT1PC

SM PC

R7

R5
R6

R4

R11

R9
R10

R8

R3

R1
R2

R0

SP_SYS
LR

Bit 0Bit 31

PC

SR

R12

INT0PC

FINTPC
INT1PC

SM PC

R7

R5
R6

R4

R11

R9
R10

R8

R3

R1
R2

R0

SP_SYS
LR

Bit 0Bit 31

PC

SR

R12

INT0PC

FINTPC
INT1PC

SM PC

R7

R5
R6

R4

R11

R9
R10

R8

R3

R1
R2

R0

SP_SYS
LR

Bit 31

0 0 0

Bit 16

Interrupt Level 0 Mask
Interrupt Level 1 Mask

Interrupt Level 3 Mask
Interrupt Level 2 Mask

10 0 0 0 1 1 0 0 0 00 0

FE I0M GMM1- D M0 EM I2MDM - M2LC
1-

Initial value

Bit nameI1M

Mode Bit 0
Mode Bit 1

-

Mode Bit 2
Reserved
Debug State

- I3M

Reserved

Exception Mask

Global Interrupt Mask

Debug State Mask

32058K AVR32-01/12

26

AT32UC3A

Figure 9-5. The Status Register Low Halfword

9.3.3 Processor States

9.3.3.1 Normal RISC State
The AVR32 processor supports several different execution contexts as shown in Table 9-2 on
page 26.

Mode changes can be made under software control, or can be caused by external interrupts or
exception processing. A mode can be interrupted by a higher priority mode, but never by one
with lower priority. Nested exceptions can be supported with a minimal software overhead.

When running an operating system on the AVR32, user processes will typically execute in the
application mode. The programs executed in this mode are restricted from executing certain
instructions. Furthermore, most system registers together with the upper halfword of the status
register cannot be accessed. Protected memory areas are also not available. All other operating
modes are privileged and are collectively called System Modes. They have full access to all priv-
ileged and unprivileged resources. After a reset, the processor will be in supervisor mode.

9.3.3.2 Debug State
The AVR32 can be set in a debug state, which allows implementation of software monitor rou-
tines that can read out and alter system information for use during application development. This
implies that all system and application registers, including the status registers and program
counters, are accessible in debug state. The privileged instructions are also available.

Bit 15 Bit 0

Reserved

Carry
Zero
Sign

0 0 0 00000000000

- - --TR Bit name

Initial value0 0

L Q V N Z C-

Overflow
Saturation

- - -

Lock

Register Remap Enable
Scratch

Table 9-2. Overview of execution modes, their priorities and privilege levels.

Priority Mode Security Description

1 Non Maskable Interrupt Privileged Non Maskable high priority interrupt mode

2 Exception Privileged Execute exceptions

3 Interrupt 3 Privileged General purpose interrupt mode

4 Interrupt 2 Privileged General purpose interrupt mode

5 Interrupt 1 Privileged General purpose interrupt mode

6 Interrupt 0 Privileged General purpose interrupt mode

N/A Supervisor Privileged Runs supervisor calls

N/A Application Unprivileged Normal program execution mode

32058K AVR32-01/12

27

AT32UC3A

All interrupt levels are by default disabled when debug state is entered, but they can individually
be switched on by the monitor routine by clearing the respective mask bit in the status register.

Debug state can be entered as described in the AVR32UC Technical Reference Manual.

Debug state is exited by the retd instruction.

9.3.4 System registers
The system registers are placed outside of the virtual memory space, and are only accessible
using the privileged mfsr and mtsr instructions. The table below lists the system registers speci-
fied in the AVR32 architecture, some of which are unused in AVR32UC. The programmer is
responsible for maintaining correct sequencing of any instructions following a mtsr instruction.
For detail on the system registers, refer to the AVR32UC Technical Reference Manual.

Table 9-3. System Registers

Reg # Address Name Function

0 0 SR Status Register

1 4 EVBA Exception Vector Base Address

2 8 ACBA Application Call Base Address

3 12 CPUCR CPU Control Register

4 16 ECR Exception Cause Register

5 20 RSR_SUP Unused in AVR32UC

6 24 RSR_INT0 Unused in AVR32UC

7 28 RSR_INT1 Unused in AVR32UC

8 32 RSR_INT2 Unused in AVR32UC

9 36 RSR_INT3 Unused in AVR32UC

10 40 RSR_EX Unused in AVR32UC

11 44 RSR_NMI Unused in AVR32UC

12 48 RSR_DBG Return Status Register for Debug Mode

13 52 RAR_SUP Unused in AVR32UC

14 56 RAR_INT0 Unused in AVR32UC

15 60 RAR_INT1 Unused in AVR32UC

16 64 RAR_INT2 Unused in AVR32UC

17 68 RAR_INT3 Unused in AVR32UC

18 72 RAR_EX Unused in AVR32UC

19 76 RAR_NMI Unused in AVR32UC

20 80 RAR_DBG Return Address Register for Debug Mode

21 84 JECR Unused in AVR32UC

22 88 JOSP Unused in AVR32UC

23 92 JAVA_LV0 Unused in AVR32UC

24 96 JAVA_LV1 Unused in AVR32UC

25 100 JAVA_LV2 Unused in AVR32UC

32058K AVR32-01/12

28

AT32UC3A

26 104 JAVA_LV3 Unused in AVR32UC

27 108 JAVA_LV4 Unused in AVR32UC

28 112 JAVA_LV5 Unused in AVR32UC

29 116 JAVA_LV6 Unused in AVR32UC

30 120 JAVA_LV7 Unused in AVR32UC

31 124 JTBA Unused in AVR32UC

32 128 JBCR Unused in AVR32UC

33-63 132-252 Reserved Reserved for future use

64 256 CONFIG0 Configuration register 0

65 260 CONFIG1 Configuration register 1

66 264 COUNT Cycle Counter register

67 268 COMPARE Compare register

68 272 TLBEHI Unused in AVR32UC

69 276 TLBELO Unused in AVR32UC

70 280 PTBR Unused in AVR32UC

71 284 TLBEAR Unused in AVR32UC

72 288 MMUCR Unused in AVR32UC

73 292 TLBARLO Unused in AVR32UC

74 296 TLBARHI Unused in AVR32UC

75 300 PCCNT Unused in AVR32UC

76 304 PCNT0 Unused in AVR32UC

77 308 PCNT1 Unused in AVR32UC

78 312 PCCR Unused in AVR32UC

79 316 BEAR Bus Error Address Register

80 320 MPUAR0 MPU Address Register region 0

81 324 MPUAR1 MPU Address Register region 1

82 328 MPUAR2 MPU Address Register region 2

83 332 MPUAR3 MPU Address Register region 3

84 336 MPUAR4 MPU Address Register region 4

85 340 MPUAR5 MPU Address Register region 5

86 344 MPUAR6 MPU Address Register region 6

87 348 MPUAR7 MPU Address Register region 7

88 352 MPUPSR0 MPU Privilege Select Register region 0

89 356 MPUPSR1 MPU Privilege Select Register region 1

90 360 MPUPSR2 MPU Privilege Select Register region 2

91 364 MPUPSR3 MPU Privilege Select Register region 3

Table 9-3. System Registers (Continued)

Reg # Address Name Function

32058K AVR32-01/12

29

AT32UC3A

9.4 Exceptions and Interrupts
AVR32UC incorporates a powerful exception handling scheme. The different exception sources,
like Illegal Op-code and external interrupt requests, have different priority levels, ensuring a well-
defined behavior when multiple exceptions are received simultaneously. Additionally, pending
exceptions of a higher priority class may preempt handling of ongoing exceptions of a lower pri-
ority class.

When an event occurs, the execution of the instruction stream is halted, and execution control is
passed to an event handler at an address specified in Table 9-4 on page 32. Most of the han-
dlers are placed sequentially in the code space starting at the address specified by EVBA, with
four bytes between each handler. This gives ample space for a jump instruction to be placed
there, jumping to the event routine itself. A few critical handlers have larger spacing between
them, allowing the entire event routine to be placed directly at the address specified by the
EVBA-relative offset generated by hardware. All external interrupt sources have autovectored
interrupt service routine (ISR) addresses. This allows the interrupt controller to directly specify
the ISR address as an address relative to EVBA. The autovector offset has 14 address bits, giv-
ing an offset of maximum 16384 bytes. The target address of the event handler is calculated as
(EVBA | event_handler_offset), not (EVBA + event_handler_offset), so EVBA and exception
code segments must be set up appropriately. The same mechanisms are used to service all dif-
ferent types of events, including external interrupt requests, yielding a uniform event handling
scheme.

An interrupt controller does the priority handling of the external interrupts and provides the
autovector offset to the CPU.

9.4.1 System stack issues
Event handling in AVR32 UC uses the system stack pointed to by the system stack pointer,
SP_SYS, for pushing and popping R8-R12, LR, status register and return address. Since event
code may be timing-critical, SP_SYS should point to memory addresses in the IRAM section,
since the timing of accesses to this memory section is both fast and deterministic.

92 368 MPUPSR4 MPU Privilege Select Register region 4

93 372 MPUPSR5 MPU Privilege Select Register region 5

94 376 MPUPSR6 MPU Privilege Select Register region 6

95 380 MPUPSR7 MPU Privilege Select Register region 7

96 384 MPUCRA Unused in this version of AVR32UC

97 388 MPUCRB Unused in this version of AVR32UC

98 392 MPUBRA Unused in this version of AVR32UC

99 396 MPUBRB Unused in this version of AVR32UC

100 400 MPUAPRA MPU Access Permission Register A

101 404 MPUAPRB MPU Access Permission Register B

102 408 MPUCR MPU Control Register

103-191 412-764 Reserved Reserved for future use

192-255 768-1020 IMPL IMPLEMENTATION DEFINED

Table 9-3. System Registers (Continued)

Reg # Address Name Function

32058K AVR32-01/12

30

AT32UC3A

The user must also make sure that the system stack is large enough so that any event is able to
push the required registers to stack. If the system stack is full, and an event occurs, the system
will enter an UNDEFINED state.

9.4.2 Exceptions and interrupt requests
When an event other than scall or debug request is received by the core, the following actions
are performed atomically:

1. The pending event will not be accepted if it is masked. The I3M, I2M, I1M, I0M, EM and
GM bits in the Status Register are used to mask different events. Not all events can be
masked. A few critical events (NMI, Unrecoverable Exception, TLB Multiple Hit and Bus
Error) can not be masked. When an event is accepted, hardware automatically sets the
mask bits corresponding to all sources with equal or lower priority. This inhibits accep-
tance of other events of the same or lower priority, except for the critical events listed
above. Software may choose to clear some or all of these bits after saving the neces-
sary state if other priority schemes are desired. It is the event source’s responsability to
ensure that their events are left pending until accepted by the CPU.

2. When a request is accepted, the Status Register and Program Counter of the current
context is stored to the system stack. If the event is an INT0, INT1, INT2 or INT3, regis-
ters R8-R12 and LR are also automatically stored to stack. Storing the Status Register
ensures that the core is returned to the previous execution mode when the current
event handling is completed. When exceptions occur, both the EM and GM bits are set,
and the application may manually enable nested exceptions if desired by clearing the
appropriate bit. Each exception handler has a dedicated handler address, and this
address uniquely identifies the exception source.

3. The Mode bits are set to reflect the priority of the accepted event, and the correct regis-
ter file bank is selected. The address of the event handler, as shown in Table 9-4, is
loaded into the Program Counter.

The execution of the event handler routine then continues from the effective address calculated.

The rete instruction signals the end of the event. When encountered, the Return Status Register
and Return Address Register are popped from the system stack and restored to the Status Reg-
ister and Program Counter. If the rete instruction returns from INT0, INT1, INT2 or INT3,
registers R8-R12 and LR are also popped from the system stack. The restored Status Register
contains information allowing the core to resume operation in the previous execution mode. This
concludes the event handling.

9.4.3 Supervisor calls
The AVR32 instruction set provides a supervisor mode call instruction. The scall instruction is
designed so that privileged routines can be called from any context. This facilitates sharing of
code between different execution modes. The scall mechanism is designed so that a minimal
execution cycle overhead is experienced when performing supervisor routine calls from time-
critical event handlers.

The scall instruction behaves differently depending on which mode it is called from. The behav-
iour is detailed in the instruction set reference. In order to allow the scall routine to return to the
correct context, a return from supervisor call instruction, rets, is implemented. In the AVR32UC
CPU, scall and rets uses the system stack to store the return address and the status register.

9.4.4 Debug requests
The AVR32 architecture defines a dedicated debug mode. When a debug request is received by
the core, Debug mode is entered. Entry into Debug mode can be masked by the DM bit in the

32058K AVR32-01/12

31

AT32UC3A

status register. Upon entry into Debug mode, hardware sets the SR[D] bit and jumps to the
Debug Exception handler. By default, debug mode executes in the exception context, but with
dedicated Return Address Register and Return Status Register. These dedicated registers
remove the need for storing this data to the system stack, thereby improving debuggability. The
mode bits in the status register can freely be manipulated in Debug mode, to observe registers
in all contexts, while retaining full privileges.

Debug mode is exited by executing the retd instruction. This returns to the previous context.

9.4.5 Entry points for events
Several different event handler entry points exists. In AVR32 UC, the reset address is
0x8000_0000. This places the reset address in the boot flash memory area.

TLB miss exceptions and scall have a dedicated space relative to EVBA where their event han-
dler can be placed. This speeds up execution by removing the need for a jump instruction placed
at the program address jumped to by the event hardware. All other exceptions have a dedicated
event routine entry point located relative to EVBA. The handler routine address identifies the
exception source directly.

AVR32UC uses the ITLB and DTLB protection exceptions to signal a MPU protection violation.
ITLB and DTLB miss exceptions are used to signal that an access address did not map to any of
the entries in the MPU. TLB multiple hit exception indicates that an access address did map to
multiple TLB entries, signalling an error.

All external interrupt requests have entry points located at an offset relative to EVBA. This
autovector offset is specified by an external Interrupt Controller. The programmer must make
sure that none of the autovector offsets interfere with the placement of other code. The autovec-
tor offset has 14 address bits, giving an offset of maximum 16384 bytes.

Special considerations should be made when loading EVBA with a pointer. Due to security con-
siderations, the event handlers should be located in non-writeable flash memory, or optionally in
a privileged memory protection region if an MPU is present.

If several events occur on the same instruction, they are handled in a prioritized way. The priority
ordering is presented in Table 9-4. If events occur on several instructions at different locations in
the pipeline, the events on the oldest instruction are always handled before any events on any
younger instruction, even if the younger instruction has events of higher priority than the oldest
instruction. An instruction B is younger than an instruction A if it was sent down the pipeline later
than A.

The addresses and priority of simultaneous events are shown in Table 9-4. Some of the excep-
tions are unused in AVR32 UC since it has no MMU, coprocessor interface or floating-point unit.

32058K AVR32-01/12

32

AT32UC3A

Table 9-4. Priority and handler addresses for events

Priority Handler Address Name Event source Stored Return Address

1 0x8000_0000 Reset External input Undefined

2 Provided by OCD system OCD Stop CPU OCD system First non-completed instruction

3 EVBA+0x00 Unrecoverable exception Internal PC of offending instruction

4 EVBA+0x04 TLB multiple hit MPU

5 EVBA+0x08 Bus error data fetch Data bus First non-completed instruction

6 EVBA+0x0C Bus error instruction fetch Data bus First non-completed instruction

7 EVBA+0x10 NMI External input First non-completed instruction

8 Autovectored Interrupt 3 request External input First non-completed instruction

9 Autovectored Interrupt 2 request External input First non-completed instruction

10 Autovectored Interrupt 1 request External input First non-completed instruction

11 Autovectored Interrupt 0 request External input First non-completed instruction

12 EVBA+0x14 Instruction Address CPU PC of offending instruction

13 EVBA+0x50 ITLB Miss MPU

14 EVBA+0x18 ITLB Protection MPU PC of offending instruction

15 EVBA+0x1C Breakpoint OCD system First non-completed instruction

16 EVBA+0x20 Illegal Opcode Instruction PC of offending instruction

17 EVBA+0x24 Unimplemented instruction Instruction PC of offending instruction

18 EVBA+0x28 Privilege violation Instruction PC of offending instruction

19 EVBA+0x2C Floating-point UNUSED

20 EVBA+0x30 Coprocessor absent UNUSED

21 EVBA+0x100 Supervisor call Instruction PC(Supervisor Call) +2

22 EVBA+0x34 Data Address (Read) CPU PC of offending instruction

23 EVBA+0x38 Data Address (Write) CPU PC of offending instruction

24 EVBA+0x60 DTLB Miss (Read) MPU

25 EVBA+0x70 DTLB Miss (Write) MPU

26 EVBA+0x3C DTLB Protection (Read) MPU PC of offending instruction

27 EVBA+0x40 DTLB Protection (Write) MPU PC of offending instruction

28 EVBA+0x44 DTLB Modified UNUSED

32058K AVR32-01/12

33

AT32UC3A

10. Memories

10.1 Embedded Memories

• Internal High-Speed Flash
– 512 KBytes (AT32UC3A0512, AT32UC3A1512)
– 256 KBytes (AT32UC3A0256, AT32UC3A1256)
– 128 KBytes (AT32UC3A1128, AT32UC3A2128)

- 0 Wait State Access at up to 33 MHz in Worst Case Conditions
- 1 Wait State Access at up to 66 MHz in Worst Case Conditions
- Pipelined Flash Architecture, allowing burst reads from sequential Flash locations, hiding
penalty of 1 wait state access
- Pipelined Flash Architecture typically reduces the cycle penalty of 1 wait state operation
to only 15% compared to 0 wait state operation
- 100 000 Write Cycles, 15-year Data Retention Capability
- 4 ms Page Programming Time, 8 ms Chip Erase Time
- Sector Lock Capabilities, Bootloader Protection, Security Bit
- 32 Fuses, Erased During Chip Erase
- User Page For Data To Be Preserved During Chip Erase

• Internal High-Speed SRAM, Single-cycle access at full speed
– 64 KBytes (AT32UC3A0512, AT32UC3A0256, AT32UC3A1512, AT32UC3A1256)
– 32KBytes (AT32UC3A1128)

10.2 Physical Memory Map

The system bus is implemented as a bus matrix. All system bus addresses are fixed, and they
are never remapped in any way, not even in boot. Note that AVR32 UC CPU uses unsegmented
translation, as described in the AVR32 Architecture Manual. The 32-bit physical address space
is mapped as follows:

Table 10-1. AT32UC3A Physical Memory Map

Device Start Address
Size

AT32UC3A0512 AT32UC3A1512 AT32UC3A0256 AT32UC3A1256 AT32UC3A0128 AT32UC3A1128

Embedded SRAM 0x0000_0000 64 Kbyte 64 Kbyte 64 Kbyte 64 Kbyte 32 Kbyte 32 Kbyte

Embedded Flash 0x8000_0000 512 Kbyte 512 Kbyte 256 Kbyte 256 Kbyte 128 Kbyte 128 Kbyte

EBI SRAM CS0 0xC000_0000 16 Mbyte - 16 Mbyte - 16 Mbyte -

EBI SRAM CS2 0xC800_0000 16 Mbyte - 16 Mbyte - 16 Mbyte -

EBI SRAM CS3 0xCC00_0000 16 Mbyte - 16 Mbyte - 16 Mbyte -

EBI SRAM CS1
/SDRAM CS0 0xD000_0000 128 Mbyte - 128 Mbyte - 128 Mbyte -

USB
Configuration 0xE000_0000 64 Kbyte 64 Kbyte 64 Kbyte 64 Kbyte 64 Kbyte 64 Kbyte

HSB-PB Bridge A 0xFFFE_0000 64 Kbyte 64 Kbyte 64 Kbyte 64 Kbyte 64 Kbyte 64 Kbyte

HSB-PB Bridge B 0xFFFF_0000 64 Kbyte 64 Kbyte 64 kByte 64 kByte 64 Kbyte 64 Kbyte

32058K AVR32-01/12

34

AT32UC3A

10.3 Bus Matrix Connections

Accesses to unused areas returns an error result to the master requesting such an access.

The bus matrix has the several masters and slaves. Each master has its own bus and its own
decoder, thus allowing a different memory mapping per master. The master number in the table
below can be used to index the HMATRIX control registers. For example, MCFG0 is associated
with the CPU Data master interface.

Each slave has its own arbiter, thus allowing a different arbitration per slave. The slave number
in the table below can be used to index the HMATRIX control registers. For example, SCFG3 is
associated with the Internal SRAM Slave Interface.

Table 10-2. Flash Memory Parameters

Part Number
Flash Size

(FLASH_PW)
Number of pages

(FLASH_P)
Page size

(FLASH_W)

General Purpose
Fuse bits

(FLASH_F)

AT32UC3A0512 512 Kbytes 1024 128 words 32 fuses

AT32UC3A1512 512 Kbytes 1024 128 words 32 fuses

AT32UC3A0256 256 Kbytes 512 128 words 32 fuses

AT32UC3A1256 256 Kbytes 512 128 words 32 fuses

AT32UC3A1128 128 Kbytes 256 128 words 32 fuses

AT32UC3A0128 128 Kbytes 256 128 words 32 fuses

Table 10-3. High Speed Bus masters

Master 0 CPU Data

Master 1 CPU Instruction

Master 2 CPU SAB

Master 3 PDCA

Master 4 MACB DMA

Master 5 USBB DMA

Table 10-4. High Speed Bus slaves

Slave 0 Internal Flash

Slave 1 HSB-PB Bridge 0

Slave 2 HSB-PB Bridge 1

Slave 3 Internal SRAM

Slave 4 USBB DPRAM

Slave 5 EBI

32058K AVR32-01/12

35

AT32UC3A

Figure 10-1. HMatrix Master / Slave Connections

CPU Data 0

CPU
Instruction 1

CPU SAB 2

PDCA 3

MACB 4
In

te
rn

al
 F

la
sh

0

H
S

B-
P

B
B

rid
ge

 0

1

H
S

B-
P

B
B

rid
ge

 1

2

In
te

rn
al

 S
R

A
M

S
la

ve

3

U
S

B
B

 S
la

ve

4

E
B

I

5

USBB DMA 5

H
M

A
TR

IX
 M

A
S

TE
R

S

HMATRIX SLAVES

32058K AVR32-01/12

36

AT32UC3A

11. Fuses Settings

The flash block contains a number of general purpose fuses. Some of these fuses have defined
meanings outside the flash controller and are described in this section.

The general purpose fuses are erase by a JTAG chip erase.

11.1 Flash General Purpose Fuse Register (FGPFRLO)

BODEN: Brown Out Detector Enable

BODHYST: Brown Out Detector Hysteresis

BODLEVEL: Brown Out Detector Trigger Level

This controls the voltage trigger level for the Brown out detector. Refer to sectionTable 38-6 on
page 765 for values description. If the BODLEVEL is set higher than VDDCORE and enabled by
fuses, the part will be in constant reset. To recover from this situation, apply an external voltage
on VDDCORE that is higher than the BOD level and disable the BOD.

Table 11-1. FGPFR Register Description

31 30 29 28 27 26 25 24

GPF31 GPF30 GPF29 BODEN BODHYST BODLEVEL[5:4]

23 22 21 20 19 18 17 16

BODLEVEL[3:0] BOOTPROT EPFL

15 14 13 12 11 10 9 8

LOCK[15:8]

7 6 5 4 3 2 1 0

LOCK[7:0]

Table 11-2. BODEN Field Description

BODEN Description

0x0 BOD disabled

0x1 BOD enabled, BOD reset enabled

0x2 BOD enabled, BOD reset disabled

0x3 BOD disabled

Table 11-3. BODEN Field Description

BODHYST Description

0b The Brown out detector hysteresis is disabled

1b he Brown out detector hysteresis is enabled.

32058K AVR32-01/12

37

AT32UC3A

LOCK, EPFL, BOOTPROT

These are Flash controller fuses and are described in the FLASHC section.

11.2 Default Fuse Value

The devices are shipped with the FGPFRLO register value: 0xFC07FFFF:

• GPF31 fuse set to 1b. This fuse is used by the pre-programmed USB bootloader.
• GPF30 fuse set to 1b. This fuse is used by the pre-programmed USB bootloader.
• GPF29 fuse set to 1b. This fuse is used by the pre-programmed USB bootloader.
• BODEN fuses set to 11b. BOD is disabled.
• BODHYST fuse set to 1b. The BOD hysteresis is enabled.
• BODLEVEL fuses set to 000000b. This is the minimum voltage trigger level for BOD.
• BOOTPROT fuses set to 011b. The bootloader protected size is 8 Ko.
• EPFL fuse set to 1b. External privileged fetch is not locked.
• LOCK fuses set to 1111111111111111b. No region locked.
See also the AT32UC3A Bootloader user guide document.

After the JTAG chip erase command, the FGPFRLO register value is 0xFFFFFFFF.

32058K AVR32-01/12

38

AT32UC3A

12. Peripherals

12.1 Peripheral address map

Table 12-1. Peripheral Address Mapping

Address Peripheral Name Bus

0xE0000000
USBB USBB Slave Interface - USBB HSB

0xFFFE0000
USBB USBB Configuration Interface - USBB PBB

0xFFFE1000
HMATRIX HMATRIX Configuration Interface - HMATRIX PBB

0xFFFE1400
FLASHC Flash Controller - FLASHC PBB

0xFFFE1800
MACB MACB Configuration Interface - MACB PBB

0xFFFE1C00
SMC Static Memory Controller Configuration Interface -

SMC PBB

0xFFFE2000
SDRAMC SDRAM Controller Configuration Interface -

SDRAMC PBB

0xFFFF0000
PDCA Peripheral DMA Interface - PDCA PBA

0xFFFF0800
INTC Interrupt Controller Interface - INTC PBA

0xFFFF0C00
PM Power Manager - PM PBA

0xFFFF0D00
RTC Real Time Clock - RTC PBA

0xFFFF0D30
WDT WatchDog Timer - WDT PBA

0xFFFF0D80
EIC External Interrupt Controller - EIC PBA

0xFFFF1000
GPIO General Purpose IO Controller - GPIO PBA

0xFFFF1400
USART0 Universal Synchronous Asynchronous Receiver

Transmitter - USART0 PBA

0xFFFF1800
USART1 Universal Synchronous Asynchronous Receiver

Transmitter - USART1 PBA

32058K AVR32-01/12

39

AT32UC3A

12.2 CPU Local Bus Mapping

Some of the registers in the GPIO module are mapped onto the CPU local bus, in addition to
being mapped on the Peripheral Bus. These registers can therefore be reached both by
accesses on the Peripheral Bus, and by accesses on the local bus.

Mapping these registers on the local bus allows cycle-deterministic toggling of GPIO pins since
the CPU and GPIO are the only modules connected to this bus. Also, since the local bus runs at
CPU speed, one write or read operation can be performed per clock cycle to the local bus-
mapped GPIO registers.

0xFFFF1C00
USART2 Universal Synchronous Asynchronous Receiver

Transmitter - USART2 PBA

0xFFFF2000
USART3 Universal Synchronous Asynchronous Receiver

Transmitter - USART3 PBA

0xFFFF2400
SPI0 Serial Peripheral Interface - SPI0 PBA

0xFFFF2800
SPI1 Serial Peripheral Interface - SPI1 PBA

0xFFFF2C00
TWI Two Wire Interface - TWI PBA

0xFFFF3000
PWM Pulse Width Modulation Controller - PWM PBA

0xFFFF3400
SSC Synchronous Serial Controller - SSC PBA

0xFFFF3800
TC Timer/Counter - TC PBA

0xFFFF3C00
ADC Analog To Digital Converter - ADC PBA

Table 12-1. Peripheral Address Mapping (Continued)

Address Peripheral Name Bus

32058K AVR32-01/12

40

AT32UC3A

The following GPIO registers are mapped on the local bus:

Table 12-2. Local bus mapped GPIO registers

Port Register Mode
Local Bus
Address Access

0 Output Driver Enable Register (ODER) WRITE 0x4000_0040 Write-only

SET 0x4000_0044 Write-only

CLEAR 0x4000_0048 Write-only

TOGGLE 0x4000_004C Write-only

Output Value Register (OVR) WRITE 0x4000_0050 Write-only

SET 0x4000_0054 Write-only

CLEAR 0x4000_0058 Write-only

TOGGLE 0x4000_005C Write-only

Pin Value Register (PVR) - 0x4000_0060 Read-only

1 Output Driver Enable Register (ODER) WRITE 0x4000_0140 Write-only

SET 0x4000_0144 Write-only

CLEAR 0x4000_0148 Write-only

TOGGLE 0x4000_014C Write-only

Output Value Register (OVR) WRITE 0x4000_0150 Write-only

SET 0x4000_0154 Write-only

CLEAR 0x4000_0158 Write-only

TOGGLE 0x4000_015C Write-only

Pin Value Register (PVR) - 0x4000_0160 Read-only

2 Output Driver Enable Register (ODER) WRITE 0x4000_0240 Write-only

SET 0x4000_0244 Write-only

CLEAR 0x4000_0248 Write-only

TOGGLE 0x4000_024C Write-only

Output Value Register (OVR) WRITE 0x4000_0250 Write-only

SET 0x4000_0254 Write-only

CLEAR 0x4000_0258 Write-only

TOGGLE 0x4000_025C Write-only

Pin Value Register (PVR) - 0x4000_0260 Read-only

32058K AVR32-01/12

41

AT32UC3A

12.3 Interrupt Request Signal Map

The various modules may output Interrupt request signals. These signals are routed to the Inter-
rupt Controller (INTC), described in a later chapter. The Interrupt Controller supports up to 64
groups of interrupt requests. Each group can have up to 32 interrupt request signals. All interrupt
signals in the same group share the same autovector address and priority level. Refer to the
documentation for the individual submodules for a description of the semantics of the different
interrupt requests.

The interrupt request signals are connected to the INTC as follows.

3 Output Driver Enable Register (ODER) WRITE 0x4000_0340 Write-only

SET 0x4000_0344 Write-only

CLEAR 0x4000_0348 Write-only

TOGGLE 0x4000_034C Write-only

Output Value Register (OVR) WRITE 0x4000_0350 Write-only

SET 0x4000_0354 Write-only

CLEAR 0x4000_0358 Write-only

TOGGLE 0x4000_035C Write-only

Pin Value Register (PVR) - 0x4000_0360 Read-only

Table 12-2. Local bus mapped GPIO registers

Port Register Mode
Local Bus
Address Access

Table 12-3. Interrupt Request Signal Map

Group Line Module Signal

0 0 AVR32 UC CPU with optional MPU and
optional OCD

SYSBLOCK
COMPARE

1

0 External Interrupt Controller EIC 0

1 External Interrupt Controller EIC 1

2 External Interrupt Controller EIC 2

3 External Interrupt Controller EIC 3

4 External Interrupt Controller EIC 4

5 External Interrupt Controller EIC 5

6 External Interrupt Controller EIC 6

7 External Interrupt Controller EIC 7

8 Real Time Counter RTC

9 Power Manager PM

10 Frequency Meter FREQM

32058K AVR32-01/12

42

AT32UC3A

2

0 General Purpose Input/Output GPIO 0

1 General Purpose Input/Output GPIO 1

2 General Purpose Input/Output GPIO 2

3 General Purpose Input/Output GPIO 3

4 General Purpose Input/Output GPIO 4

5 General Purpose Input/Output GPIO 5

6 General Purpose Input/Output GPIO 6

7 General Purpose Input/Output GPIO 7

8 General Purpose Input/Output GPIO 8

9 General Purpose Input/Output GPIO 9

10 General Purpose Input/Output GPIO 10

11 General Purpose Input/Output GPIO 11

12 General Purpose Input/Output GPIO 12

13 General Purpose Input/Output GPIO 13

3

0 Peripheral DMA Controller PDCA 0

1 Peripheral DMA Controller PDCA 1

2 Peripheral DMA Controller PDCA 2

3 Peripheral DMA Controller PDCA 3

4 Peripheral DMA Controller PDCA 4

5 Peripheral DMA Controller PDCA 5

6 Peripheral DMA Controller PDCA 6

7 Peripheral DMA Controller PDCA 7

8 Peripheral DMA Controller PDCA 8

9 Peripheral DMA Controller PDCA 9

10 Peripheral DMA Controller PDCA 10

11 Peripheral DMA Controller PDCA 11

12 Peripheral DMA Controller PDCA 12

13 Peripheral DMA Controller PDCA 13

14 Peripheral DMA Controller PDCA 14

4 0 Flash Controller FLASHC

5 0 Universal Synchronous/Asynchronous
Receiver/Transmitter USART0

6 0 Universal Synchronous/Asynchronous
Receiver/Transmitter USART1

7 0 Universal Synchronous/Asynchronous
Receiver/Transmitter USART2

8 0 Universal Synchronous/Asynchronous
Receiver/Transmitter USART3

Table 12-3. Interrupt Request Signal Map

32058K AVR32-01/12

43

AT32UC3A

12.4 Clock Connections

12.4.1 Timer/Counters

Each Timer/Counter channel can independently select an internal or external clock source for its
counter:

12.4.2 USARTs

Each USART can be connected to an internally divided clock:

9 0 Serial Peripheral Interface SPI0

10 0 Serial Peripheral Interface SPI1

11 0 Two-wire Interface TWI

12 0 Pulse Width Modulation Controller PWM

13 0 Synchronous Serial Controller SSC

14

0 Timer/Counter TC0

1 Timer/Counter TC1

2 Timer/Counter TC2

15 0 Analog to Digital Converter ADC

16 0 Ethernet MAC MACB

17 0 USB 2.0 OTG Interface USBB

18 0 SDRAM Controller SDRAMC

19 0 Audio Bitstream DAC DAC

Table 12-3. Interrupt Request Signal Map

Table 12-4. Timer/Counter clock connections

Source Name Connection

Internal TIMER_CLOCK1 32 KHz Oscillator

TIMER_CLOCK2 PBA clock / 2

TIMER_CLOCK3 PBA clock / 8

TIMER_CLOCK4 PBA clock / 32

TIMER_CLOCK5 PBA clock / 128

External XC0 See Section 12.7

XC1

XC2

Table 12-5. USART clock connections

USART Source Name Connection

0 Internal CLK_DIV PBA clock / 8

1

2

3

32058K AVR32-01/12

44

AT32UC3A

12.4.3 SPIs

Each SPI can be connected to an internally divided clock:

12.5 Nexus OCD AUX port connections

If the OCD trace system is enabled, the trace system will take control over a number of pins, irre-
spectively of the PIO configuration. Two different OCD trace pin mappings are possible,
depending on the configuration of the OCD AXS register. For details, see the AVR32 UC Tech-
nical Reference Manual.

12.6 PDC handshake signals

The PDC and the peripheral modules communicate through a set of handshake signals. The fol-
lowing table defines the valid settings for the Peripheral Identifier (PID) in the PDC Peripheral
Select Register (PSR).

Table 12-6. SPI clock connections

SPI Source Name Connection

0 Internal CLK_DIV PBA clock or
PBA clock / 32

1

Table 12-7. Nexus OCD AUX port connections

Pin AXS=0 AXS=1

EVTI_N PB19 PA08

MDO[5] PB16 PA27

MDO[4] PB14 PA26

MDO[3] PB13 PA25

MDO[2] PB12 PA24

MDO[1] PB11 PA23

MDO[0] PB10 PA22

EVTO_N PB20 PB20

MCKO PB21 PA21

MSEO[1] PB04 PA07

MSEO[0] PB17 PA28

Table 12-8. PDC Handshake Signals

PID Value Peripheral module & direction

0 ADC

1 SSC - RX

2 USART0 - RX

3 USART1 - RX

32058K AVR32-01/12

45

AT32UC3A

12.7 Peripheral Multiplexing on I/O lines

Each GPIO line can be assigned to one of 3 peripheral functions; A, B or C. The following table
define how the I/O lines on the peripherals A, B and C are multiplexed by the GPIO.

4 USART2 - RX

5 USART3 - RX

6 TWI - RX

7 SPI0 - RX

8 SPI1 - RX

9 SSC - TX

10 USART0 - TX

11 USART1 - TX

12 USART2 - TX

13 USART3 - TX

14 TWI - TX

15 SPI0 - TX

16 SPI1 - TX

17 ABDAC

Table 12-8. PDC Handshake Signals

PID Value Peripheral module & direction

Table 12-9. GPIO Controller Function Multiplexing

TQFP100 VQFP144 PIN GPIO Pin Function A Function B Function C

19 25 PA00 GPIO 0 USART0 - RXD TC - CLK0

20 27 PA01 GPIO 1 USART0 - TXD TC - CLK1

23 30 PA02 GPIO 2 USART0 - CLK TC - CLK2

24 32 PA03 GPIO 3 USART0 - RTS EIM - EXTINT[4] DAC - DATA[0]

25 34 PA04 GPIO 4 USART0 - CTS EIM - EXTINT[5] DAC - DATAN[0]

26 39 PA05 GPIO 5 USART1 - RXD PWM - PWM[4]

27 41 PA06 GPIO 6 USART1 - TXD PWM - PWM[5]

28 43 PA07 GPIO 7 USART1 - CLK PM - GCLK[0] SPI0 - NPCS[3]

29 45 PA08 GPIO 8 USART1 - RTS SPI0 - NPCS[1] EIM - EXTINT[7]

30 47 PA09 GPIO 9 USART1 - CTS SPI0 - NPCS[2] MACB - WOL

31 48 PA10 GPIO 10 SPI0 - NPCS[0] EIM - EXTINT[6]

33 50 PA11 GPIO 11 SPI0 - MISO USB - USB_ID

36 53 PA12 GPIO 12 SPI0 - MOSI USB - USB_VBOF

37 54 PA13 GPIO 13 SPI0 - SCK

39 56 PA14 GPIO 14 SSC -
TX_FRAME_SYNC SPI1 - NPCS[0] EBI - NCS[0]

40 57 PA15 GPIO 15 SSC - TX_CLOCK SPI1 - SCK EBI - ADDR[20]

32058K AVR32-01/12

46

AT32UC3A

41 58 PA16 GPIO 16 SSC - TX_DATA SPI1 - MOSI EBI - ADDR[21]

42 60 PA17 GPIO 17 SSC - RX_DATA SPI1 - MISO EBI - ADDR[22]

43 62 PA18 GPIO 18 SSC - RX_CLOCK SPI1 - NPCS[1] MACB - WOL

44 64 PA19 GPIO 19 SSC -
RX_FRAME_SYNC SPI1 - NPCS[2]

45 66 PA20 GPIO 20 EIM - EXTINT[8] SPI1 - NPCS[3]

51 73 PA21 GPIO 21 ADC - AD[0] EIM - EXTINT[0] USB - USB_ID

52 74 PA22 GPIO 22 ADC - AD[1] EIM - EXTINT[1] USB - USB_VBOF

53 75 PA23 GPIO 23 ADC - AD[2] EIM - EXTINT[2] DAC - DATA[1]

54 76 PA24 GPIO 24 ADC - AD[3] EIM - EXTINT[3] DAC - DATAN[1]

55 77 PA25 GPIO 25 ADC - AD[4] EIM - SCAN[0] EBI - NCS[0]

56 78 PA26 GPIO 26 ADC - AD[5] EIM - SCAN[1] EBI - ADDR[20]

57 79 PA27 GPIO 27 ADC - AD[6] EIM - SCAN[2] EBI - ADDR[21]

58 80 PA28 GPIO 28 ADC - AD[7] EIM - SCAN[3] EBI - ADDR[22]

83 122 PA29 GPIO 29 TWI - SDA USART2 - RTS

84 123 PA30 GPIO 30 TWI - SCL USART2 - CTS

65 88 PB00 GPIO 32 MACB - TX_CLK USART2 - RTS USART3 - RTS

66 90 PB01 GPIO 33 MACB - TX_EN USART2 - CTS USART3 - CTS

70 96 PB02 GPIO 34 MACB - TXD[0] DAC - DATA[0]

71 98 PB03 GPIO 35 MACB - TXD[1] DAC - DATAN[0]

72 100 PB04 GPIO 36 MACB - CRS USART3 - CLK EBI - NCS[3]

73 102 PB05 GPIO 37 MACB - RXD[0] DAC - DATA[1]

74 104 PB06 GPIO 38 MACB - RXD[1] DAC - DATAN[1]

75 106 PB07 GPIO 39 MACB - RX_ER

76 111 PB08 GPIO 40 MACB - MDC

77 113 PB09 GPIO 41 MACB - MDIO

78 115 PB10 GPIO 42 MACB - TXD[2] USART3 - RXD EBI - SDCK

81 119 PB11 GPIO 43 MACB - TXD[3] USART3 - TXD EBI - SDCKE

82 121 PB12 GPIO 44 MACB - TX_ER TC - CLK0 EBI - RAS

87 126 PB13 GPIO 45 MACB - RXD[2] TC - CLK1 EBI - CAS

88 127 PB14 GPIO 46 MACB - RXD[3] TC - CLK2 EBI - SDWE

95 134 PB15 GPIO 47 MACB - RX_DV

96 136 PB16 GPIO 48 MACB - COL USB - USB_ID EBI - SDA10

98 139 PB17 GPIO 49 MACB - RX_CLK USB - USB_VBOF EBI - ADDR[23]

99 141 PB18 GPIO 50 MACB - SPEED ADC - TRIGGER PWM - PWM[6]

100 143 PB19 GPIO 51 PWM - PWM[0] PM - GCLK[0] EIM - SCAN[4]

1 3 PB20 GPIO 52 PWM - PWM[1] PM - GCLK[1] EIM - SCAN[5]

2 5 PB21 GPIO 53 PWM - PWM[2] PM - GCLK[2] EIM - SCAN[6]

3 6 PB22 GPIO 54 PWM - PWM[3] PM - GCLK[3] EIM - SCAN[7]

6 9 PB23 GPIO 55 TC - A0 USART1 - DCD

Table 12-9. GPIO Controller Function Multiplexing

32058K AVR32-01/12

47

AT32UC3A

7 11 PB24 GPIO 56 TC - B0 USART1 - DSR

8 13 PB25 GPIO 57 TC - A1 USART1 - DTR

9 14 PB26 GPIO 58 TC - B1 USART1 - RI

10 15 PB27 GPIO 59 TC - A2 PWM - PWM[4]

14 19 PB28 GPIO 60 TC - B2 PWM - PWM[5]

15 20 PB29 GPIO 61 USART2 - RXD PM - GCLK[1] EBI - NCS[2]

16 21 PB30 GPIO 62 USART2 - TXD PM - GCLK[2] EBI - SDCS

17 22 PB31 GPIO 63 USART2 - CLK PM - GCLK[3] EBI - NWAIT

63 85 PC00 GPIO 64

64 86 PC01 GPIO 65

85 124 PC02 GPIO 66

86 125 PC03 GPIO 67

93 132 PC04 GPIO 68

94 133 PC05 GPIO 69

1 PX00 GPIO 100 EBI - DATA[10] USART0 - RXD

2 PX01 GPIO 99 EBI - DATA[9] USART0 - TXD

4 PX02 GPIO 98 EBI - DATA[8] USART0 - CTS

10 PX03 GPIO 97 EBI - DATA[7] USART0 - RTS

12 PX04 GPIO 96 EBI - DATA[6] USART1 - RXD

24 PX05 GPIO 95 EBI - DATA[5] USART1 - TXD

26 PX06 GPIO 94 EBI - DATA[4] USART1 - CTS

31 PX07 GPIO 93 EBI - DATA[3] USART1 - RTS

33 PX08 GPIO 92 EBI - DATA[2] USART3 - RXD

35 PX09 GPIO 91 EBI - DATA[1] USART3 - TXD

38 PX10 GPIO 90 EBI - DATA[0] USART2 - RXD

40 PX11 GPIO 109 EBI - NWE1 USART2 - TXD

42 PX12 GPIO 108 EBI - NWE0 USART2 - CTS

44 PX13 GPIO 107 EBI - NRD USART2 - RTS

46 PX14 GPIO 106 EBI - NCS[1] TC - A0

59 PX15 GPIO 89 EBI - ADDR[19] USART3 - RTS TC - B0

61 PX16 GPIO 88 EBI - ADDR[18] USART3 - CTS TC - A1

63 PX17 GPIO 87 EBI - ADDR[17] TC - B1

65 PX18 GPIO 86 EBI - ADDR[16] TC - A2

67 PX19 GPIO 85 EBI - ADDR[15] EIM - SCAN[0] TC - B2

87 PX20 GPIO 84 EBI - ADDR[14] EIM - SCAN[1] TC - CLK0

89 PX21 GPIO 83 EBI - ADDR[13] EIM - SCAN[2] TC - CLK1

91 PX22 GPIO 82 EBI - ADDR[12] EIM - SCAN[3] TC - CLK2

95 PX23 GPIO 81 EBI - ADDR[11] EIM - SCAN[4]

97 PX24 GPIO 80 EBI - ADDR[10] EIM - SCAN[5]

Table 12-9. GPIO Controller Function Multiplexing

32058K AVR32-01/12

48

AT32UC3A

12.8 Oscillator Pinout

The oscillators are not mapped to the normal A,B or C functions and their muxings are controlled
by registers in the Power Manager (PM). Please refer to the power manager chapter for more
information about this.

12.9 USART Configuration

99 PX25 GPIO 79 EBI - ADDR[9] EIM - SCAN[6]

101 PX26 GPIO 78 EBI - ADDR[8] EIM - SCAN[7]

103 PX27 GPIO 77 EBI - ADDR[7] SPI0 - MISO

105 PX28 GPIO 76 EBI - ADDR[6] SPI0 - MOSI

107 PX29 GPIO 75 EBI - ADDR[5] SPI0 - SCK

110 PX30 GPIO 74 EBI - ADDR[4] SPI0 - NPCS[0]

112 PX31 GPIO 73 EBI - ADDR[3] SPI0 - NPCS[1]

114 PX32 GPIO 72 EBI - ADDR[2] SPI0 - NPCS[2]

118 PX33 GPIO 71 EBI - ADDR[1] SPI0 - NPCS[3]

120 PX34 GPIO 70 EBI - ADDR[0] SPI1 - MISO

135 PX35 GPIO 105 EBI - DATA[15] SPI1 - MOSI

137 PX36 GPIO 104 EBI - DATA[14] SPI1 - SCK

140 PX37 GPIO 103 EBI - DATA[13] SPI1 - NPCS[0]

142 PX38 GPIO 102 EBI - DATA[12] SPI1 - NPCS[1]

144 PX39 GPIO 101 EBI - DATA[11] SPI1 - NPCS[2]

Table 12-9. GPIO Controller Function Multiplexing

Table 12-10. Oscillator pinout

TQFP100 pin VQFP144 pin Pad Oscillator pin

85 124 PC02 xin0

93 132 PC04 xin1

63 85 PC00 xin32

86 125 PC03 xout0

94 133 PC05 xout1

64 86 PC01 xout32

Table 12-11. USART Supported Mode

SPI RS485 ISO7816 IrDA Modem
Manchester
Encoding

USART0 Yes No No No No No

USART1 Yes Yes Yes Yes Yes Yes

USART2 Yes No No No No No

USART3 Yes No No No No No

32058K AVR32-01/12

49

AT32UC3A

12.10 GPIO

The GPIO open drain feature (GPIO ODMER register (Open Drain Mode Enable Register)) is
not available for this device.

12.11 Peripheral overview

12.11.1 External Bus Interface

• Optimized for Application Memory Space support
• Integrates Two External Memory Controllers:

– Static Memory Controller
– SDRAM Controller

• Optimized External Bus:
– 16-bit Data Bus
– 24-bit Address Bus, Up to 16-Mbytes Addressable
– Optimized pin multiplexing to reduce latencies on External Memories

• 4 SRAM Chip Selects, 1SDRAM Chip Select:
– Static Memory Controller on NCS0
– SDRAM Controller or Static Memory Controller on NCS1
– Static Memory Controller on NCS2
– Static Memory Controller on NCS3

12.11.2 Static Memory Controller

• 4 Chip Selects Available
• 64-Mbyte Address Space per Chip Select
• 8-, 16-bit Data Bus
• Word, Halfword, Byte Transfers
• Byte Write or Byte Select Lines
• Programmable Setup, Pulse And Hold Time for Read Signals per Chip Select
• Programmable Setup, Pulse And Hold Time for Write Signals per Chip Select
• Programmable Data Float Time per Chip Select
• Compliant with LCD Module
• External Wait Request
• Automatic Switch to Slow Clock Mode
• Asynchronous Read in Page Mode Supported: Page Size Ranges from 4 to 32 Bytes

12.11.3 SDRAM Controller

• Numerous Configurations Supported
– 2K, 4K, 8K Row Address Memory Parts
– SDRAM with Two or Four Internal Banks
– SDRAM with 16-bit Data Path

• Programming Facilities
– Word, Half-word, Byte Access
– Automatic Page Break When Memory Boundary Has Been Reached
– Multibank Ping-pong Access
– Timing Parameters Specified by Software
– Automatic Refresh Operation, Refresh Rate is Programmable

• Energy-saving Capabilities
– Self-refresh, Power-down and Deep Power Modes Supported

32058K AVR32-01/12

50

AT32UC3A

– Supports Mobile SDRAM Devices
• Error Detection

– Refresh Error Interrupt
• SDRAM Power-up Initialization by Software
• CAS Latency of 1, 2, 3 Supported
• Auto Precharge Command Not Used

12.11.4 USB Controller

• USB 2.0 Compliant, Full-/Low-Speed (FS/LS) and On-The-Go (OTG), 12 Mbit/s
• 7 Pipes/Endpoints
• 960 bytes of Embedded Dual-Port RAM (DPRAM) for Pipes/Endpoints
• Up to 2 Memory Banks per Pipe/Endpoint (Not for Control Pipe/Endpoint)
• Flexible Pipe/Endpoint Configuration and Management with Dedicated DMA Channels
• On-Chip Transceivers Including Pull-Ups

12.11.5 Serial Peripheral Interface

• Supports communication with serial external devices
– Four chip selects with external decoder support allow communication with up to 15

peripherals
– Serial memories, such as DataFlash and 3-wire EEPROMs
– Serial peripherals, such as ADCs, DACs, LCD Controllers, CAN Controllers and Sensors
– External co-processors

• Master or slave serial peripheral bus interface
– 8- to 16-bit programmable data length per chip select
– Programmable phase and polarity per chip select
– Programmable transfer delays between consecutive transfers and between clock and data

per chip select
– Programmable delay between consecutive transfers
– Selectable mode fault detection

• Very fast transfers supported
– Transfers with baud rates up to Peripheral Bus A (PBA) max frequency
– The chip select line may be left active to speed up transfers on the same device

12.11.6 Two-wire Interface

• High speed up to 400kbit/s
• Compatibility with standard two-wire serial memory
• One, two or three bytes for slave address
• Sequential read/write operations

12.11.7 USART

• Programmable Baud Rate Generator
• 5- to 9-bit full-duplex synchronous or asynchronous serial communications

– 1, 1.5 or 2 stop bits in Asynchronous Mode or 1 or 2 stop bits in Synchronous Mode
– Parity generation and error detection
– Framing error detection, overrun error detection
– MSB- or LSB-first
– Optional break generation and detection
– By 8 or by-16 over-sampling receiver frequency
– Hardware handshaking RTS-CTS
– Receiver time-out and transmitter timeguard
– Optional Multi-drop Mode with address generation and detection

32058K AVR32-01/12

51

AT32UC3A

– Optional Manchester Encoding
• RS485 with driver control signal
• ISO7816, T = 0 or T = 1 Protocols for interfacing with smart cards

– NACK handling, error counter with repetition and iteration limit
• IrDA modulation and demodulation

– Communication at up to 115.2 Kbps
• Test Modes

– Remote Loopback, Local Loopback, Automatic Echo
• SPI Mode

– Master or Slave
– Serial Clock Programmable Phase and Polarity
– SPI Serial Clock (SCK) Frequency up to Internal Clock Frequency PBA/4

• Supports Connection of Two Peripheral DMA Controller Channels (PDC)
– Offers Buffer Transfer without Processor Intervention

12.11.8 Serial Synchronous Controller

• Provides serial synchronous communication links used in audio and telecom applications (with
CODECs in Master or Slave Modes, I2S, TDM Buses, Magnetic Card Reader, etc.)

• Contains an independent receiver and transmitter and a common clock divider
• Offers a configurable frame sync and data length
• Receiver and transmitter can be programmed to start automatically or on detection of different

event on the frame sync signal
• Receiver and transmitter include a data signal, a clock signal and a frame synchronization signal

12.11.9 Timer Counter

• Three 16-bit Timer Counter Channels
• Wide range of functions including:

– Frequency Measurement
– Event Counting
– Interval Measurement
– Pulse Generation
– Delay Timing
– Pulse Width Modulation
– Up/down Capabilities

• Each channel is user-configurable and contains:
– Three external clock inputs
– Five internal clock inputs
– Two multi-purpose input/output signals

• Two global registers that act on all three TC Channels

12.11.10 Pulse Width Modulation Controller

• 7 channels, one 20-bit counter per channel
• Common clock generator, providing Thirteen Different Clocks

– A Modulo n counter providing eleven clocks
– Two independent Linear Dividers working on modulo n counter outputs

• Independent channel programming
– Independent Enable Disable Commands
– Independent Clock
– Independent Period and Duty Cycle, with Double Bufferization
– Programmable selection of the output waveform polarity
– Programmable center or left aligned output waveform

32058K AVR32-01/12

52

AT32UC3A

12.11.11 Ethernet 10/100 MAC

• Compatibility with IEEE Standard 802.3
• 10 and 100 Mbits per second data throughput capability
• Full- and half-duplex operations
• MII or RMII interface to the physical layer
• Register Interface to address, data, status and control registers
• DMA Interface, operating as a master on the Memory Controller
• Interrupt generation to signal receive and transmit completion
• 28-byte transmit and 28-byte receive FIFOs
• Automatic pad and CRC generation on transmitted frames
• Address checking logic to recognize four 48-bit addresses
• Support promiscuous mode where all valid frames are copied to memory
• Support physical layer management through MDIO interface control of alarm and update

time/calendar data

12.11.12 Audio Bitstream DAC

• Digital Stereo DAC
• Oversampled D/A conversion architecture

– Oversampling ratio fixed 128x
– FIR equalization filter
– Digital interpolation filter: Comb4
– 3rd Order Sigma-Delta D/A converters

• Digital bitstream outputs
• Parallel interface
• Connected to Peripheral DMA Controller for background transfer without CPU intervention

32058K AVR32-01/12

53

AT32UC3A

13. Power Manager (PM)

Rev: 2.0.0.1

13.1 Features

• Controls integrated oscillators and PLLs
• Generates clocks and resets for digital logic
• Supports 2 crystal oscillators 450 kHz-16 MHz
• Supports 2 PLLs 80-240 MHz
• Supports 32 KHz ultra-low power oscillator
• Integrated low-power RC oscillator
• On-the fly frequency change of CPU, HSB, PBA, and PBB clocks
• Sleep modes allow simple disabling of logic clocks, PLLs, and oscillators
• Module-level clock gating through maskable peripheral clocks
• Wake-up from internal or external interrupts
• Generic clocks with wide frequency range provided
• Automatic identification of reset sources
• Controls brownout detector (BOD), RC oscillator, and bandgap voltage reference through control

and calibration registers

13.2 Description

The Power Manager (PM) controls the oscillators and PLLs, and generates the clocks and
resets in the device. The PM controls two fast crystal oscillators, as well as two PLLs, which can
multiply the clock from either oscillator to provide higher frequencies. Additionally, a low-power
32 KHz oscillator is used to generate the real-time counter clock for high accuracy real-time
measurements. The PM also contains a low-power RC oscillator with fast start-up time, which
can be used to clock the digital logic.

The provided clocks are divided into synchronous and generic clocks. The synchronous clocks
are used to clock the main digital logic in the device, namely the CPU, and the modules and
peripherals connected to the HSB, PBA, and PBB buses. The generic clocks are asynchronous
clocks, which can be tuned precisely within a wide frequency range, which makes them suitable
for peripherals that require specific frequencies, such as timers and communication modules.

The PM also contains advanced power-saving features, allowing the user to optimize the power
consumption for an application. The synchronous clocks are divided into three clock domains,
one for the CPU and HSB, one for modules on the PBA bus, and one for modules on the PBB
bus.The three clocks can run at different speeds, so the user can save power by running periph-
erals at a relatively low clock, while maintaining a high CPU performance. Additionally, the
clocks can be independently changed on-the-fly, without halting any peripherals. This enables
the user to adjust the speed of the CPU and memories to the dynamic load of the application,
without disturbing or re-configuring active peripherals.

Each module also has a separate clock, enabling the user to switch off the clock for inactive
modules, to save further power. Additionally, clocks and oscillators can be automatically
switched off during idle periods by using the sleep instruction on the CPU. The system will return
to normal on occurrence of interrupts.

The Power Manager also contains a Reset Controller, which collects all possible reset sources,
generates hard and soft resets, and allows the reset source to be identified by software.

32058K AVR32-01/12

54

AT32UC3A

13.3 Block Diagram

Figure 13-1. Power Manager block diagram

Sleep Controller

Oscillator and
PLL Control

PLL0

PLL1

Synchronous
Clock Generator

Generic Clock
Generator

Reset Controller

Oscillator 0

Oscillator 1

RC
Oscillator

Startup
Counter

Slow clock

Sleep
instruction

Power-On
Detector

Other reset
sources

resets

Generic clocks

Synchronous
clocks

CPU, HSB,
PBA, PBB

OSC/PLL
Control signals

RCOSC

32 KHz
Oscillator

32 KHz clock
for RTC

Interrupts

External Reset Pad

Calibration
Registers

Brown-Out
Detector

Voltage Regulator

fuses

32058K AVR32-01/12

55

AT32UC3A

13.4 Product Dependencies

13.4.1 I/O Lines

The PM provides a number of generic clock outputs, which can be connected to output pins,
multiplexed with GPIO lines. The programmer must first program the GPIO controller to assign
these pins to their peripheral function. If the I/O pins of the PM are not used by the application,
they can be used for other purposes by the GPIO controller.

13.4.2 Interrupt

The PM interrupt line is connected to one of the internal sources of the interrupt controller. Using
the PM interrupt requires the interrupt controller to be programmed first.

13.4.3 Clock implementation

In AT32UC3A, the HSB shares the source clock with the CPU. This means that writing to the
HSBDIV and HSBSEL bits in CKSEL has no effect. These bits will always read the same as
CPUDIV and CPUSEL.

13.5 Functional Description

13.5.1 Slow clock

The slow clock is generated from an internal RC oscillator which is always running, except in
Static mode. The slow clock can be used for the main clock in the device, as described in ”Syn-
chronous clocks” on page 58. The slow clock is also used for the Watchdog Timer and
measuring various delays in the Power Manager.

The RC oscillator has a 3 cycles startup time, and is always available when the CPU is running.
The RC oscillator operates at approximately 115 kHz, and can be calibrated to a narrow range
by the RCOSCCAL fuses. Software can also change RC oscillator calibration through the use of
the RCCR register. Please see the Electrical Characteristics section for details.

RC oscillator can also be used as the RTC clock when crystal accuracy is not required.

13.5.2 Oscillator 0 and 1 operation

The two main oscillators are designed to be used with an external 450 kHz to 16 MHz crystal
and two biasing capacitors, as shown in Figure 13-2. Oscillator 0 can be used for the main clock
in the device, as described in ”Synchronous clocks” on page 58. Both oscillators can be used as
source for the generic clocks, as described in ”Generic clocks” on page 61.

The oscillators are disabled by default after reset. When the oscillators are disabled, the XIN and
XOUT pins can be used as general purpose I/Os. When the oscillators are configured to use an
external clock, the clock must be applied to the XIN pin while the XOUT pin can be used as a
general purpose I/O.

The oscillators can be enabled by writing to the OSCnEN bits in MCCTRL. Operation mode
(external clock or crystal) is chosen by writing to the MODE field in OSCCTRLn. Oscillators are
automatically switched off in certain sleep modes to reduce power consumption, as described in
Section 13.5.7 on page 60.

After a hard reset, or when waking up from a sleep mode that disabled the oscillators, the oscil-
lators may need a certain amount of time to stabilize on the correct frequency. This start-up time
can be set in the OSCCTRLn register.

32058K AVR32-01/12

56

AT32UC3A

The PM masks the oscillator outputs during the start-up time, to ensure that no unstable clocks
propagate to the digital logic. The OSCnRDY bits in POSCSR are automatically set and cleared
according to the status of the oscillators. A zero to one transition on these bits can also be con-
figured to generate an interrupt, as described in ”Interrupt Enable/Disable/Mask/Status/Clear” on
page 76.

Figure 13-2. Oscillator connections

13.5.3 32 KHz oscillator operation

The 32 KHz oscillator operates as described for Oscillator 0 and 1 above. The 32 KHz oscillator
is used as source clock for the Real-Time Counter.

The oscillator is disabled by default, but can be enabled by writing OSC32EN in OSCCTRL32.
The oscillator is an ultra-low power design and remains enabled in all sleep modes except Static
mode.

While the 32 KHz oscillator is disabled, the XIN32 and XOUT32 pins are available as general
purpose I/Os. When the oscillator is configured to work with an external clock (MODE field in
OSCCTRL32 register), the external clock must be connected to XIN32 while the XOUT32 pin
can be used as a general purpose I/O.

The startup time of the 32 KHz oscillator can be set in the OSCCTRL32, after which OSC32RDY
in POSCSR is set. An interrupt can be generated on a zero to one transition of OSC32RDY.

As a crystal oscillator usually requires a very long startup time (up to 1 second), the 32 KHz
oscillator will keep running across resets, except Power-On-Reset.

13.5.4 PLL operation

The device contains two PLLs, PLL0 and PLL1. These are disabled by default, but can be
enabled to provide high frequency source clocks for synchronous or generic clocks. The PLLs
can take either Oscillator 0 or 1 as reference clock. The PLL output is divided by a multiplication
factor, and the PLL compares the resulting clock to the reference clock. The PLL will adjust its
output frequency until the two compared clocks are equal, thus locking the output frequency to a
multiple of the reference clock frequency.

The Voltage Controlled Oscillator inside the PLL can generate frequencies from 80 to 240 MHz.
To make the PLL output frequencies under 80 MHz the OTP[1] bitfield could be set. This will

XIN

XOUT

C2

C1

32058K AVR32-01/12

57

AT32UC3A

divide the output of the PLL by two and bring the clock in range of the max frequency of the
CPU.

When the PLL is switched on, or when changing the clock source or multiplication factor for the
PLL, the PLL is unlocked and the output frequency is undefined. The PLL clock for the digital
logic is automatically masked when the PLL is unlocked, to prevent connected digital logic from
receiving a too high frequency and thus become unstable.

Figure 13-3. PLL with control logic and filters

13.5.4.1 Enabling the PLL

PLLn is enabled by writing the PLLEN bit in the PLLn register. PLLOSC selects Oscillator 0 or 1
as clock source. The PLLMUL and PLLDIV bitfields must be written with the multiplication and
division factors, respectively, creating the voltage controlled ocillator frequency fVCO and the PLL
frequency fPLL :

fVCO = (PLLMUL+1)/(PLLDIV) • fOSC if PLLDIV > 0.

fVCO = 2*(PLLMUL+1) • fOSC if PLLDIV = 0.

If PLLOPT[1] field is set to 0:

fPLL = fVCO.

If PLLOPT[1] field is set to 1:

fPLL = fVCO / 2.

The PLLn:PLLOPT field should be set to proper values according to the PLL operating fre-
quency. The PLLOPT field can also be set to divide the output frequency of the PLLs by 2.

The lock signal for each PLL is available as a LOCKn flag in POSCSR. An interrupt can be gen-
erated on a 0 to 1 transition of these bits.

P h a s e
D e te c to r

O u tp u t
D iv id e r

0

1

O s c 0
c lo c k

O s c 1
c lo c k

P L L O S C P L L O P T

P L L M U L

L o c k b it

M a s k P L L c lo c k

In p u t
D iv id e r

P L L D IV

1 /2

P L L O P T [1]

0

1

V C O

fv c o
fP L L

L o c k
D e te c to r

32058K AVR32-01/12

58

AT32UC3A

13.5.5 Synchronous clocks

The slow clock (default), Oscillator 0, or PLL0 provide the source for the main clock, which is the
common root for the synchronous clocks for the CPU/HSB, PBA, and PBB modules. The main
clock is divided by an 8-bit prescaler, and each of these four synchronous clocks can run from
any tapping of this prescaler, or the undivided main clock, as long as fCPU �fPBA,B,. The synchro-
nous clock source can be changed on-the fly, responding to varying load in the application. The
clock domains can be shut down in sleep mode, as described in ”Sleep modes” on page 60.
Additionally, the clocks for each module in the four domains can be individually masked, to avoid
power consumption in inactive modules.

Figure 13-4. Synchronous clock generation

13.5.5.1 Selecting PLL or oscillator for the main clock

The common main clock can be connected to the slow clock, Oscillator 0, or PLL0. By default,
the main clock will be connected to the slow clock. The user can connect the main clock to Oscil-
lator 0 or PLL0 by writing the MCSEL bitfield in the Main Clock Control Register (MCCTRL). This
must only be done after that unit has been enabled, otherwise a deadlock will occur. Care
should also be taken that the new frequency of the synchronous clocks does not exceed the
maximum frequency for each clock domain.

13.5.5.2 Selecting synchronous clock division ratio

The main clock feeds an 8-bit prescaler, which can be used to generate the synchronous clocks.
By default, the synchronous clocks run on the undivided main clock. The user can select a pres-

Mask

PrescalerOsc0 clock
PLL0 clock

MCSEL

0

1

CPUSEL

CPUDIV

Main clock

Sleep
Controller

CPUMASK

CPU clocks

HSB clocks

PBAclocks

PBB clocks

Sleep
instruction

Slow clock

32058K AVR32-01/12

59

AT32UC3A

caler division for the CPU clock by writing CKSEL:CPUDIV to 1 and CPUSEL to the prescaling
value, resulting in a CPU clock frequency:

fCPU = fmain / 2(CPUSEL+1)

Similarly, the clock for the PBA, and PBB can be divided by writing their respective bitfields. To
ensure correct operation, frequencies must be selected so that fCPU �fPBA,B. Also, frequencies
must never exceed the specified maximum frequency for each clock domain.

CKSEL can be written without halting or disabling peripheral modules. Writing CKSEL allows a
new clock setting to be written to all synchronous clocks at the same time. It is possible to keep
one or more clocks unchanged by writing the same value a before to the xxxDIV and xxxSEL bit-
fields. This way, it is possible to e.g. scale CPU and HSB speed according to the required
performance, while keeping the PBA and PBB frequency constant.

13.5.5.3 Clock Ready flag

There is a slight delay from CKSEL is written and the new clock setting becomes effective. Dur-
ing this interval, the Clock Ready (CKRDY) flag in ISR will read as 0. If IER:CKRDY is written to
1, the Power Manager interrupt can be triggered when the new clock setting is effective. CKSEL
must not be re-written while CKRDY is 0, or the system may become unstable or hang.

13.5.6 Peripheral clock masking

By default, the clock for all modules are enabled, regardless of which modules are actually being
used. It is possible to disable the clock for a module in the CPU, HSB, PBA, or PBB clock
domain by writing the corresponding bit in the Clock Mask register (CPU/HSB/PBA/PBB) to 0.
When a module is not clocked, it will cease operation, and its registers cannot be read or written.
The module can be re-enabled later by writing the corresponding mask bit to 1.

A module may be connected to several clock domains, in which case it will have several mask
bits.

Table 13-5 contains a list of implemented maskable clocks.

13.5.6.1 Cautionary note

Note that clocks should only be switched off if it is certain that the module will not be used.
Switching off the clock for the internal RAM will cause a problem if the stack is mapped there.
Switching off the clock to the Power Manager (PM), which contains the mask registers, or the
corresponding PBx bridge, will make it impossible to write the mask registers again. In this case,
they can only be re-enabled by a system reset.

13.5.6.2 Mask Ready flag

Due to synchronization in the clock generator, there is a slight delay from a mask register is writ-
ten until the new mask setting goes into effect. When clearing mask bits, this delay can usually
be ignored. However, when setting mask bits, the registers in the corresponding module must
not be written until the clock has actually be re-enabled. The status flag MSKRDY in ISR pro-
vides the required mask status information. When writing either mask register with any value,
this bit is cleared. The bit is set when the clocks have been enabled and disabled according to
the new mask setting. Optionally, the Power Manager interrupt can be enabled by writing the
MSKRDY bit in IER.

32058K AVR32-01/12

60

AT32UC3A

13.5.7 Sleep modes

In normal operation, all clock domains are active, allowing software execution and peripheral
operation. When the CPU is idle, it is possible to switch off the CPU clock and optionally other
clock domains to save power. This is activated by the sleep instruction, which takes the sleep
mode index number as argument.

13.5.7.1 Entering and exiting sleep modes

The sleep instruction will halt the CPU and all modules belonging to the stopped clock domains.
The modules will be halted regardless of the bit settings of the mask registers.

Oscillators and PLLs can also be switched off to save power. Some of these modules have a rel-
atively long start-up time, and are only switched off when very low power consumption is
required.

The CPU and affected modules are restarted when the sleep mode is exited. This occurs when
an interrupt triggers. Note that even if an interrupt is enabled in sleep mode, it may not trigger if
the source module is not clocked.

13.5.7.2 Supported sleep modes

The following sleep modes are supported. These are detailed in Table 13-1.

•Idle: The CPU is stopped, the rest of the chip is operating. Wake-up sources are any interrupt.

•Frozen: The CPU and HSB modules are stopped, peripherals are operating. Wake-up sources
are any interrupt from PB modules.

•Standby: All synchronous clocks are stopped, but oscillators and PLLs are running, allowing
quick wake-up to normal mode. Wake-up sources are RTC or external interrupt (EIC).

•Stop: As Standby, but Oscillator 0 and 1, and the PLLs are stopped. 32 KHz (if enabled) and
RC oscillators and RTC/WDT still operate. Wake-up sources are RTC, external interrupt (EIC),
or external reset pin.

•DeepStop: All synchronous clocks, Oscillator 0 and 1 and PLL 0 and 1 are stopped. 32 KHz
oscillator can run if enabled. RC oscillator still operates. Bandgap voltage reference and BOD is
turned off. Wake-up sources are RTC, external interrupt (EIC) or external reset pin.

•Static: All oscillators, including 32 KHz and RC oscillator are stopped. Bandgap voltage refer-
ence BOD detector is turned off. Wake-up sources are external interrupt (EIC) in asynchronous
mode only or external reset pin.

Table 13-1. Sleep modes

Index Sleep Mode CPU HSB
PBA,B
GCLK

Osc0,1
PLL0,1 Osc32 RCOsc

BOD &
Bandgap

Voltage
Regulator

0 Idle Stop Run Run Run Run Run On Full power

1 Frozen Stop Stop Run Run Run Run On Full power

2 Standby Stop Stop Stop Run Run Run On Full power

3 Stop Stop Stop Stop Stop Run Run On Low power

4 DeepStop Stop Stop Stop Stop Run Run Off Low power

5 Static Stop Stop Stop Stop Stop Stop Off Low power

32058K AVR32-01/12

61

AT32UC3A

The power level of the internal voltage regulator is also adjusted according to the sleep mode to
reduce the internal regulator power consumption.

13.5.7.3 Precautions when entering sleep mode

Modules communicating with external circuits should normally be disabled before entering a
sleep mode that will stop the module operation. This prevents erratic behavior when entering or
exiting sleep mode. Please refer to the relevant module documentation for recommended
actions.

Communication between the synchronous clock domains is disturbed when entering and exiting
sleep modes. This means that bus transactions are not allowed between clock domains affected
by the sleep mode. The system may hang if the bus clocks are stopped in the middle of a bus
transaction.

The CPU is automatically stopped in a safe state to ensure that all CPU bus operations are com-
plete when the sleep mode goes into effect. Thus, when entering Idle mode, no further action is
necessary.

When entering a sleep mode (except Idle mode), all HSB masters must be stopped before
entering the sleep mode. Also, if there is a chance that any PB write operations are incomplete,
the CPU should perform a read operation from any register on the PB bus before executing the
sleep instruction. This will stall the CPU while waiting for any pending PB operations to
complete.

13.5.7.4 Wake up

The USB can be used to wake up the part from sleep modes through register PM_AWEN of the
Power Manager.

13.5.8 Generic clocks

Timers, communication modules, and other modules connected to external circuitry may require
specific clock frequencies to operate correctly. The Power Manager contains an implementation
defined number of generic clocks that can provide a wide range of accurate clock frequencies.

Each generic clock module runs from either Oscillator 0 or 1, or PLL0 or 1. The selected source
can optionally be divided by any even integer up to 512. Each clock can be independently
enabled and disabled, and is also automatically disabled along with peripheral clocks by the
Sleep Controller.

32058K AVR32-01/12

62

AT32UC3A

Figure 13-5. Generic clock generation

13.5.8.1 Enabling a generic clock

A generic clock is enabled by writing the CEN bit in GCCTRL to 1. Each generic clock can use
either Oscillator 0 or 1 or PLL0 or 1 as source, as selected by the PLLSEL and OSCSEL bits.
The source clock can optionally be divided by writing DIVEN to 1 and the division factor to DIV,
resulting in the output frequency:

fGCLK = fSRC / (2*(DIV+1))

13.5.8.2 Disabling a generic clock

The generic clock can be disabled by writing CEN to 0 or entering a sleep mode that disables
the PB clocks. In either case, the generic clock will be switched off on the first falling edge after
the disabling event, to ensure that no glitches occur. If CEN is written to 0, the bit will still read as
1 until the next falling edge occurs, and the clock is actually switched off. When writing CEN to 0,
the other bits in GCCTRL should not be changed until CEN reads as 0, to avoid glitches on the
generic clock.

When the clock is disabled, both the prescaler and output are reset.

13.5.8.3 Changing clock frequency

When changing generic clock frequency by writing GCCTRL, the clock should be switched off by
the procedure above, before being re-enabled with the new clock source or division setting. This
prevents glitches during the transition.

Divider
0

1

Osc0 clock

PLL0 clock

PLLSEL
OSCSEL

Osc1 clock

PLL1 clock

Generic Clock

DIV

0

1

DIVEN

Mask

CEN

Sleep
Controller

32058K AVR32-01/12

63

AT32UC3A

13.5.8.4 Generic clock implementation

In AT32UC3A, there are 6 generic clocks. These are allocated to different functions as shown in
Table 13-2.

13.5.9 Divided PB clocks

The clock generator in the Power Manager provides divided PBA and PBB clocks for use by
peripherals that require a prescaled PBx clock. This is described in the documentation for the
relevant modules.

The divided clocks are not directly maskable, but are stopped in sleep modes where the PBx
clocks are stopped.

13.5.10 Debug operation

During a debug session, the user may need to halt the system to inspect memory and CPU reg-
isters. The clocks normally keep running during this debug operation, but some peripherals may
require the clocks to be stopped, e.g. to prevent timer overflow, which would cause the program
to fail. For this reason, peripherals on the PBA and PBB buses may use “debug qualified” PBx
clocks. This is described in the documentation for the relevant modules. The divided PBx clocks
are always debug qualified clocks.

Debug qualified PB clocks are stopped during debug operation. The debug system can option-
ally keep these clocks running during the debug operation. This is described in the
documentation for the On-Chip Debug system.

13.5.11 Reset Controller

The Reset Controller collects the various reset sources in the system and generates hard and
soft resets for the digital logic.

The device contains a Power-On Detector, which keeps the system reset until power is stable.
This eliminates the need for external reset circuitry to guarantee stable operation when powering
up the device.

Table 13-2. Generic clock allocation

Clock number Function

0 GCLK0 pin

1 GCLK1 pin

2 GCLK2 pin

3 GCLK3 pin

4 USBB

5 ABDAC

32058K AVR32-01/12

64

AT32UC3A

It is also possible to reset the device by asserting the RESET_N pin. This pin has an internal pul-
lup, and does not need to be driven externally when negated. Table 13-4 lists these and other
reset sources supported by the Reset Controller.

Figure 13-6. Reset Controller block diagram

In addition to the listed reset types, the JTAG can keep parts of the device statically reset
through the JTAG Reset Register. See JTAG documentation for details.

Table 13-3. Reset description

When a Reset occurs, some parts of the chip are not necessarily reset, depending on the reset
source. Only the Power On Reset (POR) will force a reset of the whole chip.

Reset source Description

Power-on Reset Supply voltage below the power-on reset detector threshold
voltage

External Reset RESET_N pin asserted

Brownout Reset Supply voltage below the brownout reset detector threshold
voltage

CPU Error Caused by an illegal CPU access to external memory while
in Supervisor mode

Watchdog Timer See watchdog timer documentation.

OCD See On-Chip Debug documentation

JTA G

R eset
C on tro lle r

R E S E T _N

P ow er-O n
D e tec to r

O C D

W atchdog R eset

R C _R C A U S E

C P U , H S B ,
P B A , P B B

O C D , R T C /W D T
C lock G enera to

B row nou t
D e tec to r

32058K AVR32-01/12

65

AT32UC3A

Table 13-4 lists parts of the device that are reset, depending on the reset source.

The cause of the last reset can be read from the RCAUSE register. This register contains one bit
for each reset source, and can be read during the boot sequence of an application to determine
the proper action to be taken.

13.5.11.1 Power-On Detector

The Power-On Detector monitors the VDDCORE supply pin and generates a reset when the
device is powered on. The reset is active until the supply voltage from the linear regulator is
above the power-on threshold level. The reset will be re-activated if the voltage drops below the
power-on threshold level. See Electrical Characteristics for parametric details.

13.5.11.2 Brown-Out Detector

The Brown-Out Detector (BOD) monitors the VDDCORE supply pin and compares the supply
voltage to the brown-out detection level, as set in BOD:LEVEL. The BOD is disabled by default,
but can be enabled either by software or by flash fuses. The Brown-Out Detector can either gen-
erate an interrupt or a reset when the supply voltage is below the brown-out detection level. In
any case, the BOD output is available in bit POSCR:BODET bit.

Note that any change to the BOD:LEVEL field of the BOD register should be done with the BOD
deactivated to avoid spurious reset or interrupt.

See Electrical Characteristics for parametric details.

Table 13-4. Effect of the different reset events

Power-On
Reset

External
Reset

Watchdog
Reset

BOD
Reset

CPU Error
Reset

OCD
Reset

CPU/HSB/PBA/PBB
(excluding Power Manager)

Y Y Y Y Y Y

32 KHz oscillator Y N N N N N

RTC control register Y N N N N N

GPLP registers Y N N N N N

Watchdog control register Y Y N Y Y Y

Voltage Calibration register Y N N N N N

RC Oscillator Calibration register Y N N N N N

BOD control register Y Y N N N N

Bandgap control register Y Y N N N N

Clock control registers Y Y Y Y Y Y

Osc0/Osc1 and control registers Y Y Y Y Y Y

PLL0/PLL1 and control registers Y Y Y Y Y Y

OCD system and OCD registers Y Y N Y Y N

32058K AVR32-01/12

66

AT32UC3A

13.5.11.3 External Reset

The external reset detector monitors the state of the RESET_N pin. By default, a low level on
this pin will generate a reset.

13.5.12 Calibration registers

The Power Manager controls the calibration of the RC oscillator, voltage regulator, bandgap
voltage reference through several calibrations registers.

Those calibration registers are loaded after a Power On Reset with default values stored in fac-
tory-programmed flash fuses.

Although it is not recommended to override default factory settings, it is still possible to override
these default values by writing to those registers. To prevent unexpected writes due to software
bugs, write access to these registers is protected by a “key”. First, a write to the register must be
made with the field “KEY” equal to 0x55 then a second write must be issued with the “KEY” field
equal to 0xAA

13.6 User Interface

Offset Register Name Access Reset State

0x0000 Main Clock Control MCCTRL Read/Write 0x00000000

0x0004 Clock Select CKSEL Read/Write 0x00000000

0x0008 CPU Mask CPUMASK Read/Write 0x00000003

0x000C HSB Mask HSBMASK Read/Write 0x0000007F

0x0010 PBA Mask PBAMASK Read/Write 0x0000FFFF

0x0014 PBB Mask PBBMASK Read/Write 0x0000003F

0x0018 - 0x001C Reserved

0x0020 PLL0 Control PLL0 Read/Write 0x00000000

0x0024 PLL1 Control PLL1 Read/Write 0x00000000

0x0028 Oscillator 0 Control Register OSCCTRL0 Read/Write 0x00000000

0x002C Oscillator 1 Control Register OSCCTRL1 Read/Write 0x00000000

0x0030 Oscillator 32 Control Register OSCCTRL32 Read/Write 0x00000000

0x0034 Reserved

0x0038 Reserved

0x003C Reserved

0x0040 PM Interrupt Enable Register IER Write Only 0x00000000

0x0044 PM Interrupt Disable Register IDR Write Only 0x00000000

0x0048 PM Interrupt Mask Register IMR Read Only 0x00000000

0x004C PM Interrupt Status Register ISR Read Only 0x00000000

0x0050 PM Interrupt Clear Register ICR Write Only 0x00000000

0x0054 Power and Oscillators Status Register POSCSR Read/Write 0x00000000

0x0058 - 0x005C Reserved

32058K AVR32-01/12

67

AT32UC3A

0x0060 Generic Clock Control GCCTRL Read/Write 0x00000000

0x0064 - 0x00BC Reserved

0x00C0 RC Oscillator Calibration Register RCCR Read/Write Factory settings

0x00C4 Bandgap Calibration Register BGCR Read/Write Factory settings

0x00C8 Linear Regulator Calibration Register VREGCR Read/Write Factory settings

0x00CC Reserved

0x00D0 BOD Level Register BOD Read/Write BOD fuses in Flash

0x00D4 - 0x013C Reserved

0x0140 Reset Cause Register RCAUSE Read Only Latest Reset Source

0x0144 - 0x01FC Reserved

0x0200 General Purpose Low-Power register 0 GPLP0 Read/Write 0x00000000

0x0204 General Purpose Low-Power register 1 GPLP1 Read/Write 0x00000000

32058K AVR32-01/12

68

AT32UC3A

13.6.1 Main Clock Control

Name: MCCTRL

Access Type: Read/Write

• MCSEL: Main Clock Select
0: The slow clock is the source for the main clock
1: Oscillator 0 is source for the main clock
2: PLL0 is source for the main clock
3: Reserved

• OSC0EN: Oscillator 0 Enable
0: Oscillator 0 is disabled
1: Oscillator 0 is enabled

• OSC1EN: Oscillator 1 Enable
0: Oscillator 1is disabled
1: Oscillator 1is enabled

31 30 29 28 27 26 25 24

- - - - - - - -

23 22 21 20 19 18 17 16

- - - - - - - -

15 14 13 12 11 10 9 8

- - - - - - - -

7 6 5 4 3 2 1 0

- - OSC1EN OSC0EN MCSEL

32058K AVR32-01/12

69

AT32UC3A

13.6.2 Clock Select

Name: CKSEL

Access Type: Read/Write

• PBBDIV, PBBSEL: PBB Division and Clock Select
PBBDIV = 0: PBB clock equals main clock.
PBBDIV = 1: PBB clock equals main clock divided by 2(PBBSEL+1).

• PBADIV, PBASEL: PBA Division and Clock Select
PBADIV = 0: PBA clock equals main clock.
PBADIV = 1: PBA clock equals main clock divided by 2(PBASEL+1).

• HSBDIV, HSBSEL: HSB Division and Clock Select
For the AT32UC3A, HSBDIV always equals CPUDIV, and HSBSEL always equals CPUSEL, as the HSB clock is always equal to
the CPU clock.

• CPUDIV, CPUSEL: CPU Division and Clock Select
CPUDIV = 0: CPU clock equals main clock.
CPUDIV = 1: CPU clock equals main clock divided by 2(CPUSEL+1).

Note that if xxxDIV is written to 0, xxxSEL should also be written to 0 to ensure correct operation.

Also note that writing this register clears POSCSR:CKRDY. The register must not be re-written until CKRDY goes high.

31 30 29 28 27 26 25 24

PBBDIV - - - - PBBSEL

23 22 21 20 19 18 17 16

PBADIV - - - - PBASEL

15 14 13 12 11 10 9 8

HSBDIV - - - - HSBSEL

7 6 5 4 3 2 1 0

CPUDIV - - - - CPUSEL

32058K AVR32-01/12

70

AT32UC3A

13.6.3 Clock Mask

Name: CPU/HSB/PBA/PBBMASK

Access Type: Read/Write

• MASK: Clock Mask
If bit n is cleared, the clock for module n is stopped. If bit n is set, the clock for module n is enabled according to the current
power mode. The number of implemented bits in each mask register, as well as which module clock is controlled by each bit, is
shown in Table 13-5.

31 30 29 28 27 26 25 24

MASK[31:24]

23 22 21 20 19 18 17 16

MASK[23:16]

15 14 13 12 11 10 9 8

MASK[15:8]

7 6 5 4 3 2 1 0

MASK[7:0]

Table 13-5. Maskable module clocks in AT32UC3A.

Bit CPUMASK HSBMASK PBAMASK PBBMASK

0 - FLASHC INTC HMATRIX

1 OCD PBA bridge GPIO USBB

2 - PBB bridge PDCA FLASHC

3 - USBB PM/RTC/EIC MACB

4 - MACB ADC SMC

5 - PDCA SPI0 SDRAMC

6 - EBI SPI1 -

7 - - TWI -

8 - - USART0 -

9 - - USART1 -

10 - - USART2 -

11 - - USART3 -

12 - - PWM -

13 - - SSC -

32058K AVR32-01/12

71

AT32UC3A

14 - - TC -

15 - - ABDAC -

16 SYSTIMER
(COMPARE/COUNT
REGISTERS CLK)

- - -

31:
17

- - - -

Table 13-5. Maskable module clocks in AT32UC3A.

Bit CPUMASK HSBMASK PBAMASK PBBMASK

32058K AVR32-01/12

72

AT32UC3A

13.6.4 PLL Control

Name: PLL0,1

Access Type: Read/Write

• RESERVED: Reserved bitfields
Reserved for internal use. Always write to 0.

• PLLCOUNT: PLL Count
Specifies the number of slow clock cycles before ISR:LOCKn will be set after PLLn has been written, or after PLLn has been
automatically re-enabled after exiting a sleep mode.

• PLLMUL: PLL Multiply Factor
• PLLDIV: PLL Division Factor

These bitfields determine the ratio of the PLL output frequency (voltage controlled oscillator frequency fVCO) to the source
oscillator frequency:
fVCO = (PLLMUL+1)/(PLLDIV) • fOSC if PLLDIV > 0.

 fVCO = 2*(PLLMUL+1) • fOSC if PLLDIV = 0.
If PLLOPT[1] field is set to 0:
fPLL = fVCO.
If PLLOPT[1] field is set to 1:
fPLL = fVCO / 2.

Note that the MUL field cannot be equal to 0 or 1, or the behavior of the PLL will be undefined.

• PLLOPT: PLL Option
Select the operating range for the PLL.
PLLOPT[0]: Select the VCO frequency range.
PLLOPT[1]: Enable the extra output divider.
PLLOPT[2]: Disable the Wide-Bandwidth mode (Wide-Bandwidth mode allows a faster startup time and out-of-lock time).

31 30 29 28 27 26 25 24

RESERVED PLLCOUNT

23 22 21 20 19 18 17 16

RESERVED PLLMUL

15 14 13 12 11 10 9 8

RESERVED PLLDIV

7 6 5 4 3 2 1 0

- - - PLLOPT PLLOSC PLLEN

32058K AVR32-01/12

73

AT32UC3A

• PLLOSC: PLL Oscillator Select
0: Oscillator 0 is the source for the PLL.
1: Oscillator 1 is the source for the PLL.

• PLLEN: PLL Enable
0: PLL is disabled.
1: PLL is enabled.

Table 13-6. PLLOPT Fields Description in AT32UC3A

Description

PLLOPT[0]: VCO frequency

0 160MHz<fvco<240MHz

1 80MHz<fvco<180MHz

PLLOPT[1]: Output divider

0 fPLL = fvco

1 fPLL = fvco/2

PLLOPT[2]

0 Wide Bandwidth Mode enabled

1 Wide Bandwidth Mode disabled

32058K AVR32-01/12

74

AT32UC3A

13.6.5 PM Oscillator 0/1 Control

Register name OSCCTRL0,1

Register access Read/Write

• MODE: Oscillator Mode

Choose between crystal, or external clock

0: External clock connected on XIN, XOUT can be used as an I/O (no crystal)
1 to 3: reserved
4: Crystal is connected to XIN/XOUT - Oscillator is used with gain G0 (XIN from 0.4 MHz to 0.9 MHz).
5: Crystal is connected to XIN/XOUT - Oscillator is used with gain G1 (XIN from 0.9 MHz to 3.0 MHz).
6: Crystal is connected to XIN/XOUT - Oscillator is used with gain G2 (XIN from 3.0 MHz to 8.0 MHz).
7: Crystal is connected to XIN/XOUT - Oscillator is used with gain G3 (XIN from 8.0 Mhz).

• STARTUP: Oscillator Startup Time

Select startup time for the oscillator.

31 30 29 28 27 26 25 24

- - - - - - - -

23 22 21 20 19 18 17 16

- - - - - - - -

15 14 13 12 11 10 9 8

- - - - - STARTUP

7 6 5 4 3 2 1 0

- - - - - MODE

Table 13-7. Startup time for oscillators 0 and 1

STARTUP
Number of RC oscillator
clock cycle

Approximative Equivalent time
(RCOsc = 115 kHz)

0 0 0

1 64 560 us

2 128 1.1 ms

3 2048 18 ms

4 4096 36 ms

5 8192 71 ms

6 16384 142 ms

7 Reserved Reserved

32058K AVR32-01/12

75

AT32UC3A

13.6.6 PM 32 KHz Oscillator Control Register

Register name OSCCTRL32

Register access Read/Write

Note: This register is only reset by Power-On Reset

• OSC32EN: Enable the 32 KHz oscillator
0: 32 KHz Oscillator is disabled
1: 32 KHz Oscillator is enabled

• MODE: Oscillator Mode

Choose between crystal, or external clock

0: External clock connected on XIN32, XOUT32 can be used as a I/O (no crystal)
1: Crystal is connected to XIN32/XOUT32
2 to 7: reserved

• STARTUP: Oscillator Startup Time

Select startup time for 32 KHz oscillator

31 30 29 28 27 26 25 24

- - - - - - - -

23 22 21 20 19 18 17 16

- - - - - STARTUP

15 14 13 12 11 10 9 8

- - - - - MODE

7 6 5 4 3 2 1 0

- - - - - - - OSC32EN

Table 13-8. Startup time for 32 KHz oscillator

STARTUP
Number of RC oscillator
clock cycle

Approximative Equivalent time
(RCOsc = 115 kHz)

0 0 0

1 128 1.1 ms

2 8192 72.3 ms

3 16384 143 ms

4 65536 570 ms

5 131072 1.1 s

6 262144 2.3 s

7 524288 4.6 s

32058K AVR32-01/12

76

AT32UC3A

13.6.7 Interrupt Enable/Disable/Mask/Status/Clear

Name: IER/IDR/IMR/ISR/ICR

Access Type: IER/IDR/ICR: Write-only

IMR/ISR: Read-only

• BODDET: Brown out detection
Set to 1 when 0 to 1 transition on POSCSR:BODDET bit is detected: BOD has detected that power supply is going below
BOD reference value.

• OSC32RDY: 32 KHz oscillator Ready
Set to 1 when 0 to 1 transition on the POSCSR:OSC32RDY bit is detected: The 32 KHz oscillator is stable and ready to be
used as clock source.

• OSC1RDY: Oscillator 1 Ready
Set to 1 when 0 to 1 transition on the POSCSR:OSC1RDY bit is detected: Oscillator 1 is stable and ready to be used as
clock source.

• OSC0RDY: Oscillator 0 Ready
Set to 1 when 0 to 1 transition on the POSCSR:OSC1RDY bit is detected: Oscillator 1 is stable and ready to be used as
clock source.

• MSKRDY: Mask Ready
Set to 1 when 0 to 1 transition on the POSCSR:MSKRDY bit is detected: Clocks are now masked according to the
(CPU/HSB/PBA/PBB)_MASK registers.

• CKRDY: Clock Ready
0: The CKSEL register has been written, and the new clock setting is not yet effective.
1: The synchronous clocks have frequencies as indicated in the CKSEL register.
Note: Writing ICR:CKRDY to 1 has no effect.

• LOCK1: PLL1 locked
Set to 1 when 0 to 1 transition on the POSCSR:LOCK1 bit is detected: PLL 1 is locked and ready to be selected as clock
source.

• LOCK0: PLL0 locked
Set to 1 when 0 to 1 transition on the POSCSR:LOCK0 bit is detected: PLL 0 is locked and ready to be selected as clock
source.

31 30 29 28 27 26 25 24

- - - - - - - -

23 22 21 20 19 18 17 16

- - - - - - - BODDET

15 14 13 12 11 10 9 8

- - - - - - OSC32RDY OSC1RDY

7 6 5 4 3 2 1 0

OSC0RDY MSKRDY CKRDY - - - LOCK1 LOCK0

32058K AVR32-01/12

77

AT32UC3A

The effect of writing or reading the bits listed above depends on which register is being accessed:

• IER (Write-only)
0: No effect
1: Enable Interrupt

• IDR (Write-only)
0: No effect
1: Disable Interrupt

• IMR (Read-only)
0: Interrupt is disabled
1: Interrupt is enabled

• ISR (Read-only)
0: An interrupt event has not occurred or has been previously cleared
1: An interrupt event has not occurred

• ICR (Write-only)
0: No effect
1: Clear corresponding event

32058K AVR32-01/12

78

AT32UC3A

13.6.8 Power and Oscillators Status

Name: POSCSR

Access Type: Read-only

• BODDET: Brown out detection
0: No BOD event
1: BOD has detected that power supply is going below BOD reference value.

• OSC32RDY: 32 KHz oscillator Ready

0: The 32 KHz oscillator is not enabled or not ready.
1: The 32 KHz oscillator is stable and ready to be used as clock source.

• OSC1RDY: OSC1 ready
0: Oscillator 1 not enabled or not ready.
1: Oscillator 1 is stable and ready to be used as clock source.

• OSC0RDY: OSC0 ready
0: Oscillator 0 not enabled or not ready.
1: Oscillator 0 is stable and ready to be used as clock source.

• MSKRDY: Mask ready
0: Mask register has been changed, masking in progress.
1: Clock are masked according to xxx_MASK

• CKRDY:
0: The CKSEL register has been written, and the new clock setting is not yet effective.
1: The synchronous clocks have frequencies as indicated in the CKSEL register.

• LOCK1: PLL 1 locked
0:PLL 1 is unlocked
1:PLL 1 is locked, and ready to be selected as clock source.

• LOCK0: PLL 0 locked
0: PLL 0 is unlocked
1: PLL 0 is locked, and ready to be selected as clock source.

31 30 29 28 27 26 25 24

- - - - - - - -

23 22 21 20 19 18 17 16

- - - - - - - BODDET

15 14 13 12 11 10 9 8

- - - - - - OSC32RDY OSC1RDY

7 6 5 4 3 2 1 0

OSC0RDY MSKRDY CKRDY - - - LOCK1 LOCK0

32058K AVR32-01/12

79

AT32UC3A

13.6.9 Generic Clock Control

Name: GCCTRL

Access Type: Read/Write

There is one GCCTRL register per generic clock in the design.

• DIV: Division Factor
• DIVEN: Divide Enable

0: The generic clock equals the undivided source clock.
1: The generic clock equals the source clock divided by 2*(DIV+1).

• CEN: Clock Enable
0: Clock is stopped.
1: Clock is running.

• PLLSEL: PLL Select
0: Oscillator is source for the generic clock.
1: PLL is source for the generic clock.

• OSCSEL: Oscillator Select
0: Oscillator (or PLL) 0 is source for the generic clock.
1: Oscillator (or PLL) 1 is source for the generic clock.

31 30 29 28 27 26 25 24

- - - - - - - -

23 22 21 20 19 18 17 16

- - - - - - - -

15 14 13 12 11 10 9 8

DIV[7:0]

7 6 5 4 3 2 1 0

- - - DIVEN - CEN PLLSEL OSCSEL

32058K AVR32-01/12

80

AT32UC3A

13.6.10 Reset Cause

Name: RCAUSE

Access Type: Read-only

• POR Power-on Reset
The CPU was reset due to the supply voltage being lower than the power-on threshold level.

• BOD: Brown-out Reset
The CPU was reset due to the supply voltage being lower than the brown-out threshold level.

• EXT: External Reset Pin
The CPU was reset due to the RESET pin being asserted.

• WDT: Watchdog Reset
The CPU was reset because of a watchdog timeout.

• JTAG: JTAG reset
The CPU was reset by setting the bit RC_CPU in the JTAG reset register.

• CPUERR: CPU Error
The CPU was reset because it had detected an illegal access.

• OCDRST: OCD Reset
The CPU was reset because the RES strobe in the OCD Development Control register has been written to one.

• JTAGHARD: JTAG Hard Reset
The chip was reset by setting the bit RC_OCD in the JTAG reset register or by using the JTAG HALT instruction.

31 30 29 28 27 26 25 24

- - - - - - - -

23 22 21 20 19 18 17 16

- - - - - - - -

15 14 13 12 11 10 9 8

- - - - - - JTAGHARD OCDRST

7 6 5 4 3 2 1 0

CPUERR - - JTAG WDT EXT BOD POR

32058K AVR32-01/12

81

AT32UC3A

13.6.11 BOD Control

BOD Level register

Register name BOD

Register access Read/Write

• KEY: Register Write protection
This field must be written twice, first with key value 0x55, then 0xAA, for a write operation to have an effect.

• FCD: BOD Fuse calibration done
Set to 1 when CTRL, HYST and LEVEL fields has been updated by the Flash fuses after power-on reset or Flash fuses update
If one, the CTRL, HYST and LEVEL values will not be updated again by Flash fuses
Can be cleared to allow subsequent overwriting of the value by Flash fuses

• CTRL: BOD Control
0: BOD is off
1: BOD is enabled and can reset the chip
2: BOD is enabled and but cannot reset the chip. Only interrupt will be sent to interrupt controller, if enabled in the IMR register.
3: BOD is off

• HYST: BOD Hysteresis
0: No hysteresis
1: Hysteresis On

• LEVEL: BOD Level
This field sets the triggering threshold of the BOD. See Electrical Characteristics for actual voltage levels.
Note that any change to the LEVEL field of the BOD register should be done with the BOD deactivated to avoid spurious reset
or interrupt.

31 30 29 28 27 26 25 24

KEY

23 22 21 20 19 18 17 16

- - - - - - - FCD

15 14 13 12 11 10 9 8

- - - - - - CTRL

7 6 5 4 3 2 1 0

- HYST LEVEL

32058K AVR32-01/12

82

AT32UC3A

13.6.12 RC Oscillator Calibration

Register name RCCR

Register access Read/Write

• CALIB: Calibration Value
Calibration Value for the RC oscillator.

• FCD: Flash Calibration Done
Set to 1 when CTRL, HYST, and LEVEL fields have been updated by the Flash fuses after power-on reset, or after Flash fuses
are reprogrammed. The CTRL, HYST and LEVEL values will not be updated again by the Flash fuses until a new power-on
reset or the FCD field is written to zero.

• KEY: Register Write protection
This field must be written twice, first with key value 0x55, then 0xAA, for a write operation to have an effect.

31 30 29 28 27 26 25 24

KEY

23 22 21 20 19 18 17 16

- - - - - - - FCD

15 14 13 12 11 10 9 8

- - - - - - CALIB

7 6 5 4 3 2 1 0

CALIB

32058K AVR32-01/12

83

AT32UC3A

13.6.13 Bandgap Calibration

Register name BGCR

Register access Read/Write

• KEY: Register Write protection

This field must be written twice, first with key value 0x55, then 0xAA, for a write operation to have an effect.

• CALIB: Calibration value

Calibration value for Bandgap. See Electrical Characteristics for voltage values.

• FCD: Flash Calibration Done
Set to 1 when the CALIB field has been updated by the Flash fuses after power-on reset or when the Flash fuses are
reprogrammed. The CALIB field will not be updated again by the Flash fuses until a new power-on reset or the FCD field is
written to zero.

31 30 29 28 27 26 25 24

KEY

23 22 21 20 19 18 17 16

- - - - - - - FCD

15 14 13 12 11 10 9 8

- - - - - - - -

7 6 5 4 3 2 1 0

- - - - - CALIB

32058K AVR32-01/12

84

AT32UC3A

13.6.14 PM Voltage Regulator Calibration Register

Register name VREGCR

Register access Read/Write

• KEY: Register Write protection
This field must be written twice, first with key value 0x55, then 0xAA, for a write operation to have an effect.

• CALIB: Calibration value
Calibration value for Voltage Regulator. See Electrical Characteristics for voltage values.

• FCD: Flash Calibration Done
Set to 1 when the CALIB field has been updated by the Flash fuses after power-on reset or when the Flash fuses are
reprogrammed. The CALIB field will not be updated again by the Flash fuses until a new power-on reset or the FCD field is
written to zero.

31 30 29 28 27 26 25 24

KEY

23 22 21 20 19 18 17 16

- - - - - - - FCD

15 14 13 12 11 10 9 8

- - - - - - - -

7 6 5 4 3 2 1 0

- - - - - CALIB

32058K AVR32-01/12

85

AT32UC3A

13.6.15 General Purpose Low-power register 0/1

Register name GPLP0,1

Register access Read/Write

These registers are general purpose 32-bit registers that are reset only by power-on-reset. Any other reset will keep the
content of these registers untouched.

31 30 29 28 27 26 25 24

GPLP

23 22 21 20 19 18 17 16

GPLP

15 14 13 12 11 10 9 8

GPLP

7 6 5 4 3 2 1 0

GPLP

32058K AVR32-01/12

86

AT32UC3A

14. Real Time Counter (RTC)

Rev: 2.3.0.1

14.1 Features

• 32-bit real-time counter with 16-bit prescaler
• Clocked from RC oscillator or 32 KHz oscillator
• High resolution: Max count frequency 16 KHz
• Long delays

– Max timeout 272 years
• Extremely low power consumption
• Available in all sleep modes except Static
• Interrupt on wrap

14.2 Description

The Real Time Counter (RTC) enables periodic interrupts at long intervals, or accurate mea-
surement of real-time sequences. The RTC is fed from a 16-bit prescaler, which is clocked from
the RC oscillator or the 32 KHz oscillator. Any tapping of the prescaler can be selected as clock
source for the RTC, enabling both high resolution and long timeouts. The prescaler cannot be
written directly, but can be cleared by the user.

The RTC can generate an interrupt when the counter wraps around the value stored in the top
register, producing accurate periodic interrupts.

32058K AVR32-01/12

87

AT32UC3A

14.3 Block Diagram

Figure 14-1. Real Time Counter module block diagram

14.4 Product Dependencies

14.4.1 Power Management

The RTC is continuously clocked, and remains operating in all sleep modes except Static. Inter-
rupts are not available in DeepStop mode.

14.4.2 Interrupt

The RTC interrupt line is connected to one of the internal sources of the interrupt controller.
Using the RTC interrupt requires the interrupt controller to be programmed first.

14.4.3 Debug Operation

The RTC prescaler is frozen during debug operation, unless the OCD system keeps peripherals
running in debug operation.

14.4.4 Clocks

The RTC can use the internal RC oscillator as clock source. This oscillator is always enabled
whenever these modules are active. Please refer to the Electrical Characteristics chapter for the
characteristic frequency of this oscillator (fRC).

The RTC can also use the 32 KHz crystal oscillator as clock source. This oscillator must be
enabled before use. Please refer to the Power Manager chapter for details.

14.5 Functional Description

14.5.1 RTC operation

14.5.1.1 Source clock

The RTC is enabled by writing the EN bit in the CTRL register to 1. The 16-bit prescaler will then
increment on the selected clock. The prescaler cannot be read or written, but it can be reset by
writing the PCLR strobe.

16-bit Prescaler
RC OSC

32-bit counter

RTC_VAL

RTC_TOP

TOPI IRQ
32 kHz

RTC_CTRL

ENCLK32 PCLR

1

0

32058K AVR32-01/12

88

AT32UC3A

The CLK32 bit selects either the RC oscillator or the 32 KHz oscillator as clock source for the
prescaler.

The PSEL bitfield selects the prescaler tapping, selecting the source clock for the RTC:

fRTC = 2-(PSEL+1) * (fRC or 32 KHz)

14.5.1.2 Counter operation

When enabled, the RTC will increment until it reaches TOP, and then wrap to 0x0. The status bit
TOPI in ISR is set when this occurs. From 0x0 the counter will count TOP+1 cycles of the source
clock before it wraps back to 0x0.

The RTC count value can be read from or written to the register VAL. Due to synchronization,
continuous reading of the VAL with the lowest prescaler setting will skip every other value.

14.5.1.3 RTC Interrupt

Writing the TOPI bit in IER enables the RTC interrupt, while writing the corresponding bit in IDR
disables the RTC interrupt. IMR can be read to see whether or not the interrupt is enabled. If
enabled, an interrupt will be generated if the TOPI flag in ISR is set. The flag can be cleared by
writing TOPI in ICR to one.

The RTC interrupt can wake the CPU from all sleep modes except DeepStop and Static mode.

14.5.1.4 RTC wakeup

The RTC can also wake up the CPU directly without triggering an interrupt when the TOPI flag in
ISR is set. In this case, the CPU will continue executing from the instruction following the sleep
instruction.

This direct RTC wakeup is enabled by writing the WAKE_EN bit in the CTRL register to one.
When the CPU wakes from sleep, the WAKE_EN bit must be written to zero to clear the internal
wake signal to the sleep controller, otherwise a new sleep instruction will have no effect.

The RTC wakeup is available in all sleep modes except Static mode. The RTC wakeup can be
configured independently of the RTC interrupt.

14.5.1.5 Busy bit

Due to the crossing of clock domains, the RTC uses a few clock cycles to propagate the values
stored in CTRL, TOP, and VAL to the RTC. The BUSY bit in CTRL indicates that a register write
is still going on and all writes to TOP, CTRL, and VAL will be discarded until BUSY goes low
again.

32058K AVR32-01/12

89

AT32UC3A

14.6 User Interface

14.6.1 RTC Control

Name: CTRL

Access Type: Read/Write

• CLKEN: Clock enable
0: The clock is disabled
1: The clockis enabled

• PSEL: Prescale Select
Selects prescaler bit PSEL as source clock for the RTC.

• BUSY: RTC busy
0: The RTC accepts writes to TOP, VAL, and CTRL.
1: The RTC is busy and will discard writes to TOP, VAL, and CTRL.

• CLK32: 32 KHz oscillator select
0: The RTC uses the RC oscillator as clock source
1: The RTC uses the 32 KHz oscillator as clock source

Offset Register Register Name Access Reset

0x00 RTC Control CTRL Read/Write 0x0

0x04 RTC Value VAL Read/Write 0x0

0x08 RTC Top TOP Read/Write 0x0

0x10 RTC Interrupt Enable IER Write-only 0x0

0x14 RTC Interrupt Disable IDR Write-only 0x0

0x18 RTC Interrupt Mask IMR Read-only 0x0

0x1C RTC Interrupt Status ISR Read-only 0x0

0x20 RTC Interrupt Clear ICR Write-only 0x0

31 30 29 28 27 26 25 24

- - - - - - - -

23 22 21 20 19 18 17 16

- - - - - - - CLKEN

15 14 13 12 11 10 9 8

- - - - PSEL

7 6 5 4 3 2 1 0

- - - BUSY CLK32 WAKE_EN PCLR EN

32058K AVR32-01/12

90

AT32UC3A

• WAKE_EN: Wakeup enable
0: The RTC does not wake up the CPU from sleep modes
1: The RTC wakes up the CPU from sleep modes.

• PCLR: Prescaler Clear
Writing 1 to this strobe clears the prescaler.

• EN: Enable
0: The RTC is disabled
1: The RTC is enabled

32058K AVR32-01/12

91

AT32UC3A

14.6.2 RTC Value

Name: VAL

Access Type: Read/Write

• VAL: RTC Value
This value is incremented on every rising edge of the source clock.

31 30 29 28 27 26 25 24

VAL[31:24]

23 22 21 20 19 18 17 16

VAL[23:16]

15 14 13 12 11 10 9 8

VAL[15:8]

7 6 5 4 3 2 1 0

VAL[7:0]

32058K AVR32-01/12

92

AT32UC3A

14.6.3 RTC Top

Name: TOP

Access Type: Read/Write

• TOP: RTC Top Value
VAL wraps at this value.

31 30 29 28 27 26 25 24

TOP[31:24]

23 22 21 20 19 18 17 16

TOP[23:16]

15 14 13 12 11 10 9 8

TOP[15:8]

7 6 5 4 3 2 1 0

TOP[7:0]

32058K AVR32-01/12

93

AT32UC3A

14.6.4 RTC Interrupt Enable/Disable/Mask/Status/Clear

Name: IER/IDR/IMR/ISR/ICR

Access Type: IER/IDR/ICR: Write-only

IMR/ISR: Read-only

• TOPI: Top Interrupt
VAL has wrapped at its top value.

The effect of writing or reading this bit depends on which register is being accessed:

• IER (Write-only)
0: No effect
1: Enable Interrupt

• IDR (Write-only)
0: No effect
1: Disable Interrupt

• IMR (Read-only)
0: Interrupt is disabled
1: Interrupt is enabled

• ISR (Read-only)
0: An interrupt event has occurred
1: An interrupt even has not occurred

• ICR (Write-only)
0: No effect
1: Clear interrupt even

31 30 29 28 27 26 25 24

- - - - - - - -

23 22 21 20 19 18 17 16

- - - - - - - -

15 14 13 12 11 10 9 8

- - - - - - - -

7 6 5 4 3 2 1 0

- - - - - - - TOPI

32058K AVR32-01/12

94

AT32UC3A

15. Watchdog Timer (WDT)

Rev: 2.3.0.1

15.1 Features

• Watchdog Timer counter with 16-bit prescaler
• Clocked from RC oscillator

15.2 Description

The Watchdog Timer (WDT) has a prescaler generating a timeout period. This prescaler is
clocked from the RC oscillator. The watchdog timer must be periodically reset by software within
the timeout period, otherwise, the device is reset and starts executing from the boot vector. This
allows the device to recover from a condition that has caused the system to be unstable.

15.3 Block Diagram

Figure 15-1. Watchdog Timer module block diagram

15.4 Product Dependencies

15.4.1 Power Management

When the WDT is enabled, the WDT remains clocked in all sleep modes, and it is not possible to
enter Static mode.

15.4.2 Debug Operation

The WDT prescaler is frozen during debug operation, unless the OCD system keeps peripherals
running in debug operation.

15.4.3 Clocks

The WDT can use the internal RC oscillator as clock source. This oscillator is always enabled
whenever these modules are active. Please refer to the Electrical Characteristics chapter for the
characteristic frequency of this oscillator (fRC).

RCOSC

WDT_CLR

Watchdog
Detector

WDT_CTRL

32-bit
Prescaler Watchdog Reset

EN

32058K AVR32-01/12

95

AT32UC3A

15.5 Functional Description

The WDT is enabled by writing the EN bit in the CTRL register to one. This also enables the RC
clock for the prescaler. The PSEL bitfield in the same register selects the watchdog timeout
period:

TWDT = 2(PSEL+1) / fRC

The next timeout period will begin as soon as the watchdog reset has occured and count down
during the reset sequence. Care must be taken when selecting the PSEL value so that the time-
out period is greater than the startup time of the chip, otherwise a watchdog reset can reset the
chip before any code has been run.

To avoid accidental disabling of the watchdog, the CTRL register must be written twice, first with
the KEY field set to 0x55, then 0xAA without changing the other bitfields. Failure to do so will
cause the write operation to be ignored, and CTRL does not change value.

The CLR register must be written with any value with regular intervals shorter than the watchdog
timeout period. Otherwise, the device will receive a soft reset, and the code will start executing
from the boot vector.

When the WDT is enabled, it is not possible to enter Static mode. Attempting to do so will result
in entering Shutdown mode, leaving the WDT operational.

32058K AVR32-01/12

96

AT32UC3A

15.6 User Interface

Offset Register Register Name Access Reset

0x00 WDT Control CTRL Read/Write 0x0

0x04 WDT Clear CLR Write-only 0x0

32058K AVR32-01/12

97

AT32UC3A

15.6.1 WDT Control

Name: CTRL

Access Type: Read/Write

• KEY
This bitfield must be written twice, first with key value 0x55, then 0xAA, for a write operation to be effective. This bitfield always
reads as zero.

• PSEL: Prescale Select
Prescaler bit PSEL is used as watchdog timeout period.

• EN: WDT Enable
0: WDT is disabled.
1: WDT is enabled.

31 30 29 28 27 26 25 24

KEY[7:0]

23 22 21 20 19 18 17 16

- - - - - - - -

15 14 13 12 11 10 9 8

- - - PSEL

7 6 5 4 3 2 1 0

- - - - - - - EN

32058K AVR32-01/12

98

AT32UC3A

15.6.2 WDT Clear

Name: CLR

Access Type: Write-only

When the watchdog timer is enabled, this register must be periodically written, with any value, within the watchdog timeout
period, to prevent a watchdog reset.

32058K AVR32-01/12

99

AT32UC3A

16. Interrupt Controller (INTC)
Rev: 1.0.1.1

16.1 Description
The INTC collects interrupt requests from the peripherals, prioritizes them, and delivers an inter-
rupt request and an autovector to the CPU. The AVR32 architecture supports 4 priority levels for
regular, maskable interrupts, and a Non-Maskable Interrupt (NMI).

The INTC supports up to 64 groups of interrupts. Each group can have up to 32 interrupt request
lines, these lines are connected to the peripherals. Each group has an Interrupt Priority Register
(IPR) and an Interrupt Request Register (IRR). The IPRs are used to assign a priority level and
an autovector to each group, and the IRRs are used to identify the active interrupt request within
each group. If a group has only one interrupt request line, an active interrupt group uniquely
identifies the active interrupt request line, and the corresponding IRR is not needed. The INTC
also provides one Interrupt Cause Register (ICR) per priority level. These registers identify the
group that has a pending interrupt of the corresponding priority level. If several groups have an
pending interrupt of the same level, the group with the lowest number takes priority.

16.2 Block Diagram

Figure 16-1 on page 99 gives an overview of the INTC. The grey boxes represent registers that
can be accessed via the Peripheral Bus (PB). The interrupt requests from the peripherals
(IREQn) and the NMI are input on the left side of the figure. Signals to and from the CPU are on
the right side of the figure.

Figure 16-1. Overview of the Interrupt Controller

16.3 Operation
All of the incoming interrupt requests (IREQs) are sampled into the corresponding Interrupt
Request Register (IRR). The IRRs must be accessed to identify which IREQ within a group that
is active. If several IREQs within the same group is active, the interrupt service routine must pri-

Request
masking

OR
IREQ0
IREQ1
IREQ2

IREQ31
GrpReq0

Masks SREG
masks
I[3-0]M

GM

INTLEVEL

AUTOVECTOR

P
rioritizer

CPUInterrupt Controller

OR
GrpReqN

NMIREQ

OR
IREQ32
IREQ33
IREQ34

IREQ63
GrpReq1

IRR registers IPR registers ICR registers

INT_level, offset

INT_level, offset

INT_level, offset

IPR0

IPR1

IPRn

IRR0

IRR1

IRRn

ValReq0

ValReq1

ValReqN

32058K AVR32-01/12

100

AT32UC3A

oritize between them. All of the input lines in each group are logically-ORed together to form the
GrpReqN lines, indicating if there is a pending interrupt in the corresponding group.

The Request Masking hardware maps each of the GrpReq lines to a priority level from INT0 to
INT3 by associating each group with the INTLEVEL field in the corresponding IPR register. The
GrpReq inputs are then masked by the I0M, I1M, I2M, I3M and GM mask bits from the CPU sta-
tus register. Any interrupt group that has a pending interrupt of a priority level that is not masked
by the CPU status register, gets its corresponding ValReq line asserted.

The Prioritizer hardware uses the ValReq lines and the INTLEVEL field in the IPRs to select the
pending interrupt of the highest priority. If a NMI interrupt is pending, it automatically gets high-
est priority of any pending interrupt. If several interrupt groups of the highest pending interrupt
level have pending interrupts, the interrupt group with the highest number is selected.

Interrupt level (INTLEVEL) and handler autovector offset (AUTOVECTOR) of the selected inter-
rupt are transmitted to the CPU for interrupt handling and context switching. The CPU doesn't
need to know which interrupt is requesting handling, but only the level and the offset of the han-
dler address. The IRR registers contain the interrupt request lines of the groups and can be read
via PB for checking which interrupts of the group are actually active.

Masking of the interrupt requests is done based on five interrupt mask bits of the CPU status
register, namely interrupt level 3 mask (I3M) to interrupt level 0 mask (I0M), and Global interrupt
mask (GM). An interrupt request is masked if either the Global interrupt mask or the correspond-
ing interrupt level mask bit is set.

16.3.1 Non maskable interrupts
A NMI request has priority over all other interrupt requests. NMI has a dedicated exception vec-
tor address defined by the AVR32 architecture, so AUTOVECTOR is undefined when
INTLEVEL indicates that an NMI is pending.

16.3.2 CPU response
When the CPU receives an interrupt request it checks if any other exceptions are pending. If no
exceptions of higher priority are pending, interrupt handling is initiated. When initiating interrupt
handling, the corresponding interrupt mask bit is set automatically for this and lower levels in sta-
tus register. E.g, if interrupt on level 3 is approved for handling the interrupt mask bits I3M, I2M,
I1M, and I0M are set in status register. If interrupt on level 1 is approved the masking bits I1M,
and I0M are set in status register. The handler offset is calculated from AUTOVECTOR and
EVBA and a change-of-flow to this address is performed.

Setting of the interrupt mask bits prevents the interrupts from the same and lower levels to be
passed trough the interrupt controller. Setting of the same level mask bit prevents also multiple
request of the same interrupt to happen.

It is the responsibility of the handler software to clear the interrupt request that caused the inter-
rupt before returning from the interrupt handler. If the conditions that caused the interrupt are not
cleared, the interrupt request remains active.

16.3.3 Clearing an interrupt request
Clearing of the interrupt request is done by writing to registers in the corresponding peripheral
module, which then clears the corresponding NMIREQ/IREQ signal.

The recommended way of clearing an interrupt request is a store operation to the controlling
peripheral register, followed by a dummy load operation from the same register. This causes a

32058K AVR32-01/12

101

AT32UC3A

pipeline stall, which prevents the interrupt from accidentally re-triggering in case the handler is
exited and the interrupt mask is cleared before the interrupt request is cleared.

16.4 User Interface
This chapter lists the INTC registers are accessible through the PB bus. The registers are used
to control the behaviour and read the status of the INTC.

16.4.1 Memory Map
The following table shows the address map of the INTC registers, relative to the base address of
the INTC.

16.4.2 Interrupt Request Map
The mapping of interrupt requests from peripherals to INTREQs is presented in the Peripherals
Section.

Table 16-1. INTC address map

Offset Register Name Access Reset Value

0 Interrupt Priority Register 0 IPR0 Read/Write 0x0000_0000

4 Interrupt Priority Register 1 IPR1 Read/Write 0x0000_0000

...

252 Interrupt Priority Register 63 IPR63 Read/Write 0x0000_0000

256 Interrupt Request Register 0 IRR0 Read-only N/A

260 Interrupt Request Register 1 IRR1 Read-only N/A

...

508 Interrupt Request Register 63 IRR63 Read-only N/A

512 Interrupt Cause Register 3 ICR3 Read-only N/A

516 Interrupt Cause Register 2 ICR2 Read-only N/A

520 Interrupt Cause Register 1 ICR1 Read-only N/A

524 Interrupt Cause Register 0 ICR0 Read-only N/A

32058K AVR32-01/12

102

AT32UC3A

16.4.3 Interrupt Request Registers

Register Name: IRR0...IRR63
Access Type: Read-only

• IRR: Interrupt Request line

0 = No interrupt request is pending on this input request input.
1 = An interrupt request is pending on this input request input.
The are 64 IRRs, one for each group. Each IRR has 32 bits, one for each possible interrupt request, for a total of 2048 pos-
sible input lines. The IRRs are read by the software interrupt handler in order to determine which interrupt request is
pending. The IRRs are sampled continuously, and are read-only.

31 30 29 28 27 26 25 24
IRR(32*x+31) IRR(32*x+30) IRR(32*x+29) IRR(32*x+28) IRR(32*x+27) IRR(32*x+26) IRR(32*x+25) IRR(32*x+24)

23 22 21 20 19 18 17 16
IRR(32*x+23) IRR(32*x+22) IRR(32*x+21) IRR(32*x+20) IRR(32*x+19) IRR(32*x+18) IRR(32*x+17) IRR(32*x+16)

15 14 13 12 11 10 9 8
IRR(32*x+15) IRR(32*x+14) IRR(32*x+13) IRR(32*x+12) IRR(32*x+11) IRR(32*x+10) IRR(32*x+9) IRR(32*x+8)

7 6 5 4 3 2 1 0
IRR(32*x+7) IRR(32*x+6) IRR(32*x+5) IRR(32*x+4) IRR(32*x+3) IRR(32*x+2) IRR(32*x+1) IRR(32*x+0)

32058K AVR32-01/12

103

AT32UC3A

16.4.4 Interrupt Priority Registers

Register Name: IPR0...IPR63
Access Type: Read/Write

• INTLEVEL: Interrupt level associated with this group

Indicates the EVBA-relative offset of the interrupt handler of the corresponding group:

• AUTOVECTOR: Autovector address for this group

Handler offset is used to give the address of the interrupt handler. The least significant bit should be written to zero to give
halfword alignment

31 30 29 28 27 26 25 24
INTLEVEL[1:0] - - - - - -

23 22 21 20 19 18 17 16
- - - - - - - -

15 14 13 12 11 10 9 8
- - AUTOVECTOR[13:8]

7 6 5 4 3 2 1 0
AUTOVECTOR[7:0]

INTLEVEL[1:0] Priority

0 0 INT0

0 1 INT1

1 0 INT2

1 1 INT3

32058K AVR32-01/12

104

AT32UC3A

16.4.5 Interrupt Cause Registers

Register Name: ICR0...ICR3
Access Type: Read-only

• CAUSE: Interrupt group causing interrupt of priority n

ICRn identifies the group with the highest priority that has a pending interrupt of level n. If no interrupts of level n are pend-
ing, or the priority level is masked, the value of ICRn is UNDEFINED.

31 30 29 28 27 26 25 24
- - - - - - - -

23 22 21 20 19 18 17 16
- - - - - - - -

15 14 13 12 11 10 9 8
- - - - - - - -

7 6 5 4 3 2 1 0
- - CAUSE

32058K AVR32-01/12

105

AT32UC3A

17. External Interrupts Controller (EIC)

Rev: 2.3.0.2

17.1 Features

• Dedicated interrupt requests for each interrupt
• Individually maskable interrupts
• Interrupt on rising or falling edge
• Interrupt on high or low level
• Asynchronous interrupts for sleep modes without clock
• Filtering of interrupt lines
• Keypad scan support
• Maskable NMI interrupt

17.2 Description

The External Interrupt Module allows pins to be configured as external interrupts. Each pin has
its own interrupt request and can be individually masked. Each pin can generate an interrupt on
rising or falling edge, or high or low level. Every line has a configurable filter too remove spikes
on the interrupt lines. Every interrupt pin can also be configured to be asynchronous to wake up
the part from sleep modes where the clock has been disabled.

A Non-Maskable Interrupt (NMI) is also supported. This has the same properties as the other
external interrupts, but is connected to the NMI request of the CPU, enabling it to interrupt any
other interrupt mode.

The External Interrupt Module has support for keypad scanning for keypads laid out in rows and
columns. Columns are driven by a separate set of scanning outputs, while rows are sensed by
the external interrupt lines. The pressed key will trigger an interrupt, which can be identified
through the user registers of the module.

The External Interrupt Module can wake up the part from sleep modes without triggering an
interrupt. In this mode, code execution starts from the instruction following the sleep instruction.

32058K AVR32-01/12

106

AT32UC3A

17.3 Block Diagram

Figure 17-1. External Interrupt Module block diagram

17.4 Product Dependencies

17.4.1 I/O Lines

The External Interrupt and keypad scan pins are multiplexed with PIO lines. To act as external
interrupts, these pins must be configured as inputs pins by the PIO controller. It is also possible
to trigger the interrupt by driving these pins from registers in the PIO controller, or another
peripheral output connected to the same pin.

17.4.2 Power Management

All interrupts are available in every sleep mode. However, in sleep modes where the clock is
stopped, asynchronous interrupts must be selected.

17.4.3 Interrupt

The external interrupt lines are connected to internal sources of the interrupt controller. Using
the external interrutps requires the interrupt controller to be programmed first.

Using the Non-Maskable Interrupt does not require the interrupt controller to be programmed.

Edge/Level
Detector

Mask IRQnEXTINTn
NMI

EIM_LEVEL
EIM_MODE
EIM_EDGE

EIM_IER
EIM_IDR

EIM_IMR
Filter

EIM_FILTER

Polarity
control

EIM_LEVEL
EIM_MODE
EIM_EDGE

Asynchronus
detector

Wake
detect

EIM_WAKE

Enable

EIM_EN
EIM_DIS

EIM_CTRL

Prescaler Shifter

PRESC EN

EIM_SCAN

PIN

SCAN

RC clk

INTn

EIM_ICR

EIM_ISR

32058K AVR32-01/12

107

AT32UC3A

17.5 Functional Description

17.5.1 External Interrupts

To enable an external interrupt EXTINTn must be written to 1 in register EN. Similarly, writing
EXTINTn to 1 in register DIS disables the interrupt. The status of each Interrupt line can be
observed in the CTRL register.

Each external interrupt pin EXTINTn can be configured to produce an interrupt on rising or fall-
ing edge, or high or low level. External interrupts are configured by the MODE, EDGE, and
LEVEL registers. Each interrupt n has a bit INTn in each of these registers.

Similarly, each interrupt has a corresponding bit in each of the interrupt control and status regis-
ters. Writing 1 to the INTn strobe in IER enables the external interrupt on pin EXTINTn, while
writing 1 to INTn in IDR disables the external interrupt. IMR can be read to check which inter-
rupts are enabled. When the interrupt triggers, the corresponding bit in ISR will be set. The flag
remains set until the corresponding strobe bit in ICR is written to 1.

Writing INTn in MODE to 0 enables edge triggered interrupts, while writing the bit to 1 enables
level triggered interrupts.

If EXTINTn is configured as an edge triggered interrupt, writing INTn in EDGE to 0 will trigger the
interrupt on falling edge, while writing the bit to 1 will trigger the interrupt on rising edge.

If EXTINTn is configured as a level triggered interrupt, writing INTn in LEVEL to 0 will trigger the
interrupt on low level, while writing the bit to 1 will trigger the interrupt on high level.

To remove spikes that are longer than the clock period in the current mode each external inter-
rupt contains a filter that can be enabled by writing 1 to INTn to FILTER.

Each interrupt line can be made asynchronous by writing 1 to INTn in the ASYNC register. This
will route the interrupt signal through the asynchronous path of the module. All edge interrupts
will be interpreted as level interrupts and the filter is disabled.

17.5.1.1 Synchronization of external interrupts

The pin value of the EXTINTn pins is normally synchronized to the CPU clock, so spikes shorter
than a CPU clock cycle are not guaranteed to produce an interrupt. In Stop mode, spikes shorter
than a 32 KHz clock cycle are not guaranteed to produce an interrupt.

In Static mode, only unsynchronized interrupts remain active, and any short spike on this inter-
rupt will wake up the device.

17.5.1.2 Wakeup

The External interrupts can be used to wake up the part from sleep modes. The wakeup can be
interpreted in two ways. If the corresponding bit in IMR is set, then the execution starts at the
interrupt handler for this interrupt. If the bit in IMR is not set, then the execution starts from the
next instruction after the sleep instruction.

17.5.2 Non-Maskable Interrupt

The NMI supports the same features as the external interrupts, and is accessed through the
same registers. The description in Section 17.5.1 should be followed, accessing the NMI bit
instead of the INTn bits.

32058K AVR32-01/12

108

AT32UC3A

The NMI is non-maskable within the CPU in the sense that it can interrupt any other execution
mode. Still, as for the other external interrupts, the actual NMI input line can be enabled and dis-
abled by accessing the registers in the External Interrupt Module. These interrupts are not
enabled by default, allowing the proper interrupt vectors to be set up by the CPU before the
interrupts are enabled.

17.5.3 Keypad scan support

The External Interrupt Module also includes support for keypad scanning. The keypad scan fea-
ture is compatible with keypads organized as rows and columns, where a row is shorted against
a column when a key is pressed.

The rows should be connected to the external interrupt pins with pullups enabled in the GPIO
module. These external interrupts should be enabled as low level or falling edge interrupts. The
columns should be connected to the available scan pins. The GPIO must be configured to let the
required scan pins be controlled by the EIC module. Unused external interrupt or scan pins can
be left controlled by the GPIO or other peripherals.

The Keypad Scan function is enabled by writing :EN to 1, which starts the keypad scan counter.
The SCAN outputs are tristated, except SCAN[0], which is driven to zero. After 2(SCAN:PRESC+1)

RC clock cycles this pattern is left shifted, so that SCAN[1] is driven to zero while the other out-
puts are tristated. This sequence repeats infinitely, wrapping from the most significant SCAN pin
to SCAN[0].

When a key is pressed, the pulled-up row is driven to zero by the column, and an external inter-
rupt triggers. The scanning stops, and the software can then identify the key pressed by the
interrupt status register and the SCAN:PINS value.

The scanning stops whenever there is an active interrupt request from the EIC to the CPU.
When the CPU clears the interrupt flags, scanning resumes.

32058K AVR32-01/12

109

AT32UC3A

17.6 User Interface

Offset Register Register Name Access Reset

0x00 EIC Interrupt Enable IER Write-only 0x0

0x04 EIC Interrupt Disable IDR Write-only 0x0

0x08 EIC Interrupt Mask IMR Read-only 0x0

0x0C EIC Interrupt Status ISR Read-only 0x0

0x10 EIC Interrupt Clear ICR Write-only 0x0

0x14 External Interrupt Mode MODE Read/Write 0x0

0x18 External Interrupt Edge EDGE Read/Write 0x0

0x1C External Interrupt Level LEVEL Read/Write 0x0

0x20 External Interrupt Filter FILTER Read/Write 0x0

0x24 External Interrupt Test TEST Read/Write 0x0

0x28 External Interrupt Asynchronous ASYNC Read/Write 0x0

0x2C External Interrupt Scan SCAN Read/Write 0x0

0x30 External Interrupt Enable EN Write-only 0x0

0x34 External Interrupt Disable DIS Write-only 0x0

0x38 External Interrupt Control CTRL Read/Write 0x0

32058K AVR32-01/12

110

AT32UC3A

17.6.1 EIC Interrupt Enable/Disable/Mask/Status/Clear

Name: IER/IDR/IMR/ISR/ICR

Access Type: IER/IDR/ICR: Write-only

IMR/ISR: Read-only

The effect of writing or reading the bits listed above depends on which register is being accessed:

• IER (Write-only)
0: No effect
1: Enable Interrupt

• IDR (Write-only)
0: No effect
1: Disable Interrupt

• IMR (Read-only)
0: Interrupt is disabled
1: Interrupt is enabled

• ISR (Read-only)
0: An interrupt event has occurred
1: An interrupt even has not occurred

• ICR (Write-only)
0: No effect
1: Clear interrupt event

31 30 29 28 27 26 25 24

- - - - - - - -

23 22 21 20 19 18 17 16

- - - - - - - -

15 14 13 12 11 10 9 8

- - - - - - - NMI

7 6 5 4 3 2 1 0

INT7 INT6 INT5 INT4 INT3 INT2 INT1 INT0

32058K AVR32-01/12

111

AT32UC3A

17.6.2 External Interrupt Mode/Edge/Level/Filter/Async

Name: MODE/EDGE/LEVEL/FILTER/ASYNC

Access Type: Read/Write

The bit interpretation is register specific:

• MODE
0: Interrupt is edge triggered
1: Interrupt is level triggered

• EDGE
0: Interrupt triggers on falling edge
1: Interrupt triggers on rising edge

• LEVEL
0: Interrupt triggers on low level
1: Interrupt triggers on high level

• FILTER
0: Interrupt is not filtered
1: Interrupt is filtered

• ASYNC
0: Interrupt is synchronized to the clock
1: Interrupt is asynchronous

31 30 29 28 27 26 25 24

- - - - - - - -

23 22 21 20 19 18 17 16

- - - - - - - -

15 14 13 12 11 10 9 8

- - - - - - - NMI

7 6 5 4 3 2 1 0

INT7 INT6 INT5 INT4 INT3 INT2 INT1 INT0

32058K AVR32-01/12

112

AT32UC3A

17.6.3 External Interrupt Test

Name: TEST

Access Type: Read/Write

• NMI
If TEST_EN is 1, the value of this bit will be the value to the interrupt detector and the value on the pad will be ignored.

• INTn
If TEST_EN is 1, the value of this bit will be the value to the interrupt detector and the value on the pad will be ignored.

• TEST_EN
0: External interrupt test is disabled
1: External interrupt test is enabled

31 30 29 28 27 26 25 24

TEST_EN - - - - - - -

23 22 21 20 19 18 17 16

- - - - - - - -

15 14 13 12 11 10 9 8

- - - - - - - NMI

7 6 5 4 3 2 1 0

INT7 INT6 INT5 INT4 INT3 INT2 INT1 INT0

32058K AVR32-01/12

113

AT32UC3A

17.6.4 External Interrupt Scan

Name: SCAN

Access Type: Read/Write

• EN
0: Keypad scanning is disabled
1: Keypad scanning is enabled

• PRESC
Prescale select for the keypad scan rate:
Scan rate = 2(SCAN:PRESC+1) TRC
The RC clock period can be found in the Electrical Characteristics section.

• PIN
The index of the currently active scan pin. Writing to this bitfield has no effect.

31 30 29 28 27 26 25 24

- - - - - PIN[2:0]

23 22 21 20 19 18 17 16

- - - - - - - -

15 14 13 12 11 10 9 8

- - - PRESC[4:0]

7 6 5 4 3 2 1 0

- - - - - - - EN

32058K AVR32-01/12

114

AT32UC3A

17.6.5 External Interrupt Enable/Disable/Control

Name: EN/DIS/CTRL

Access Type: EN/DIS: Write-only

CTRL: Read-only

The bit interpretation is register specific:

• EN
0: No effect
1: Interrupt is enabled

• DIS
0: No effect
1: Interrupt is disabled

• CTRL
0: Interrupt is disabled
1: Interrupt is enabled

31 30 29 28 27 26 25 24

- - - - - - - -

23 22 21 20 19 18 17 16

- - - - - - - -

15 14 13 12 11 10 9 8

- - - - - - - NMI

7 6 5 4 3 2 1 0

INT7 INT6 INT5 INT4 INT3 INT2 INT1 INT0

32058K AVR32-01/12

115

AT32UC3A

18. Flash Controller (FLASHC)
Rev: 2.0.0.2

18.1 Features
• Controls flash block with dual read ports allowing staggered reads.
• Supports 0 and 1 wait state bus access.
• Allows interleaved burst reads for systems with one wait state, outputting one 32-bit word per

clock cycle.
• 32-bit HSB interface for reads from flash array and writes to page buffer.
• 32-bit PB interface for issuing commands to and configuration of the controller.
• 16 lock bits, each protecting a region consisting of (total number of pages in the flash block /

16) pages.
• Regions can be individually protected or unprotected.
• Additional protection of the Boot Loader pages.
• Supports reads and writes of general-purpose NVM bits.
• Supports reads and writes of additional NVM pages.
• Supports device protection through a security bit.
• Dedicated command for chip-erase, first erasing all on-chip volatile memories before erasing

flash and clearing security bit.
• Interface to Power Manager for power-down of flash-blocks in sleep mode.

18.2 Description
The flash controller (FLASHC) interfaces a flash block with the 32-bit internal HSB bus. Perfor-
mance for uncached systems with high clock-frequency and one wait state is increased by
placing words with sequential addresses in alternating flash subblocks. Having one read inter-
face per subblock allows them to be read in parallel. While data from one flash subblock is
being output on the bus, the sequential address is being read from the other flash subblock
and will be ready in the next clock cycle.

The controller also manages the programming, erasing, locking and unlocking sequences with
dedicated commands.

18.3 Product dependencies

18.3.1 Power management
The HFLASHC has two bus c locks connec ted : One H igh speed bus c lock
(CLK_FLASHC_HSB) and one Peripheral bus clock (CLK_FLASHC_PB). These clocks are
generated by the Power manager. Both clocks are turned on by default, but the user has to
ensure that CLK_FLASHC_HSB is not turned off before reading the flash or writing the page-
buffer and that CLK_FLASHC_PB is not turned of before accessing the FLASHC configuration
and control registers.

18.3.2 Interrupt
The FLASHC interrupt lines are connected to internal sources of the interrupt controller. Using
FLASHC interrutps requires the interrupt controller to be programmed first.

32058K AVR32-01/12

116

AT32UC3A

18.4 Functional description

18.4.1 Bus interfaces
The FLASHC has two bus interfaces, one High-Speed Bus (HSB) interface for reads from the
flash array and writes to the page buffer, and one Peripheral Bus (PB) interface for writing
commands and control to and reading status from the controller.

18.4.2 Memory organization
To maximize performance for high clock-frequency systems, FLASHC interfaces to a flash
block with two read ports. The flash block has several parameters, given by the design of the
flash block. Refer to the “Memories” chapter for the device-specific values of the parameters.

• p pages (FLASH_P)
• w words in each page and in the page buffer (FLASH_W)
• pw words in total (FLASH_PW)
• f general-purpose fuse bits (FLASH_F)
• 1 security fuse bit
• 1 User Page

18.4.3 User page
The User page is an additional page, outside the regular flash array, that can be used to store
various data, like calibration data and serial numbers. This page is not erased by regular chip
erase. The User page can only be written and erased by proprietary commands. Read
accesses to the User page is performed just as any other read access to the flash. The
address map of the User page is given in Figure 18-1.

18.4.4 Read operations
The FLASHC provides two different read modes:

• 0 wait state (0ws) for clock frequencies < (access time of the flash plus the bus delay)
• 1 wait state (1ws) for clock frequencies < (access time of the flash plus the bus delay)/2

Higher clock frequencies that would require more wait states are not supported by the flash
controller.

The programmer can select the wait states required by writing to the FWS field in the flash
control register (FCR). It is the responsibility of the programmer to select a number of wait
states compatible with the clock frequency and timing characteristics of the flash block.

In 0ws mode, only one of the two flash read ports is accessed. The other flash read port is idle.
In 1ws mode, both flash read ports are active. One read port reading the addressed word, and
the other reading the next sequential word.

If the clock frequency allows, the user should use 0ws mode, because this gives the lowest
power consumption for low-frequency systems as only one flash read port is read. Using 1ws
mode has a power/performance ratio approaching 0ws mode as the clock frequency
approaches twice the max frequency of 0ws mode. Using two flash read ports use twice the
power, but also give twice the performance.

32058K AVR32-01/12

117

AT32UC3A

The flash controller supports flash blocks with up to 2^21 word addresses, as displayed in Fig-
ure 18-1. Reading the memory space between address pw and 2^21-1 returns an undefined
result. The User page is permanently mapped to word address 2^21.

Figure 18-1. Memory map for the Flash memories

18.4.5 Quick Page Read
A dedicated command, Quick Page Read (QPR), is provided to read all words in an
addressed page. All bits in all words in this page are AND’ed together, returning a 1-bit result.
This result is placed in the Quick Page Read Result (QPRR) bit in Flash Status Register
(FSR). The QPR command is useful to check that a page is in an erased state. The QPR
instruction is much faster than performing the erased-page check using a regular software
subroutine.

18.4.6 Write page buffer operations
The internal memory area reserved for the embedded flash can also be written through a
write-only page buffer. The page buffer is addressed only by the address bits required to
address w words (since the page buffer is word addressable) and thus wrap around within the
internal memory area address space and appear to be repeated within it.

When writing to the page buffer, the PAGEN field in the FCMD register is updated with the
page number corresponding to page address of the latest word written into the page buffer.

Table 18-1. User row addresses

Memory type Start address, byte sized Size

Main array 0 pw words = 4pw bytes

User 2^23 = 8388608 128 words = 512 bytes

0

p w -1
p w

2 ^ 2 1 + 1 2 8

U
nu

se
d

Fl
as

h
da

ta
 a

rr
ay

U n u s e d
U s e r p a g e

F la s h w ith
e x t ra p a g e

2 ^ 2 1

A ll a d d r e s s e s a r e w o rd a d d re s s e s

32058K AVR32-01/12

118

AT32UC3A

The page buffer is also used for writes to the User page.

Write operations can be prevented by programming the Memory Protection Unit of the CPU.
Writing 8-bit and 16-bit data to the page buffer is not allowed and may lead to unpredictable
data corruption.

Page buffer write operations are performed with 4 wait states.

Writing to the page buffer can only change page buffer bits from one to zero, ie writing
0xaaaaaaaa to a page buffer location that has the value 0x00000000, will not change the page
buffer value. The only way to change a bit from zero to one, is to reset the entire page buffer
with the Clear Page Buffer command.

The page buffer is not automatically reset after a page write. The programmer should do this
manually by issuing the Clear Page Buffer flash command. This can be done after a page
write, or before the page buffer is loaded with data to be stored to the flash page.

Example: Writing a word into word address 130 of a flash with 128 words in the page buffer.
PAGEN will be updated with the value 1, and the word will be written into word 2 in the page
buffer.

18.4.7 Writing words to a page that is not completely erased
This can be used for EEPROM emulation, i.e. writes with granularity of one word instead of an
entire page. Only words that are in an completely erased state (0xFFFFFFFF) can be
changed. The procedure is as follows:

1. Clear page buffer
2. Write to the page buffer the result of the logical bitwise AND operation between the

contents of the flash page and the new data to write. Only words that were in an
erased state can be changed from the original page.

3. Write Page.

18.5 Flash commands
The FLASHC offers a command set to manage programming of the flash memory, locking and
unlocking of regions, and full flash erasing. See chapter 18.8.3 for a complete list of
commands.

To run a command, the field CMD of the Flash Command Register (FCMD) has to be written
with the command number. As soon as the FCMD register is written, the FRDY flag is auto-
matically cleared. Once the current command is complete, the FRDY flag is automatically set.
If an interrupt has been enabled by setting the bit FRDY in FCR, the interrupt line of the flash
controller is activated. All flash commands except for Quick Page Read (QPR) will generate an
interrupt request upon completion if FRDY is set.

After a command has been written to FCMD, the programming algorithm should wait until the
command has been executed before attempting to read instructions or data from the flash or
writing to the page buffer, as the flash will be busy. The waiting can be performed either by
polling the Flash Status Register (FSR) or by waiting for the flash ready interrupt. The com-
mand written to FCMD is initiated on the first clock cycle where the HSB bus interface in
FLASHC is IDLE. The user must make sure that the access pattern to the FLASHC HSB inter-
face contains an IDLE cycle so that the command is allowed to start. Make sure that no bus
masters such as DMA controllers are performing endless burst transfers from the flash. Also,
make sure that the CPU does not perform endless burst transfers from flash. This is done by

32058K AVR32-01/12

119

AT32UC3A

letting the CPU enter sleep mode after writing to FCMD, or by polling FSR for command com-
pletion. This polling will result in an access pattern with IDLE HSB cycles.

All the commands are protected by the same keyword, which has to be written in the eight
highest bits of the FCMD register. Writing FCMD with data that does not contain the correct
key and/or with an invalid command has no effect on the flash memory; however, the PROGE
flag is set in the Flash Status Register (FSR). This flag is automatically cleared by a read
access to the FSR register.

Writing a command to FCMD while another command is being executed has no effect on the
flash memory; however, the PROGE flag is set in the Flash Status Register (FSR). This flag is
automatically cleared by a read access to the FSR register.

If the current command writes or erases a page in a locked region, or a page protected by the
BOOTPROT fuses, the command has no effect on the flash memory; however, the LOCKE
flag is set in the FSR register. This flag is automatically cleared by a read access to the FSR
register.

18.5.1 Write/erase page operation
Flash technology requires that an erase must be done before programming. The entire flash
can be erased by an Erase All command. Alternatively, pages can be individually erased by
the Erase Page command.

The User page can be written and erased using the mechanisms described in this chapter.

After programming, the page can be locked to prevent miscellaneous write or erase
sequences. Locking is performed on a per-region basis, so locking a region locks all pages
inside the region. Additional protection is provided for the lowermost address space of the
flash. This address space is allocated for the Boot Loader, and is protected both by the lock
bit(s) corresponding to this address space, and the BOOTPROT[2:0] fuses.

Data to be written are stored in an internal buffer called page buffer. The page buffer contains
w words. The page buffer wraps around within the internal memory area address space and
appears to be repeated by the number of pages in it. Writing of 8-bit and 16-bit data to the
page buffer is not allowed and may lead to unpredictable data corruption.

Data must be written to the page buffer before the programming command is written to the
Flash Command Register FCMD. The sequence is as follows:

• Reset the page buffer with the Clear Page Buffer command.
• Fill the page buffer with the desired contents, using only 32-bit access.
• Programming starts as soon as the programming key and the programming command are

written to the Flash Command Register. The PAGEN field in the Flash Command Register
(FCMD) must contain the address of the page to write. PAGEN is automatically updated
when writing to the page buffer, but can also be written to directly. The FRDY bit in the
Flash Status Register (FSR) is automatically cleared when the page write operation starts.

• When programming is completed, the bit FRDY in the Flash Status Register (FSR) is set. If
an interrupt was enabled by setting the bit FRDY in FCR, the interrupt line of the flash
controller is set.

Two errors can be detected in the FSR register after a programming sequence:

• Programming Error: A bad keyword and/or an invalid command have been written in the
FCMD register.

32058K AVR32-01/12

120

AT32UC3A

• Lock Error: The page to be programmed belongs to a locked region. A command must be
executed to unlock the corresponding region before programming can start.

18.5.2 Erase All operation
The entire memory is erased if the Erase All command (EA) is written to the Flash Command
Register (FCMD). Erase All erases all bits in the flash array. The User page is not erased. All
flash memory locations, the general-purpose fuse bits, and the security bit are erased (reset to
0xFF) after an Erase All.

The EA command also ensures that all volatile memories, such as register file and RAMs, are
erased before the security bit is erased.

Erase All operation is allowed only if no regions are locked, and the BOOTPROT fuses are
programmed with a region size of 0. Thus, if at least one region is locked, the bit LOCKE in
FSR is set and the command is cancelled. If the bit LOCKE has been written to 1 in FCR, the
interrupt line rises.

When the command is complete, the bit FRDY bit in the Flash Status Register (FSR) is set. If
an interrupt has been enabled by setting the bit FRDY in FCR, the interrupt line of the flash
controller is set. Two errors can be detected in the FSR register after issuing the command:

• Programming Error: A bad keyword and/or an invalid command have been written in the
FCMD register.

• Lock Error: At least one lock region to be erased is protected, or BOOTPROT is different
from 0. The erase command has been refused and no page has been erased. A Clear Lock
Bit command must be executed previously to unlock the corresponding lock regions.

18.5.3 Region lock bits
The flash block has p pages, and these pages are grouped into 16 lock regions, each region
containing p/16 pages. Each region has a dedicated lock bit preventing writing and erasing
pages in the region. After production, the device may have some regions locked. These locked
regions are reserved for a boot or default application. Locked regions can be unlocked to be
erased and then programmed with another application or other data.

To lock or unlock a region, the commands Lock Region Containing Page (LP) and Unlock
Region Containing Page (UP) are provided. Writing one of these commands, together with the
number of the page whose region should be locked/unlocked, performs the desired operation.

One error can be detected in the FSR register after issuing the command:

• Programming Error: A bad keyword and/or an invalid command have been written in the
FCMD register.

The lock bits are implemented using the lowest 16 general-purpose fuse bits. This means that
lock bits can also be set/cleared using the commands for writing/erasing general-purpose fuse
bits, see chapter 18.6. The general-purpose bit being in an erased (1) state means that the
region is unlocked.

The lowermost pages in the Flash can additionally be protected by the BOOTPROT fuses, see
Section 18.6.

18.6 General-purpose fuse bits
Each flash block has a number of general-purpose fuse bits that the application programmer
can use freely. The fuse bits can be written and erased using dedicated commands, and read

32058K AVR32-01/12

121

AT32UC3A

through a dedicated Peripheral Bus address. Some of the general-purpose fuse bits are
reserved for special purposes, and should not be used for other functions.:

The BOOTPROT fuses protects the following address space for the Boot Loader:

To erase or write a general-purpose fuse bit, the commands Write General-Purpose Fuse Bit
(WGPB) and Erase General-Purpose Fuse Bit (EGPB) are provided. Writing one of these

Table 18-2. General-purpose fuses with special functions

General-
Purpose fuse
number Name Usage

15:0 LOCK Region lock bits.

16 EPFL

External Privileged Fetch Lock. Used to prevent the CPU from
fetching instructions from external memories when in privileged
mode. This bit can only be changed when the security bit is
cleared. The address range corresponding to external
memories is device-specific, and not known to the flash
controller. This fuse bit is simply routed out of the CPU or bus
system, the flash controller does not treat this fuse in any
special way, except that it can not be altered when the security
bit is set.
If the security bit is set, only an external JTAG Chip Erase can
clear EPFL. No internal commands can alter EPFL if the
security bit is set.
When the fuse is erased (i.e. "1"), the CPU can execute
instructions fetched from external memories. When the fuse is
programmed (i.e. "0"), instructions can not be executed from
external memories.

19:17 BOOTPROT

Used to select one of four different bootloader sizes. Pages
included in the bootloader area can not be erased or
programmed except by a JTAG chip erase. BOOTPROT can
only be changed when the security bit is cleared.
If the security bit is set, only an external JTAG Chip Erase can
clear BOOTPROT, and thereby allow the pages protected by
BOOTPROT to be programmed. No internal commands can
alter BOOTPROT or the pages protected by BOOTPROT if the
security bit is set.

Table 18-3. Boot Loader area specified by BOOTPROT

BOOTPROT
Pages protected by
BOOTPROT

Size of protected
memory

7 None 0

6 0-1 1kByte

5 0-3 2kByte

4 0-7 4kByte

3 0-15 8kByte

2 0-31 16kByte

1 0-63 32kByte

0 0-127 64kByte

32058K AVR32-01/12

122

AT32UC3A

commands, together with the number of the fuse to write/erase, performs the desired
operation.

An entire General-Purpose Fuse byte can be written at a time by using the Program GP Fuse
Byte (PGPFB) instruction. A PGPFB to GP fuse byte 2 is not allowed if the flash is locked by
the security bit. The PFB command is issued with a parameter in the PAGEN field:

• PAGEN[2:0] - byte to write
• PAGEN[10:3] - Fuse value to write

All General-Purpose fuses can be erased by the Erase All General-Purpose fuses (EAGP)
command. An EAGP command is not allowed if the flash is locked by the security bit.

Two errors can be detected in the FSR register after issuing these commands:

• Programming Error: A bad keyword and/or an invalid command have been written in the
FCMD register.

• Lock Error: A write or erase of any of the special-function fuse bits in Table 18-3 was
attempted while the flash is locked by the security bit.

The lock bits are implemented using the lowest 16 general-purpose fuse bits. This means that
the 16 lowest general-purpose fuse bits can also be written/erased using the commands for
locking/unlocking regions, see Section 18.5.3.

18.7 Security bit
The security bit allows the entire chip to be locked from external JTAG or other debug access
for code security. The security bit can be written by a dedicated command, Set Security Bit
(SSB). Once set, the only way to clear the security bit is through the JTAG Chip Erase
command.

Once the Security bit is set, the following Flash controller commands will be unavailable and
return a lock error if attempted:

• Write General-Purpose Fuse Bit (WGPB) to BOOTPROT or EPFL fuses
• Erase General-Purpose Fuse Bit (EGPB) to BOOTPROT or EPFL fuses
• Program General-Purpose Fuse Byte (PGPFB) of fuse byte 2
• Erase All General-Purpose Fuses (EAGPF)

One error can be detected in the FSR register after issuing the command:

• Programming Error: A bad keyword and/or an invalid command have been written in the
FCMD register.

32058K AVR32-01/12

123

AT32UC3A

18.8 User interface

18.8.1 Address map
The following addresses are used by the FLASHC. All offsets are relative to the base address
allocated to the flash controller.

(*) The value of the Lock bits is dependent of their programmed state. All other bits in FSR are
0. All bits in FGPFR and FCFR are dependent on the programmed state of the fuses they map
to. Any bits in these registers not mapped to a fuse read 0.

Table 18-4. Flash controller register mapping

Offset Register Name Access
Reset
state

0x0 Flash Control Register FCR R/W 0

0x4 Flash Command Register FCMD R/W 0

0x8 Flash Status Register FSR R/W 0 (*)

0xc Flash General Purpose Fuse Register Hi FGPFRHI R NA (*)

0x10 Flash General Purpose Fuse Register Lo FGPFRLO R NA (*)

32058K AVR32-01/12

124

AT32UC3A

18.8.2 Flash Control Register (FCR)
Offset: 0x0

FRDY: Flash Ready Interrupt Enable

0: Flash Ready does not generate an interrupt.

1: Flash Ready generates an interrupt.

LOCKE: Lock Error Interrupt Enable

0: Lock Error does not generate an interrupt.

1: Lock Error generates an interrupt.

PROGE: Programming Error Interrupt Enable

0: Programming Error does not generate an interrupt.

1: Programming Error generates an interrupt.

FWS: Flash Wait State

0: The flash is read with 0 wait states.

1: The flash is read with 1 wait state.

SASD: Sense Amplifier Sample Disable

0: The sense amplifiers in the flash are in sampling mode.

1: The sense amplifiers in the flash are permanently enabled. Consumes more power.

31 30 29 28 27 26 25 24

- - - - - - - -

23 22 21 20 19 18 17 16

- - - - - - - -

15 14 13 12 11 10 9 8

- - - - - - - SASD

7 6 5 4 3 2 1 0

- FWS - - PROGE LOCKE - FRDY

32058K AVR32-01/12

125

AT32UC3A

18.8.3 Flash Command Register (FCMD)
Offset: 0x4

The FCMD can not be written if the flash is in the process of performing a flash command.
Doing so will cause the FCR write to be ignored, and the PROGE bit to be set.

CMD: Command

This field defines the flash command. Issuing any unused command will cause the Program-
ming Error flag to be set, and the corresponding interrupt to be requested if the PROGE bit in
FCR is set.

31 30 29 28 27 26 25 24

KEY

23 22 21 20 19 18 17 16

PAGEN [15:8]

15 14 13 12 11 10 9 8

PAGEN [7:0]

7 6 5 4 3 2 1 0

- - CMD

Table 18-5. Set of commands

Command Value Mnemonic

No operation 0 NOP

Write Page 1 WP

Erase Page 2 EP

Clear Page Buffer 3 CPB

Lock region containing given Page 4 LP

Unlock region containing given Page 5 UP

Erase All 6 EA

Write General-Purpose Fuse Bit 7 WGPB

Erase General-Purpose Fuse Bit 8 EGPB

Set Security Bit 9 SSB

Program GP Fuse Byte 10 PGPFB

Erase All GPFuses 11 EAGPF

Quick Page Read 12 QPR

Write User Page 13 WUP

Erase User Page 14 EUP

Quick Page Read User Page 15 QPRUP

32058K AVR32-01/12

126

AT32UC3A

PAGEN: Page number

The PAGEN field is used to address a page or fuse bit for certain operations. In order to sim-
plify programming, the PAGEN field is automatically updated every time the page buffer is
written to. For every page buffer write, the PAGEN field is updated with the page number of
the address being written to. Hardware automatically masks writes to the PAGEN field so that
only bits representing valid page numbers can be written, all other bits in PAGEN are always
0. As an example, in a flash with 1024 pages (page 0 - page 1023), bits 15:10 will always be 0.

KEY: Write protection key

This field should be written with the value 0xA5 to enable the command defined by the bits of
the register. If the field is written with a different value, the write is not performed and no action
is started.

This field always reads as 0.

Table 18-6. Semantic of PAGEN field in different commands

Command PAGEN description

No operation Not used

Write Page The number of the page to write

Clear Page Buffer Not used

Lock region containing given Page Page number whose region should be locked

Unlock region containing given Page Page number whose region should be unlocked

Erase All Not used

Write General-Purpose Fuse Bit GPFUSE #

Erase General-Purpose Fuse Bit GPFUSE #

Set Security Bit Not used

Program GP Fuse Byte WriteData[7:0], ByteAddress[2:0]

Erase All GP Fuses Not used

Quick Page Read Page number

Write User Page Not used

Erase User Page Not used

Quick Page Read User Page Not used

32058K AVR32-01/12

127

AT32UC3A

18.8.4 Flash Status Register (FSR)
Offset: 0x08

FRDY: Flash Ready Status

0: The flash controller is busy and the application must wait before running a new command.

1: The flash controller is ready to run a new command.

LOCKE: Lock Error Status

Automatically cleared when FSR is read.

0: No programming of at least one locked lock region has happened since the last read of
FSR.

1: Programming of at least one locked lock region has happened since the last read of FSR.

PROGE: Programming Error Status

Automatically cleared when FSR is read.

0: No invalid commands and no bad keywords were written in the Flash Command Register
FCMD.

1: An invalid command and/or a bad keyword was/were written in the Flash Command Regis-
ter FCMD.

SECURITY: Security Bit Status

0: The security bit is inactive.

1: The security bit is active.

QPRR: Quick Page Read Result

0: The result is zero, i.e. the page is not erased.

1: The result is one, i.e. the page is erased.

Automatically cleared when FSR is read.

31 30 29 28 27 26 25 24

LOCK15 LOCK14 LOCK13 LOCK12 LOCK11 LOCK10 LOCK9 LOCK8

23 22 21 20 19 18 17 16

LOCK7 LOCK6 LOCK5 LOCK4 LOCK3 LOCK2 LOCK1 LOCK0

15 14 13 12 11 10 9 8

FSZ - - - -

7 6 5 4 3 2 1 0

- - QPRR SECURITY PROGE LOCKE - FRDY

32058K AVR32-01/12

128

AT32UC3A

FSZ: Flash Size

The size of the flash. Not all device families will provide all flash sizes indicated in the table.

LOCKx: Lock Region x Lock Status

0: The corresponding lock region is not locked.

1: The corresponding lock region is locked.

Table 18-7. Flash size

FSZ Flash Size

0 32 KByte

1 64 kByte

2 128 kByte

3 256 kByte

4 384 kByte

5 512 kByte

6 768 kByte

7 1024 kByte

32058K AVR32-01/12

129

AT32UC3A

18.8.5 Flash General Purpose Fuse Register High (FGPFRHI)
Offset: 0x0C

This register is only used in systems with more than 32 GP fuses.

GPFxx: General Purpose Fuse xx

0: The fuse has a written/programmed state.

1: The fuse has an erased state.

31 30 29 28 27 26 25 24

GPF63 GPF62 GPF61 GPF60 GPF59 GPF58 GPF57 GPF56

23 22 21 20 19 18 17 16

GPF55 GPF54 GPF53 GPF52 GPF51 GPF50 GPF49 GPF48

15 14 13 12 11 10 9 8

GPF47 GPF46 GPF45 GPF44 GPF43 GPF42 GPF41 GPF40

7 6 5 4 3 2 1 0

GPF39 GPF38 GPF37 GPF36 GPF35 GPF34 GPF33 GPF32

32058K AVR32-01/12

130

AT32UC3A

18.8.6 Flash General Purpose Fuse Register Low (FGPFRLO)
Offset: 0x10

GPFxx: General Purpose Fuse xx

0: The fuse has a written/programmed state.

1: The fuse has an erased state.

31 30 29 28 27 26 25 24

GPF31 GPF30 GPF29 GPF28 GPF27 GPF26 GPF25 GPF24

23 22 21 20 19 18 17 16

GPF23 GPF22 GPF21 GPF20 GPF19 GPF18 GPF17 GPF16

15 14 13 12 11 10 9 8

GPF15 GPF14 GPF13 GPF12 GPF11 GPF10 GPF09 GPF08

7 6 5 4 3 2 1 0

GPF07 GPF06 GPF05 GPF04 GPF03 GPF02 GPF01 GPF00

32058K AVR32-01/12

131

AT32UC3A

32058K AVR32-01/12

132

AT32UC3A

19. HSB Bus Matrix (HMATRIX)

Rev: 2.3.0.1

19.1 Features
• User Interface on peripheral bus
• Configurable Number of Masters (Up to sixteen)
• Configurable Number of Slaves (Up to sixteen)
• One Decoder for Each Master
• Three Different Memory Mappings for Each Master (Internal and External boot, Remap)
• One Remap Function for Each Master
• Programmable Arbitration for Each Slave

– Round-Robin
– Fixed Priority

• Programmable Default Master for Each Slave
– No Default Master
– Last Accessed Default Master
– Fixed Default Master

• One Cycle Latency for the First Access of a Burst
• Zero Cycle Latency for Default Master
• One Special Function Register for Each Slave (Not dedicated)

19.2 Description
The Bus Matrix implements a multi-layer bus structure, that enables parallel access paths
between multiple High Speed Bus (HSB) masters and slaves in a system, thus increasing the
overall bandwidth. The Bus Matrix interconnects up to 16 HSB Masters to up to 16 HSB Slaves.
The normal latency to connect a master to a slave is one cycle except for the default master of
the accessed slave which is connected directly (zero cycle latency). The Bus Matrix provides 16
Special Function Registers (SFR) that allow the Bus Matrix to support application specific
features.

19.3 Memory Mapping
The Bus Matrix provides one decoder for every HSB Master Interface. The decoder offers each
HSB Master several memory mappings. In fact, depending on the product, each memory area
may be assigned to several slaves. Booting at the same address while using different HSB
slaves (i.e. external RAM, internal ROM or internal Flash, etc.) becomes possible.

The Bus Matrix user interface provides Master Remap Control Register (MRCR) that performs
remap action for every master independently.

19.4 Special Bus Granting Mechanism
The Bus Matrix provides some speculative bus granting techniques in order to anticipate access
requests from some masters. This mechanism reduces latency at first access of a burst or single
transfer. This bus granting mechanism sets a different default master for every slave.

At the end of the current access, if no other request is pending, the slave remains connected to
its associated default master. A slave can be associated with three kinds of default masters: no
default master, last access master and fixed default master.

32058K AVR32-01/12

133

AT32UC3A

19.4.1 No Default Master

At the end of the current access, if no other request is pending, the slave is disconnected from
all masters. No Default Master suits low-power mode.

19.4.2 Last Access Master

At the end of the current access, if no other request is pending, the slave remains connected to
the last master that performed an access request.

19.4.3 Fixed Default Master

At the end of the current access, if no other request is pending, the slave connects to its fixed
default master. Unlike last access master, the fixed master does not change unless the user
modifies it by a software action (field FIXED_DEFMSTR of the related SCFG).

To change from one kind of default master to another, the Bus Matrix user interface provides the
Slave Configuration Registers, one for each slave, that set a default master for each slave. The
Slave Configuration Register contains two fields: DEFMSTR_TYPE and FIXED_DEFMSTR. The
2-bit DEFMSTR_TYPE field selects the default master type (no default, last access master, fixed
default master), whereas the 4-bit FIXED_DEFMSTR field selects a fixed default master pro-
vided that DEFMSTR_TYPE is set to fixed default master. Please refer to the Bus Matrix user
interface description.

19.5 Arbitration
The Bus Matrix provides an arbitration mechanism that reduces latency when conflict cases
occur, i.e. when two or more masters try to access the same slave at the same time. One arbiter
per HSB slave is provided, thus arbitrating each slave differently.

The Bus Matrix provides the user with the possibility of choosing between 2 arbitration types for
each slave:

1. Round-Robin Arbitration (default)
2. Fixed Priority Arbitration

This choice is made via the field ARBT of the Slave Configuration Registers (SCFG).

Each algorithm may be complemented by selecting a default master configuration for each
slave.

When a re-arbitration must be done, specific conditions apply. See Section 19.5.1 ”Arbitration
Rules” on page 133.

19.5.1 Arbitration Rules

Each arbiter has the ability to arbitrate between two or more different master requests. In order
to avoid burst breaking and also to provide the maximum throughput for slave interfaces, arbitra-
tion may only take place during the following cycles:

1. Idle Cycles: When a slave is not connected to any master or is connected to a master
which is not currently accessing it.

2. Single Cycles: When a slave is currently doing a single access.
3. End of Burst Cycles: When the current cycle is the last cycle of a burst transfer. For

defined length burst, predicted end of burst matches the size of the transfer but is man-
aged differently for undefined length burst. See Section “19.5.1.1” on page 134.

32058K AVR32-01/12

134

AT32UC3A

4. Slot Cycle Limit: When the slot cycle counter has reached the limit value indicating that
the current master access is too long and must be broken. See Section “19.5.1.2” on
page 134.

19.5.1.1 Undefined Length Burst Arbitration

In order to avoid long slave handling during undefined length bursts (INCR), the Bus Matrix pro-
vides specific logic in order to re-arbitrate before the end of the INCR transfer. A predicted end
of burst is used as a defined length burst transfer and can be selected from among the following
five possibilities:

1. Infinite: No predicted end of burst is generated and therefore INCR burst transfer will
never be broken.

2. One beat bursts: Predicted end of burst is generated at each single transfer inside the
INCP transfer.

3. Four beat bursts: Predicted end of burst is generated at the end of each four beat
boundary inside INCR transfer.

4. Eight beat bursts: Predicted end of burst is generated at the end of each eight beat
boundary inside INCR transfer.

5. Sixteen beat bursts: Predicted end of burst is generated at the end of each sixteen beat
boundary inside INCR transfer.

This selection can be done through the field ULBT of the Master Configuration Registers
(MCFG).

19.5.1.2 Slot Cycle Limit Arbitration

The Bus Matrix contains specific logic to break long accesses, such as very long bursts on a
very slow slave (e.g., an external low speed memory). At the beginning of the burst access, a
counter is loaded with the value previously written in the SLOT_CYCLE field of the related Slave
Configuration Register (SCFG) and decreased at each clock cycle. When the counter reaches
zero, the arbiter has the ability to re-arbitrate at the end of the current byte, half word or word
transfer.

19.5.2 Round-Robin Arbitration

This algorithm allows the Bus Matrix arbiters to dispatch the requests from different masters to
the same slave in a round-robin manner. If two or more master requests arise at the same time,
the master with the lowest number is first serviced, then the others are serviced in a round-robin
manner.

There are three round-robin algorithms implemented:

• Round-Robin arbitration without default master
• Round-Robin arbitration with last default master
• Round-Robin arbitration with fixed default master

19.5.2.1 Round-Robin Arbitration without Default Master

This is the main algorithm used by Bus Matrix arbiters. It allows the Bus Matrix to dispatch
requests from different masters to the same slave in a pure round-robin manner. At the end of
the current access, if no other request is pending, the slave is disconnected from all masters.
This configuration incurs one latency cycle for the first access of a burst. Arbitration without
default master can be used for masters that perform significant bursts.

32058K AVR32-01/12

135

AT32UC3A

19.5.2.2 Round-Robin Arbitration with Last Default Master

This is a biased round-robin algorithm used by Bus Matrix arbiters. It allows the Bus Matrix to
remove the one latency cycle for the last master that accessed the slave. In fact, at the end of
the current transfer, if no other master request is pending, the slave remains connected to the
last master that performed the access. Other non privileged masters still get one latency cycle if
they want to access the same slave. This technique can be used for masters that mainly perform
single accesses.

19.5.2.3 Round-Robin Arbitration with Fixed Default Master

This is another biased round-robin algorithm. It allows the Bus Matrix arbiters to remove the one
latency cycle for the fixed default master per slave. At the end of the current access, the slave
remains connected to its fixed default master. Every request attempted by this fixed default mas-
ter will not cause any latency whereas other non privileged masters will still get one latency
cycle. This technique can be used for masters that mainly perform single accesses.

19.5.3 Fixed Priority Arbitration

This algorithm allows the Bus Matrix arbiters to dispatch the requests from different masters to
the same slave by using the fixed priority defined by the user. If two or more master requests are
active at the same time, the master with the highest priority number is serviced first. If two or
more master requests with the same priority are active at the same time, the master with the
highest number is serviced first.

For each slave, the priority of each master may be defined through the Priority Registers for
Slaves (PRAS and PRBS).

19.6 Slave and Master assignation
The index number assigned to Bus Matrix slaves and masters are described in Memories
chapter.

32058K AVR32-01/12

136

AT32UC3A

19.7 User Interface

Table 19-1. Register Mapping

Offset Register Name Access Reset Value

0x0000 Master Configuration Register 0 MCFG0 Read/Write 0x00000002

0x0004 Master Configuration Register 1 MCFG1 Read/Write 0x00000002

0x0008 Master Configuration Register 2 MCFG2 Read/Write 0x00000002

0x000C Master Configuration Register 3 MCFG3 Read/Write 0x00000002

0x0010 Master Configuration Register 4 MCFG4 Read/Write 0x00000002

0x0014 Master Configuration Register 5 MCFG5 Read/Write 0x00000002

0x0018 Master Configuration Register 6 MCFG6 Read/Write 0x00000002

0x001C Master Configuration Register 7 MCFG7 Read/Write 0x00000002

0x0020 Master Configuration Register 8 MCFG8 Read/Write 0x00000002

0x0024 Master Configuration Register 9 MCFG9 Read/Write 0x00000002

0x0028 Master Configuration Register 10 MCFG10 Read/Write 0x00000002

0x002C Master Configuration Register 11 MCFG11 Read/Write 0x00000002

0x0030 Master Configuration Register 12 MCFG12 Read/Write 0x00000002

0x0034 Master Configuration Register 13 MCFG13 Read/Write 0x00000002

0x0038 Master Configuration Register 14 MCFG14 Read/Write 0x00000002

0x003C Master Configuration Register 15 MCFG15 Read/Write 0x00000002

0x0040 Slave Configuration Register 0 SCFG0 Read/Write 0x00000010

0x0044 Slave Configuration Register 1 SCFG1 Read/Write 0x00000010

0x0048 Slave Configuration Register 2 SCFG2 Read/Write 0x00000010

0x004C Slave Configuration Register 3 SCFG3 Read/Write 0x00000010

0x0050 Slave Configuration Register 4 SCFG4 Read/Write 0x00000010

0x0054 Slave Configuration Register 5 SCFG5 Read/Write 0x00000010

0x0058 Slave Configuration Register 6 SCFG6 Read/Write 0x00000010

0x005C Slave Configuration Register 7 SCFG7 Read/Write 0x00000010

0x0060 Slave Configuration Register 8 SCFG8 Read/Write 0x00000010

0x0064 Slave Configuration Register 9 SCFG9 Read/Write 0x00000010

0x0068 Slave Configuration Register 10 SCFG10 Read/Write 0x00000010

0x006C Slave Configuration Register 11 SCFG11 Read/Write 0x00000010

0x0070 Slave Configuration Register 12 SCFG12 Read/Write 0x00000010

0x0074 Slave Configuration Register 13 SCFG13 Read/Write 0x00000010

0x0078 Slave Configuration Register 14 SCFG14 Read/Write 0x00000010

0x007C Slave Configuration Register 15 SCFG15 Read/Write 0x00000010

0x0080 Priority Register A for Slave 0 PRAS0 Read/Write 0x00000000

0x0084 Priority Register B for Slave 0 PRBS0 Read/Write 0x00000000

0x0088 Priority Register A for Slave 1 PRAS1 Read/Write 0x00000000

32058K AVR32-01/12

137

AT32UC3A

0x008C Priority Register B for Slave 1 PRBS1 Read/Write 0x00000000

0x0090 Priority Register A for Slave 2 PRAS2 Read/Write 0x00000000

0x0094 Priority Register B for Slave 2 PRBS2 Read/Write 0x00000000

0x0098 Priority Register A for Slave 3 PRAS3 Read/Write 0x00000000

0x009C Priority Register B for Slave 3 PRBS3 Read/Write 0x00000000

0x00A0 Priority Register A for Slave 4 PRAS4 Read/Write 0x00000000

0x00A4 Priority Register B for Slave 4 PRBS4 Read/Write 0x00000000

0x00A8 Priority Register A for Slave 5 PRAS5 Read/Write 0x00000000

0x00AC Priority Register B for Slave 5 PRBS5 Read/Write 0x00000000

0x00B0 Priority Register A for Slave 6 PRAS6 Read/Write 0x00000000

0x00B4 Priority Register B for Slave 6 PRBS6 Read/Write 0x00000000

0x00B8 Priority Register A for Slave 7 PRAS7 Read/Write 0x00000000

0x00BC Priority Register B for Slave 7 PRBS7 Read/Write 0x00000000

0x00C0 Priority Register A for Slave 8 PRAS8 Read/Write 0x00000000

0x00C4 Priority Register B for Slave 8 PRBS8 Read/Write 0x00000000

0x00C8 Priority Register A for Slave 9 PRAS9 Read/Write 0x00000000

0x00CC Priority Register B for Slave 9 PRBS9 Read/Write 0x00000000

0x00D0 Priority Register A for Slave 10 PRAS10 Read/Write 0x00000000

0x00D4 Priority Register B for Slave 10 PRBS10 Read/Write 0x00000000

0x00D8 Priority Register A for Slave 11 PRAS11 Read/Write 0x00000000

0x00DC Priority Register B for Slave 11 PRBS11 Read/Write 0x00000000

0x00E0 Priority Register A for Slave 12 PRAS12 Read/Write 0x00000000

0x00E4 Priority Register B for Slave 12 PRBS12 Read/Write 0x00000000

0x00E8 Priority Register A for Slave 13 PRAS13 Read/Write 0x00000000

0x00EC Priority Register B for Slave 13 PRBS13 Read/Write 0x00000000

0x00F0 Priority Register A for Slave 14 PRAS14 Read/Write 0x00000000

0x00F4 Priority Register B for Slave 14 PRBS14 Read/Write 0x00000000

0x00F8 Priority Register A for Slave 15 PRAS15 Read/Write 0x00000000

0x00FC Priority Register B for Slave 15 PRBS15 Read/Write 0x00000000

0x0100 Master Remap Control Register MRCR Read/Write 0x00000000

0x0104 - 0x010C Reserved – – –

0x0110 Special Function Register 0 SFR0 Read/Write –

0x0114 Special Function Register 1 SFR1 Read/Write –

0x0118 Special Function Register 2 SFR2 Read/Write –

0x011C Special Function Register 3 SFR3 Read/Write –

0x0120 Special Function Register 4 SFR4 Read/Write –

Table 19-1. Register Mapping (Continued)

Offset Register Name Access Reset Value

32058K AVR32-01/12

138

AT32UC3A

0x0124 Special Function Register 5 SFR5 Read/Write –

0x0128 Special Function Register 6 SFR6 Read/Write –

0x012C Special Function Register 7 SFR7 Read/Write –

0x0130 Special Function Register 8 SFR8 Read/Write –

0x0134 Special Function Register 9 SFR9 Read/Write –

0x0138 Special Function Register 10 SFR10 Read/Write –

0x013C Special Function Register 11 SFR11 Read/Write –

0x0140 Special Function Register 12 SFR12 Read/Write –

0x0144 Special Function Register 13 SFR13 Read/Write –

0x0148 Special Function Register 14 SFR14 Read/Write –

0x014C Special Function Register 15 SFR15 Read/Write –

0x0150 - 0x01F8 Reserved – – –

Table 19-1. Register Mapping (Continued)

Offset Register Name Access Reset Value

32058K AVR32-01/12

139

AT32UC3A

19.7.1 Bus Matrix Master Configuration Registers

Register Name: MCFG0...MCFG15

Access Type: Read/Write

• ULBT: Undefined Length Burst Type
0: Infinite Length Burst

No predicted end of burst is generated and therefore INCR bursts coming from this master cannot be broken.

1: Single Access

The undefined length burst is treated as a succession of single accesses, allowing re-arbitration at each beat of the INCR
burst.

2: Four Beat Burst

The undefined length burst is split into a four-beat burst, allowing re-arbitration at each four-beat burst end.

3: Eight Beat Burst

The undefined length burst is split into an eight-beat burst, allowing re-arbitration at each eight-beat burst end.

4: Sixteen Beat Burst

The undefined length burst is split into a sixteen-beat burst, allowing re-arbitration at each sixteen-beat burst end.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
– – – – – ULBT

32058K AVR32-01/12

140

AT32UC3A

19.7.2 Bus Matrix Slave Configuration Registers

Register Name: SCFG0...SCFG15

Access Type: Read/Write

• SLOT_CYCLE: Maximum Number of Allowed Cycles for a Burst
When the SLOT_CYCLE limit is reached for a burst, it may be broken by another master trying to access this slave.

This limit has been placed to avoid locking a very slow slave when very long bursts are used.

This limit must not be very small. Unreasonably small values break every burst and the Bus Matrix arbitrates without per-
forming any data transfer. 16 cycles is a reasonable value for SLOT_CYCLE.

• DEFMSTR_TYPE: Default Master Type
0: No Default Master

At the end of the current slave access, if no other master request is pending, the slave is disconnected from all masters.

This results in a one cycle latency for the first access of a burst transfer or for a single access.

1: Last Default Master

At the end of the current slave access, if no other master request is pending, the slave stays connected to the last master
having accessed it.

This results in not having one cycle latency when the last master tries to access the slave again.

2: Fixed Default Master

At the end of the current slave access, if no other master request is pending, the slave connects to the fixed master the
number that has been written in the FIXED_DEFMSTR field.

This results in not having one cycle latency when the fixed master tries to access the slave again.

• FIXED_DEFMSTR: Fixed Default Master
This is the number of the Default Master for this slave. Only used if DEFMSTR_TYPE is 2. Specifying the number of a mas-
ter which is not connected to the selected slave is equivalent to setting DEFMSTR_TYPE to 0.

• ARBT: Arbitration Type
0: Round-Robin Arbitration

1: Fixed Priority Arbitration

31 30 29 28 27 26 25 24
– – – – – – – ARBT

23 22 21 20 19 18 17 16
– – FIXED_DEFMSTR DEFMSTR_TYPE

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
SLOT_CYCLE

32058K AVR32-01/12

141

AT32UC3A

19.7.3 Bus Matrix Priority Registers A For Slaves

Register Name: PRAS0...PRAS15

Access Type: Read/Write

• MxPR: Master x Priority
Fixed priority of Master x for accessing the selected slave. The higher the number, the higher the priority.

31 30 29 28 27 26 25 24
M7PR M6PR

23 22 21 20 19 18 17 16
M5PR M4PR

15 14 13 12 11 10 9 8
M3PR M2PR

7 6 5 4 3 2 1 0
M1PR M0PR

32058K AVR32-01/12

142

AT32UC3A

19.7.4 Bus Matrix Priority Registers B For Slaves

Register Name: PRBS0...PRBS15

Access Type: Read/Write

• MxPR: Master x Priority
Fixed priority of Master x for accessing the selected slave. The higher the number, the higher the priority.

31 30 29 28 27 26 25 24
M15PR M14PR

23 22 21 20 19 18 17 16
M13PR M12PR

15 14 13 12 11 10 9 8
M11PR M10PR

7 6 5 4 3 2 1 0
M9PR M8PR

32058K AVR32-01/12

143

AT32UC3A

19.7.5 Bus Matrix Master Remap Control Register

Register Name: MRCR

Access Type: Read/Write

Reset: 0x0000_0000

• RCB: Remap Command Bit for Master x
0: Disable remapped address decoding for the selected Master

1: Enable remapped address decoding for the selected Master

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
RCB15 RCB14 RCB13 RCB12 RCB11 RCB10 RCB9 RCB8

7 6 5 4 3 2 1 0
RCB7 RCB6 RCB5 RCB4 RCB3 RCB2 RCB1 RCB0

32058K AVR32-01/12

144

AT32UC3A

19.7.6 Bus Matrix Special Function Registers

Register Name: SFR0...SFR15

Access Type: Read/Write

Reset:

• SFR: Special Function Register Fields
The bitfields of these registers are described in the Peripherals chapter.

31 30 29 28 27 26 25 24
SFR

23 22 21 20 19 18 17 16
SFR

15 14 13 12 11 10 9 8
SFR

7 6 5 4 3 2 1 0
SFR

32058K AVR32-01/12

145

AT32UC3A

20. External Bus Interface (EBI)

Rev: 1.0.0.1

20.1 Features

• Present only on AT32UC3A0512 and AT32UC3A0256
• Optimized for Application Memory Space support
• Integrates Two External Memory Controllers:

– Static Memory Controller
– SDRAM Controller

• Optimized External Bus:
– 16-bit Data Bus
– 24-bit Address Bus, Up to 16-Mbytes Addressable
– Optimized pin multiplexing to reduce latencies on External Memories

• 4 SRAM Chip Selects, 1 SDRAM Chip Selects:
– Static Memory Controller on NCS0
– SDRAM Controller or Static Memory Controller on NCS1
– Static Memory Controller on NCS2
– Static Memory Controller on NCS3

20.2 Description

The External Bus Interface (EBI) is designed to ensure the successful data transfer between
several external devices and the AT32UC3A device. The Static Memory and SDRAM Control-
lers are all featured external Memory Controllers on the EBI. These external Memory Controllers
are capable of handling several types of external memory and peripheral devices, such as
SRAM, PROM, EPROM, EEPROM, Flash, and SDRAM.

The EBI handles data transfers with up to five external devices, each assigned to five address
spaces defined by the embedded Memory Controller. Data transfers are performed through a
16-bit data bus, an address bus of up to 24 bits, up to four chip select lines (NCS[3:0]) and sev-
eral control pins that are generally multiplexed between the different external Memory
Controllers.

32058K AVR32-01/12

146

AT32UC3A

20.3 Block Diagram

20.3.1 External Bus Interface

Figure 20-1 shows the organization of the External Bus Interface.

Figure 20-1. Organization of the External Bus Interface

32058K AVR32-01/12

147

AT32UC3A

20.4 I/O Lines Description

Depending on the Memory Controller in use, all signals are not connected directly through the
Mux Logic.

Table 20-2 on page 147 details the connections between the two Memory Controllers and the
EBI pins.

Table 20-1. EBI I/O Lines Description

Name Function Type Active Level

EBI

D0 - D15 Data Bus I/O

A0 - A23 Address Bus Output

NWAIT External Wait Signal Input Low

SMC

NCS0 - NCS3 Chip Select Lines Output Low

NWR0 - NWR3 Write Signals Output Low

NOE Output Enable Output Low

NRD Read Signal Output Low

NWE Write Enable Output Low

NBS0 - NBS3 Byte Mask Signals Output Low

SDRAM Controller

SDCK SDRAM Clock Output

SDCKE SDRAM Clock Enable Output High

BA0 - BA1 Bank Select Output

SDWE SDRAM Write Enable Output Low

RAS - CAS Row and Column Signal Output Low

NWR0 - NWR3 Write Signals Output Low

NBS0 - NBS3 Byte Mask Signals Output Low

SDA10 SDRAM Address 10 Line Output

Table 20-2. EBI Pins and Memory Controllers I/O Lines Connections

EBI Pins SDRAMC I/O Lines SMC I/O Lines

NWR1/NBS1 NBS1 NWR1/NUB

A0/NBS0 Not Supported SMC_A0/NLB

A1/NBS2/NWR2 Not Supported SMC_A1

A[11:2] SDRAMC_A[9:0] SMC_A[11:2]

SDA10 SDRAMC_A10 Not Supported

A12 Not Supported SMC_A12

A[14:13] SDRAMC_A[12:11] SMC_A[14:13]

32058K AVR32-01/12

148

AT32UC3A

20.5 Application Example

20.5.1 Hardware Interface

Table 20-3 on page 148 details the connections to be applied between the EBI pins and the
external devices for each Memory Controller.

Notes: 1. NWR1 enables upper byte writes. NWR0 enables lower byte writes.
2. NWRx enables corresponding byte x writes. (x = 0,1,2 or 3)
3. NBS0 and NBS1 enable respectively lower and upper bytes of the lower 16-bit word.
4. NBS2 and NBS3 enable respectively lower and upper bytes of the upper 16-bit word.
5. BEx: Byte x Enable (x = 0,1,2 or 3)

A[22:15] Not Supported SMC_A[22:15]

A[23] Not Supported SMC_A[23]

D[15:0] D[15:0] D[15:0]

Table 20-2. EBI Pins and Memory Controllers I/O Lines Connections

EBI Pins SDRAMC I/O Lines SMC I/O Lines

Table 20-3. EBI Pins and External Static Devices Connections

Signals Pins of the Interfaced Device

8-bit Static
Device

2 x 8-bit
Static

Devices

16-bit Static
Device

Controller SMC

D0 - D7 D0 - D7 D0 - D7 D0 - D7

D8 - D15 – D8 - D15 D8 - D15

A0/NBS0 A0 – NLB

A1/NWR2/NBS2 A1 A0 A0

A2 - A22 A[2:22] A[1:21] A[1:21]

A23 A[23] A[22] A[22]

NCS0 CS CS CS

NCS1/SDCS0 CS CS CS

NCS2 CS CS CS

NCS3 CS CS CS

NRD/NOE OE OE OE

NWR0/NWE WE WE(1) WE

NWR1/NBS1 – WE(1) NUB

NWR3/NBS3 – – –

32058K AVR32-01/12

149

AT32UC3A

Table 20-4. EBI Pins and External SDRAM Devices Connections

Signals

Pins of the Interfaced
Device

SDRAM

Controller SDRAMC

D0 - D15 D0 - D15

A0/NBS0 DQM0

A1/NWR2/NBS2 DQM2

A2 - A10 A[0:8]

A11 A9

SDA10 A10

A12 –

A13 - A14 A[11:12]

A15 –

A16/BA0 BA0

A17/BA1 BA1

A18 - A23 –

NCS0 –

NCS1/SDCS0 CS[0]

NCS2 –

NCS2 –

NCS3 –

NRD/NOE –

NWR0/NWE –

NWR1/NBS1 DQM1

NWR3/NBS3 DQM3

SDCK CLK

SDCKE CKE

RAS RAS

CAS CAS

SDWE WE

NWAIT –

32058K AVR32-01/12

150

AT32UC3A

20.5.2 Connection Examples

Figure 20-2 shows an example of connections between the EBI and external devices.

Figure 20-2. EBI Connections to Memory Devices

EBI

D0-D15

A2-A15

RAS
CAS

SDCK
SDCKE
SDWE

A0/NBS0

2M x 8
SDRAM

D0-D7

A0-A9, A11

RAS
CAS

CLK
CKE
WE

DQM

CS

BA0
BA1

NWR1/NBS1
A1/NWR2/NBS2

NWR3/NBS3

NCS1/SDCS

D0-D7 D8-D15

A16/BA0
A17/BA1
A18-A23

A10

SDA10

SDA10
A2-A11, A13

NCS0

NCS2
NCS3

A16/BA0
A17/BA1

2M x 8
SDRAM

D0-D7

A0-A9, A11

RAS
CAS

CLK
CKE
WE

DQM

CS

BA0
BA1

A10
A2-A11, A13
SDA10
A16/BA0
A17/BA1

NBS0 NBS1

NRD/NOE
NWR0/NWE

128K x 8
SRAM

128K x 8
SRAM

D0-D7 D0-D7A0-A16 A0-A16
A1-A17 A1-A17

CS CS

OE
WE

D0-D7 D8-D15

OE
WENRD/NOE

A0/NWR0/NBS0
NRD/NOE

NWR1/NBS1

SDWESDWE

32058K AVR32-01/12

151

AT32UC3A

20.6 Product Dependencies

20.6.1 I/O Lines

The pins used for interfacing the External Bus Interface may be multiplexed with the GPIO lines.
The programmer must first program the GPIO controller to assign the External Bus Interface
pins to their peripheral function. If I/O lines of the External Bus Interface are not used by the
application, they can be used for other purposes by the GPIO Controller.

20.6.2 Power Management

The EBI HSB clock and SDRAMC, SMC and ECC PB clocks are generated by the Power Man-
ager. Before using the EBI, the programmer must ensure that these clocks are enabled in the
Power Manager.

To prevent bus errors EBI operation must be terminated before entering sleep mode

20.6.3 Interrupt

The EBI interface has an interrupt line connected to the Interrupt Controller. Handling the EBI
interrupt requires programming the interrupt controller before configuring the EBI.

20.7 Functional Description

The EBI transfers data between the internal HSB Bus (handled by the HMatrix) and the external
memories or peripheral devices. It controls the waveforms and the parameters of the external
address, data and control busses and is composed of the following elements:

• The Static Memory Controller (SMC)
• The SDRAM Controller (SDRAMC)
• A chip select assignment feature that assigns an HSB address space to the external devices
• A multiplex controller circuit that shares the pins between the different Memory Controllers

20.7.1 Bus Multiplexing

The EBI offers a complete set of control signals that share the 16-bit data lines, the address
lines of up to 24 bits and the control signals through a multiplex logic operating in function of the
memory area requests.

Multiplexing is specifically organized in order to guarantee the maintenance of the address and
output control lines at a stable state while no external access is being performed. Multiplexing is
also designed to respect the data float times defined in the Memory Controllers. Furthermore,
refresh cycles of the SDRAM are executed independently by the SDRAM Controller without
delaying the other external Memory Controller accesses.

20.7.2 Pull-up Control

A specific HMATRIX_SFR register in the Matrix User Interface permit enabling of on-chip pull-up
resistors on the data bus lines not multiplexed with the GPIO Controller lines. For details on this
register, refer to the Peripherals Section. The pull-up resistors are enabled after reset. Setting
the EBI_DBPUC bit disables the pull-up resistors on lines not muxed with GPIO. Enabling the
pull-up resistor on lines multiplexed with GPIO lines can be performed by programming the
appropriate GPIO controller.

32058K AVR32-01/12

152

AT32UC3A

20.7.3 Static Memory Controller

For information on the Static Memory Controller, refer to the Static Memory Controller Section.

20.7.4 SDRAM Controller

For information on the SDRAM Controller, refer to the SDRAM Section.

32058K AVR32-01/12

153

AT32UC3A

21. Peripheral DMA Controller (PDCA)
rev: 1.0.0.0

21.1 Features
• Generates Transfers to/from Peripherals such as USART, SSC and SPI
• Two address pointers/counters per channel allowing double buffering

21.2 Overview

The Peripheral DMA controller (PDCA) transfers data between on-chip peripheral modules such
as USART, SPI, SSC and on- and off-chip memories. Using the PDCA avoids CPU intervention
for data transfers, improving the performance of the microcontroller. The PDCA can transfer
data from memory to a peripheral or from a peripheral to memory.

The PDCA consists of a number of DMA channels. Each channel has:

• A 32-bit memory pointer
• A 16-bit transfer counter
• A 32-bit memory pointer reload value
• A 16-bit transfer counter reload value

The PDCA communicates with the peripheral modules over a number of handshake interfaces.
The peripheral signals to the PDCA when it is ready to receive or transmit data. The PDCA
acknowledges the request when the transmission has started.

The number of handshake-interfaces may be higher than the number of DMA channels. If this is
the case, the DMA channel must be programmed to use the desired interface.

When a transmit buffer is empty or a receive buffer is full, an interrupt request can be signalled.

32058K AVR32-01/12

154

AT32UC3A

21.3 Block Diagram

21.4 Functional Description

21.4.1 Configuration

Each channel in the PDCA has a set of configuration registers. Among these are the Memory
Address Register (MAR), the Peripheral Select Register (PSR) and the Transfer Counter Regis-
ter (TCR). The 32-bit Memory Address Register must be programmed with the start address of
the memory buffer. The register will be automatically updated after each transfer to point to the
next location in memory. The Peripheral Select Register must be programmed to select the
desired peripheral/handshake interface. The Transfer Counter Register determines the number
of data items to be transferred. The counter will be decreased by one for each data item that has
been transferred.

Both the Memory Address Register and the Transfer Counter Register can be read at any time
to check the progress of the transfer.

Each channel has also reload registers for the Memory Address Register and the Transfer
Counter Register. When the TCR reaches zero, the values in the reload registers are loaded into
MAR and TCR. In this way, the PDCA can operate on two buffers for each channel.

21.4.2 Memory Pointer

Each channel has a 32-bit Memory Pointer Register (MAR). This register holds the memory
address for the next transfer to be performed. The register is automatically updated after each

HSB to PB
Bridge

Peripheral DMA
Controller
(PDCA)

Peripheral
0

Bus Matrix

Handshake interfaces

P
er

ip
he

ra
l B

us

IRQ

HSB

HSB

Interrupt
Controller

Peripheral
1

Peripheral
2

Peripheral
(n-1)

32058K AVR32-01/12

155

AT32UC3A

transfer. The address will be increased by either 1, 2 or 4 depending on the size of the DMA
transfer (Byte, Half-Word or Word). The Memory Address Register can be read at any time dur-
ing transfer.

21.4.3 Transfer Counter
Each channel has a 16-bit Transfer Counter Register (TCR). This register must be programmed
with the number of transferred to be performed. TCR should contain the number of data items to
be transferred independently of the transfer size. The Transfer Counter Register can be read at
any time during transfer to see the number of remaining transfers.

21.4.4 Reload Registers
Both the Memory Address Register and the Transfer Counter Register have a reload register,
respectively Memory Address Reload Register (MARR) and Transfer Counter Reload Register
(TCRR). These registers provide the possibility for the PDCA to work on two memory buffers for
each channel. When one buffer has completed, MAR and TCR will be reloaded with the values
in MARR and TCRR. The reload logic is always enabled and will trigger if the TCR reaches zero
while TCRR holds a non-zero value.

21.4.5 Peripheral Selection
The Peripheral Select Register decides which peripheral should be connected to the PDCA
channel. Configuring PSR will both select the direction of the transfer (memory to peripheral or
peripheral to memory), which handshake interface to use, and the address of the peripheral
holding register.

21.4.6 Transfer Size
The transfer size can be set individually for each channel to be either Byte, Half-Word or Word
(8-bit, 16-bit or 32-bit respectively). Transfer size is set by programming the SIZE bit-field in the
Mode Register (MR).

21.4.7 Enabling and Disabling
Each DMA channel is enabled by writing ‘1’ to the Transfer Enable bit (TEN) in the Control Reg-
ister (CR) and disabled by writing ‘1’ to the Transfer Disable bit (TDIS). The current status can
be read from the Status Register (SR).

21.4.8 Interrupts
Interrupts can be enabled by writing to the Interrupt Enable Register (IER) and disabled by writ-
ing to Interrupt Disable Register (IDR). The Interrupt Mask Register (IMR) can be read to see
whether an interrupt is enabled or not. The current status of an interrupt source can be read
through the Interrupt Status Register (ISR).

The PDCA has three interrupt sources:

• Reload Counter Zero - The Transfer Counter Reload Register is zero.
• Transfer Finished - Both the Transfer Counter Register and Transfer Counter Reload Register

are zero.
• Transfer Error - An error has occurred in accessing memory.

32058K AVR32-01/12

156

AT32UC3A

21.4.9 Priority
If more then one PDCA channel is requesting transfer at a given time, the PDCA channels are
prioritized by their channel number. Channels with lower numbers have priority over channels
with higher numbers, giving channel 0 the highest priority.

21.4.10 Error Handling
If the memory address is set to point to an invalid location in memory, an error will occur when
the PDCA tries to perform a transfer. When an error occurs, the Transfer Error flag (TERR) in
the Interrupt Status Register will be set and the DMA channel that caused the error will be
stopped. In order to restart the channel, the user must program the Memory Address Register to
a valid address and then write the Error Clear bit (ECLR) in the Control Register (CR) to ‘1’. An
interrupt can optionally be triggered on errors by writing the TERR-bit in the Interrupt Enable
Register (IER) to ‘1’.

21.5 User Interface

21.5.1 Memory Map Overview

Note: The number of channels is implementation specific. See part documentation for details.

21.5.2 Channel Memory Map

Table 21-1. Register Map Overview

Address Range Contents

0x0000 - 0x003F DMA channel 0 configuration registers

0x0040 - 0x007F DMA channel 1 configuration registers

0x0080 - 0x00BF DMA channel 2 configuration registers

0x00C0 - 0x00FF DMA channel 3 configuration registers

0x0100 - 0x013F DMA channel 4 configuration registers

- -

- DMA channel n-1 configuration registers

Offset Register Register Name Access Reset

0x00 Memory Address Register MAR Read/Write 0x00000000

0x04 Peripheral Select Register PSR Read/Write *

0x08 Transfer Counter Register TCR Read/Write 0x00000000

0x0C Memory Address Reload Register MARR Read/Write 0x00000000

0x10 Transfer Counter Reload Register TCRR Read/Write 0x00000000

0x14 Control Register CR Write-only -

0x18 Mode Register MR Read/Write 0x00000000

0x1C Status Register SR Read-only 0x00000000

0x20 Interrupt Enable Register IER Write-only -

32058K AVR32-01/12

157

AT32UC3A

0x24 Interrupt Disable Register IDR Write-only -

0x28 Interrupt Mask Register IMR Read-only 0x00000000

0x2C Interrupt Status Register ISR Read-only 0x00000000

Offset Register Register Name Access Reset

32058K AVR32-01/12

158

AT32UC3A

21.5.3 PDCA Memory Address Register
Name: MAR

Access Type: Read/Write

• MADDR: Memory Address

Address of memory buffer. MADDR should be programmed to point to the start of the memory buffer when configuring the
PDCA. During transfer, MADDR will point to the next memory location to be read/written.

31 30 29 28 27 26 25 24

MADDR

23 22 21 20 19 18 17 16

MADDR

15 14 13 12 11 10 9 8

MADDR

7 6 5 4 3 2 1 0

MADDR

32058K AVR32-01/12

159

AT32UC3A

21.5.4 PDCA Peripheral Select Register
Name: PSR

Access Type: Read/Write

• PID: Peripheral Identifier

The Peripheral Identifier selects which peripheral should be connected to the DMA channel. Programming PID will select
both which handshake interface to use, the direction of the transfer and also the address of the Receive/Transfer Holding
Register for the peripheral. The PID values for the different peripheral modules are implementation specific. See the part
specific documentation for details.

The width of the PID bitfield is implementation specific and dependent on the number of peripheral modules in the
microcontroller.

31 30 29 28 27 26 25 24

- - - - - - - -

23 22 21 20 19 18 17 16

- - - - - - - -

15 14 13 12 11 10 9 8

- - - - - - - -

7 6 5 4 3 2 1 0

PID

32058K AVR32-01/12

160

AT32UC3A

21.5.5PDCA Transfer Counter Register
Name: TCR

Access Type: Read/Write

• TCV: Transfer Counter Value

Number of data items to be transferred by PDCA. TCV must be programmed with the total number of transfers to be made.
During transfer, TCV contains the number of remaining transfers to be done.

31 30 29 28 27 26 25 24

- - - - - - - -

23 22 21 20 19 18 17 16

- - - - - - - -

15 14 13 12 11 10 9 8

TCV

7 6 5 4 3 2 1 0

TCV

32058K AVR32-01/12

161

AT32UC3A

21.5.6 PDCA Memory Address Reload Register
Name: MARR

Access Type: Read/Write

• MARV: Memory Address Reload Value

Reload Value for the Memory Address Register (MAR). This value will be loaded into MAR when TCR reaches zero if the
TCRR has a non-zero value.

31 30 29 28 27 26 25 24

MARV

23 22 21 20 19 18 17 16

MARV

15 14 13 12 11 10 9 8

MARV

7 6 5 4 3 2 1 0

MARV

32058K AVR32-01/12

162

AT32UC3A

21.5.7 PDCA Transfer Counter Reload Register
Name: TCRR

Access Type: Read/Write

• TCRV: Transfer Counter Reload Value

Reload value for the Transfer Counter Register (TCR). When TCR reaches zero, it will be reloaded with TCRV if TCRV has
a positive value. If TCRV is zero, no more transfers will be performed for the channel. When TCR is realoaded, the Transfer
Counter Reload Register is cleared.

31 30 29 28 27 26 25 24

- - - - - - - -

23 22 21 20 19 18 17 16

- - - - - - - -

15 14 13 12 11 10 9 8

TCRV

7 6 5 4 3 2 1 0

TCRV

32058K AVR32-01/12

163

AT32UC3A

21.5.8 PDCA Control Register
Name: CR

Access Type: Write-only

• ECLR: Error Clear

0 = No Effect.

1 = Clear Transfer Error (TERR) flag in the Status Register (SR). Clearing the Transfer Error flag will allow the channel to
transmit data. The memory address must first be set to point to a valid location.

• TEN: Transfer Enable

0 = No Effect.

1 = Enable transfer for DMA channel.

• TDIS: Transfer Disable

0 = No Effect.

1 = Disable transfer for DMA channel.

31 30 29 28 27 26 25 24

- - - - - - - -

23 22 21 20 19 18 17 16

- - - - - - - -

15 14 13 12 11 10 9 8

- - - - - - - ECLR

7 6 5 4 3 2 1 0

- - - - - - TDIS TEN

32058K AVR32-01/12

164

AT32UC3A

21.5.9 PDCA Mode Register
Name: MR

Access Type: Read/Write

• SIZE: Size of transfer

31 30 29 28 27 26 25 24

- - - - - - - -

23 22 21 20 19 18 17 16

- - - - - - - -

15 14 13 12 11 10 9 8

- - - - - - - -

7 6 5 4 3 2 1 0

- - - - - - SIZE

SIZE Size of Transfer

0 0 Byte

0 1 Half-Word

1 0 Word

1 1 Reserved

32058K AVR32-01/12

165

AT32UC3A

21.5.10 PDCA Status Register
Name: SR

Access Type: Read

• TEN: Transfer Enabled

0 = Transfer is disabled for the DMA channel

1 = Transfer is enabled for the DMA channel.

31 30 29 28 27 26 25 24

- - - - - - - -

23 22 21 20 19 18 17 16

- - - - - - - -

15 14 13 12 11 10 9 8

- - - - - - - -

7 6 5 4 3 2 1 0

- - - - - - - TEN

32058K AVR32-01/12

166

AT32UC3A

21.5.11 PDCA Interrupt Enable Register
Name: IER

Access Type: Write-only

• TERR: Transfer Error

0 = No effect.

1 = Enable Transfer Error interrupt.

• TRC: Transfer Complete

0 = No effect.

1 = Enable Transfer Complete interrupt.

• RCZ: Reload Counter Zero

0 = No effect.

1 = Enable Reload Counter Zero interrupt.

31 30 29 28 27 26 25 24

- - - - - - - -

23 22 21 20 19 18 17 16

- - - - - - - -

15 14 13 12 11 10 9 8

- - - - - - - -

7 6 5 4 3 2 1 0

- - - - - TERR TRC RCZ

32058K AVR32-01/12

167

AT32UC3A

21.5.12 PDCA Interrupt Disable Register
Name: IDR

Access Type: Write-only

• TERR: Transfer Error

0 = No effect.

1 = Disable Transfer Error interrupt.

• TRC: Transfer Complete

0 = No effect.

1 = Disable Transfer Complete interrupt.

• RCZ: Reload Counter Zero

0 = No effect.

1 = Disable Reload Counter Zero interrupt.

31 30 29 28 27 26 25 24

- - - - - - - -

23 22 21 20 19 18 17 16

- - - - - - - -

15 14 13 12 11 10 9 8

- - - - - - - -

7 6 5 4 3 2 1 0

- - - - - TERR TRC RCZ

32058K AVR32-01/12

168

AT32UC3A

21.5.13 PDCA Interrupt Mask Register
Name: IMR

Access Type: Read-only

• TERR: Transfer Error

0 = Transfer Error interrupt is disabled.

1 = Transfer Error interrupt is enabled.

• TRC: Transfer Complete

0 = Transfer Complete interrupt is disabled.

1 = Transfer Complete interrupt is enabled.

• RCZ: Reload Counter Zero

0 = Reload Counter Zero interrupt is disabled.

1 = Reload Counter Zero interrupt is enabled.

31 30 29 28 27 26 25 24

- - - - - - - -

23 22 21 20 19 18 17 16

- - - - - - - -

15 14 13 12 11 10 9 8

- - - - - - - -

7 6 5 4 3 2 1 0

- - - - - TERR TRC RCZ

32058K AVR32-01/12

169

AT32UC3A

21.5.14 PDCA Interrupt Status Register
Name: ISR

Access Type: Read-only

• TERR: Transfer Error

0 = No transfer errors have occurred.

1 = A transfer error has occurred.

• TRC: Transfer Complete

0 = The Transfer Counter Register (TCR) and/or the Transfer Counter Reload Register (TCRR) hold a non-zero value.

1 = Both the Transfer Counter Register (TCR) and the Transfer Counter Reload Register (TCRR) are zero.

• RCZ: Reload Counter Zero

0 = The Transfer Counter Reload Register (TCRR) holds a non-zero value.

1 = The Transfer Counter Reload Register (TCRR) is zero.

31 30 29 28 27 26 25 24

- - - - - - - -

23 22 21 20 19 18 17 16

- - - - - - - -

15 14 13 12 11 10 9 8

- - - - - - - -

7 6 5 4 3 2 1 0

- - - - - TERR TRC RCZ

32058K AVR32-01/12

170

AT32UC3A

22. General-Purpose Input/Output Controller (GPIO)
Rev. 1.1.0.2

22.1 Features
Each I/O line of the GPIO features:

• Configurable pin-change, rising-edge or falling-edge interrupt on any I/O line.
• A glitch filter providing rejection of pulses shorter than one clock cycle.
• Open Drain mode enabling sharing of an I/O line between the MCU and external components.
• Input visibility and output control.
• Multiplexing of up to four peripheral functions per I/O line.
• Programmable internal pull-up resistor.

22.2 Overview
The General Purpose Input/Output manages the I/O pins of the microcontroller. Each I/O line
may be dedicated as a general-purpose I/O or be assigned to a function of an embedded periph-
eral. This assures effective optimization of the pins of a product.

Table 22-1. Overview of the GPIO system

22.3 Product dependencies

22.3.1 Module Configuration
Most of the features of the GPIO are configurable for each product. The programmer must refer
to the Peripherals Section for these settings.

Product specific settings includes:

Interrupt Controller

Power Manager

Embedded
Peripheral

General Purpose
Input/Output - GPIO

GPIO Interrupt Request

GPIO Clock

Pin Control
Signals

PIN

PIN

PIN

PIN

PIN

MCU
I/O Pins

PBA Configuration
Interface

32058K AVR32-01/12

171

AT32UC3A

• Number of I/O pins.
• Functions implemented on each pin.
• Peripheral function(s) multiplexed on each I/O pin.
• Reset state of registers.

22.3.2 Interrupt Lines
The GPIO interrupt lines are connected to the interrupt controller. Using the GPIO interrupt
requires the interrupt controller to be programmed first.

22.3.3 Power and Clock Management
The clock for the GPIO is controlled by the power manager. The programmer must ensure that
the GPIO clock is enabled in the power manager before using the GPIO. The clock must be
enabled in order to access the configuration registers of the GPIO and when interrupts are
enabled. After configuring the GPIO, the clock can be disabled if interrupts are not enabled.

22.4 Functional Description
The GPIO controls the I/O lines of the microcontroller. The control logic associated with each pin
is represented in the figure below:

Figure 22-1. Overview of the GPIO pad connections

22.4.1 Pull-up Resistor Control
Each I/O line is designed with an embedded pull-up resistor. The pull-up resistor can be enabled
or disabled by accessing the corresponding bit in PUER (Pull-up Enable Register). Control of the
pull-up resistor is possible whether an I/O line is controlled by a peripheral or the GPIO.

0

1

GPIO_ODMER

0

1

0

1

GPIO_GPER

1

0

GPIO_OVR

GPIO_ODER

GPIO_PMR1

Periph. A output enable

Periph. B output enable

Periph. C output enable

Periph. D output enable

Periph. A output data

Periph. B output data

Periph. C output data

Periph. D output data

PAD

GPIO_PUER

Periph. A input data

Periph. B input data

Periph. C input data

Periph. D input data

GPIO_PVR

0

1Glitch Filter

GPIO_GFER

Edge Detector 1

0 Interrupt Request
GPIO_IMR1

GPIO_PMR0

GPIO_IMR0

GPIO_IER

32058K AVR32-01/12

172

AT32UC3A

22.4.2 I/O Line or Peripheral Function Selection
When a pin is multiplexed with one or more peripheral functions, the selection is controlled with
the register GPER. If a bit in the register is set, the corresponding pin is controlled by the GPIO.
If a bit is cleared, the corresponding pin is controlled by a peripheral function.

22.4.3 Peripheral Selection
The GPIO provides multiplexing of up to four peripheral functions on a single pin. The selection
is performed by accessing PMR0 (Peripheral Mux Register 0) and PMR1 (Peripheral Mux Regis-
ter 1).

22.4.4 Output Control
When the I/O line is assigned to a peripheral function, i.e. the corresponding bit in GPER is at 0,
the drive of the I/O line is controlled by the peripheral. The peripheral, depending on the value in
PMR0 and PMR1, determines whether the pin is driven or not.

When the I/O line is controlled by the GPIO, the value of ODER (Output Driver Enable Register)
determines if the pin is driven or not. When a bit in this register is at 1, the corresponding I/O line
is driven by the GPIO. When the bit is at 0, the GPIO does not drive the line.

The level driven on an I/O line can be determined by writing OVR (Output Value Register).

22.4.5 Open Drain Mode
Each I/O line can be independently programmed to operate in open drain mode. This feature
permits several drivers to be connected on the I/O line. The drivers should only actively drive the
line low. An external pull-up resistor (or enabling the internal one) is generally required to guar-
antee a high level on the line when no driver is active.

The Open Drain feature is controlled by ODMER (Open Drain Mode Enable Register). The Open
Drain mode can be selected whether the I/O line is controlled by the GPIO or assigned to a
peripheral function.

22.4.6 Inputs
The level on each I/O line can be read through PVR (Pin Value Register). This register indicates
the level of the I/O lines regardless of whether the lines are driven by the GPIO or by an external
component. Note that due to power saving measures, PVR register can only be read when
GPER is set for the corresponding pin or if interrupt is enabled for the pin.

Output Line Timings

The figure below shows the timing of the I/O line when setting and clearing the Output Value
Register by accessing OVR. The same timing applies when performing a ‘set’ or ‘clear’ access
i.e. writing to OVRS or OVRC. The timing of PVR (Pin Value Register) is also shown.

32058K AVR32-01/12

173

AT32UC3A

Figure 22-2. Output line timings

22.4.7 Interrupts
The GPIO can be programmed to generate an interrupt when it detects an input change on an
I/O line. The module can be configured to signal an interrupt whenever a pin changes value or
only to trigger on rising edges or falling edges. Interrupt is enabled on a pin by setting the corre-
sponding bit in IER (Interrupt Enable Register). The interrupt mode is set by accessing IMR0
(Interrupt Mode Register 0) and IMR1 (Interrupt Mode Register 1). Interrupt can be enabled on a
pin, regardless of the configuration the I/O line, i.e. controlled by the GPIO or assigned to a
peripheral function.

In every port there are four interrupt lines connected to the interrupt controller. Every eigth inter-
rupts in the port are ored together to form an interrupt line.

When an interrupt event is detected on an I/O line, and the corresponding bit in IER is set, the
GPIO interrupt request line is asserted. A number of interrupt signals are ORed-wired together
to generate a single interrupt signal to the interrupt controller.

IFR (Interrupt Flag Register) can by read by software to determine which pin(s) caused the inter-
rupt. The interrupt flag must be manually cleared by writing to IFR.

GPIO interrupts can only be triggered when the GPIO clock is enabled.

22.4.8 Input Glitch Filter
Optional input glitch filters can be enabled on each I/O line. When the glitch filter is enabled, a
glitch with duration of less than 1 clock cycle is automatically rejected, while a pulse with dura-
tion of 2 clock cycles or more is accepted. For pulse durations between 1 clock cycle and 2 clock
cycles, the pulse may or may not be taken into account, depending on the precise timing of its
occurrence. Thus for a pulse to be guaranteed visible it must exceed 2 clock cycles, whereas for
a glitch to be reliably filtered out, its duration must not exceed 1 clock cycle. The filter introduces
2 clock cycles latency.

The glitch filters are controlled by the register GFER (Glitch Filter Enable Register). When a bit is
set in GFER, the glitch filter on the corresponding pin is enabled. The glitch filter affects only
interrupt inputs. Inputs to peripherals or the value read through PVR are not affected by the
glitch filters.

22.4.9 Interrupt Timings
The figure below shows the timing for rising edge (or pin-change) interrupts when the glitch filter
is disabled. For the pulse to be registered, it must be sampled at the rising edge of the clock. In
this example, this is not the case for the first pulse. The second pulse is however sampled on a
rising edge and will trigger an interrupt request.

PBA Access

PBA Access

clock

Write GPIO_OVR to 1

Write GPIO_OVR to 0

GPIO_OVR / I/O Line

GPIO_PVR

32058K AVR32-01/12

174

AT32UC3A

Figure 22-3. Interrupt timing with glitch filter disabled

The figure below shows the timing for rising edge (or pin-change) interrupts when the glitch filter
is enabled. For the pulse to be registered, it must be sampled on two subsequent rising edges.
In the example, the first pulse is rejected while the second pulse is accepted and causes an
interrupt request.

Figure 22-4. Interrupt timing with glitch filter enabled

clock

Pin Level

GPIO_IFR

clock

Pin Level

GPIO_IFR

32058K AVR32-01/12

175

AT32UC3A

22.5 General Purpose Input/Output (GPIO) User Interface
The GPIO controls all the I/O pins on the AVR32 microcontroller. The pins are managed as 32-
bit ports that are configurable through an PB interface. Each port has a set of configuration reg-
isters. The overall memory map of the GPIO is shown below. The number of pins and hence the
number of ports is product specific.

In the Peripheral muxing table in the Peripherals chapter each GPIO line has a unique number.
Note that the PA, PB, PC and PX ports do not directly correspond to the GPIO ports. To find the
corresponding port and pin the following formulas can be used:

GPIO port = floor((GPIO number) / 32), example: floor((36)/32) = 1

GPIO pin = GPIO number mod 32, example: 36 mod 32 = 4

The table below shows the configuration registers for one port. Addresses shown are relative to
the port address offset. The specific address of a configuration register is found by adding the
register offset and the port offset to the GPIO start address. One bit in each of the configuration
registers corresponds to an I/O pin.

Port 0 Configuration Registers

Port 1 Configuration Registers

Port 2 Configuration Registers

Port 3 Configuration Registers

Port 4 Configuration Registers

0x0000

0x0100

0x0200

0x0300

0x0400

Table 22-2. GPIO Register Map

Offset Register Function Name Access Reset value

0x00 GPIO Enable Register Read/Write GPER Read/Write
1b for each
implemented
GPIO pin in port

0x04 GPIO Enable Register Set GPERS Write-Only

0x08 GPIO Enable Register Clear GPERC Write-Only

0x0C GPIO Enable Register Toggle GPERT Write-Only

0x10 Peripheral Mux Register 0 Read/Write PMR0 Read/Write 0x00000000

32058K AVR32-01/12

176

AT32UC3A

0x14 Peripheral Mux Register 0 Set PMR0S Write-Only

0x18 Peripheral Mux Register 0 Clear PMR0C Write-Only

0x1C Peripheral Mux Register 0 Toggle PMR0T Write-Only

0x20 Peripheral Mux Register 1 Read/Write PMR1 Read/Write 0x00000000

0x24 Peripheral Mux Register 1 Set PMR1S Write-Only

0x28 Peripheral Mux Register 1 Clear PMR1C Write-Only

0x2C Peripheral Mux Register 1 Toggle PMR1T Write-Only

0x30 RESERVED - - -

0x34 RESERVED - - -

0x38 RESERVED - - -

0x3C RESERVED - - -

0x40 Output Driver Enable Register Read/Write ODER Read/Write 0x00000000

0x44 Output Driver Enable Register Set ODERS Write-Only

0x48 Output Driver Enable Register Clear ODERC Write-Only

0x4C Output Driver Enable Register Toggle ODERT Write-Only

0x50 Output Value Register Read/Write OVR Read/Write 0x00000000

0x54 Output Value Register Set OVRS Write-Only

0x58 Output Value Register Clear OVRC Write-Only

0x5c Output Value Register Toggle OVRT Write-Only

0x60 Pin Value Register Read PVR Read-Only depending on
pin states

0x64 Pin Value Register - - -

0x68 Pin Value Register - - -

0x6c Pin Value Register - - -

0x70 Pull-up Enable Register Read/Write PUER Read/Write 0x00000000

0x74 Pull-up Enable Register Set PUERS Write-Only

0x78 Pull-up Enable Register Clear PUERC Write-Only

0x7C Pull-up Enable Register Toggle PUERT Write-Only

0x80 Open Drain Mode Enable Register Read/Write ODMER Read/Write 0x00000000

0x84 Open Drain Mode Enable Register Set ODMERS Write-Only

0x88 Open Drain Mode Enable Register Clear ODMERC Write-Only

0x8C Open Drain Mode Enable Register Toggle ODMERT Write-Only

0x90 Interrupt Enable Register Read/Write IER Read/Write 0x00000000

0x94 Interrupt Enable Register Set IERS Write-Only

0x98 Interrupt Enable Register Clear IERC Write-Only

0x9C Interrupt Enable Register Toggle IERT Write-Only

Table 22-2. GPIO Register Map

Offset Register Function Name Access Reset value

32058K AVR32-01/12

177

AT32UC3A

22.5.1 Access Types
Each configuration register can be accessed in four different ways. The first address location
can be used to write the register directly. This address can also be used to read the register
value. The following addresses facilitate three different types of write access to the register. Per-
forming a “set” access, all bits written to ‘1’ will be set. Bits written to ‘0’ will be unchanged by the
operation. Performing a “clear” access, all bits written to ‘1’ will be cleared. Bits written to ‘0’ will
be unchanged by the operation. Finally, a toggle access will toggle the value of all bits written to
‘1’. Again all bits written to ‘0’ remain unchanged. Note that for some registers (e.g. IFR), not all
access methods are permitted.

Note that for ports with less than 32 bits, the corresponding control registers will have unused
bits. This is also the case for features that are not implemented for a specific pin. Writing to an
unused bit will have no effect. Reading unused bits will always return 0.

0xA0 Interrupt Mode Register 0 Read/Write IMR0 Read/Write 0x00000000

0xA4 Interrupt Mode Register 0 Set IMR0S Write-Only

0xA8 Interrupt Mode Register 0 Clear IMR0C Write-Only

0xAC Interrupt Mode Register 0 Toggle IMR0T Write-Only

0xB0 Interrupt Mode Register 1 Read/Write IMR1 Read/Write 0x00000000

0xB4 Interrupt Mode Register 1 Set IMR1S Write-Only

0xB8 Interrupt Mode Register 1 Clear IMR1C Write-Only

0xBC Interrupt Mode Register 1 Toggle IMR1T Write-Only

0xC0 Glitch Filter Enable Register Read/Write GFER Read/Write
1b for each
implemented
GPIO pin in port

0xC4 Glitch Filter Enable Register Set GFERS Write-Only

0xC8 Glitch Filter Enable Register Clear GFERC Write-Only

0xCC Glitch Filter Enable Register Toggle GFERT Write-Only

0xD0 Interrupt Flag Register Read IFR Read-Only 0x00000000

0xD4 Interrupt Flag Register - - -

0xD8 Interrupt Flag Register Clear IFRC Write-Only

0xDC Interrupt Flag Register - - -

0xE0-
0xFF RESERVED - - -

Table 22-2. GPIO Register Map

Offset Register Function Name Access Reset value

32058K AVR32-01/12

178

AT32UC3A

22.5.2 GPIO Enable Register
Name: GPER

Access: Read, Write, Set, Clear, Toggle

• P0-P31: GPIO Enable

0 = A peripheral function controls the corresponding pin.

1 = The GPIO controls the corresponding pin.

31 30 29 28 27 26 25 24
P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16
P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8
P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0
P7 P6 P5 P4 P3 P2 P1 P0

32058K AVR32-01/12

179

AT32UC3A

22.5.3 Peripheral Mux Register 0
Name: PMR0

Access: Read, Write, Set, Clear, Toggle

• P0-31: Peripheral Multiplexer Select bit 0

22.5.4 Peripheral Mux Register 1
Name: PMR1

Access: Read, Write, Set, Clear, Toggle

• P0-31: Peripheral Multiplexer Select bit 1

31 30 29 28 27 26 25 24
P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16
P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8
P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0
P7 P6 P5 P4 P3 P2 P1 P0

31 30 29 28 27 26 25 24
P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16
P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8
P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0
P7 P6 P5 P4 P3 P2 P1 P0

{PMR1, PMR0} Selected Peripheral Function
00 A
01 B
10 C
11 D

32058K AVR32-01/12

180

AT32UC3A

22.5.5 Output Driver Enable Register
Name: ODER

Access: Read, Write, Set, Clear, Toggle

• P0-31: Output Driver Enable
0 = The output driver is disabled for the corresponding pin.

1 = The output driver is enabled for the corresponding pin.

31 30 29 28 27 26 25 24
P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16
P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8
P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0
P7 P6 P5 P4 P3 P2 P1 P0

32058K AVR32-01/12

181

AT32UC3A

22.5.6 Output Value Register
Name: OVR

Access: Read, Write, Set, Clear, Toggle

• P0-31: Output Value
0 = The value to be driven on the I/O line is 0.

1 = The value to be driven on the I/O line is 1.

31 30 29 28 27 26 25 24
P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16
P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8
P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0
P7 P6 P5 P4 P3 P2 P1 P0

32058K AVR32-01/12

182

AT32UC3A

22.5.7 Pin Value Register
Name: PVR

Access: Read

• P0-31: Pin Value
0 = The I/O line is at level ‘0’.

1 = The I/O line is at level ‘1’.

Note that the level of a pin can only be read when GPER is set or interrupt is enabled for the pin.

31 30 29 28 27 26 25 24
P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16
P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8
P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0
P7 P6 P5 P4 P3 P2 P1 P0

32058K AVR32-01/12

183

AT32UC3A

22.5.8 Pull-up Enable Register
Name: PUER

Access: Read, Write, Set, Clear, Toggle

• P0-31: Pull-up Enable
0 = The internal pull-up resistor is disabled for the corresponding pin.

1 = The internal pull-up resistor is enabled for the corresponding pin.

31 30 29 28 27 26 25 24
P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16
P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8
P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0
P7 P6 P5 P4 P3 P2 P1 P0

32058K AVR32-01/12

184

AT32UC3A

22.5.9 Open Drain Mode Enable Register
Name: ODMER

Access: Read, Write, Set, Clear, Toggle

• P0-31: Open Drain Mode Enable
0 = Open drain mode is disabled for the corresponding pin.

1 = Open drain mode is enabled for the corresponding pin.

31 30 29 28 27 26 25 24
P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16
P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8
P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0
P7 P6 P5 P4 P3 P2 P1 P0

32058K AVR32-01/12

185

AT32UC3A

22.5.10 Interrupt Enable Register
Name: IER

Access: Read, Write, Set, Clear, Toggle

• P0-31: Interrupt Enable
0 = Interrupt is disabled for the corresponding pin.

1 = Interrupt is enabled for the corresponding pin.

31 30 29 28 27 26 25 24
P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16
P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8
P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0
P7 P6 P5 P4 P3 P2 P1 P0

32058K AVR32-01/12

186

AT32UC3A

22.5.11 Interrupt Mode Register 0
Name: IMR0

Access: Read, Write, Set, Clear, Toggle

• P0-31: Interrupt Mode Bit 0

22.5.12 Interrupt Mode Register 1
Name: IMR1

Access: Read, Write, Set, Clear, Toggle

• P0-31: Interrupt Mode Bit 1

31 30 29 28 27 26 25 24
P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16
P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8
P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0
P7 P6 P5 P4 P3 P2 P1 P0

31 30 29 28 27 26 25 24
P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16
P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8
P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0
P7 P6 P5 P4 P3 P2 P1 P0

{IMR1, IMR0} Interrupt Mode
00 Pin Change
01 Rising Edge
10 Falling Edge
11 Reserved

32058K AVR32-01/12

187

AT32UC3A

22.5.13 Glitch Filter Enable Register
Name: GFER

Access: Read, Write, Set, Clear, Toggle

• P0-31: Glitch Filter Enable
0 = Glitch filter is disabled for the corresponding pin.

1 = Glitch filter is enabled for the corresponding pin.

NOTE! The value of this register should only be changed when IER is ‘0’. Updating this GFER while interrupt on the corre-
sponding pin is enabled can cause an unintentional interrupt to be triggered.

31 30 29 28 27 26 25 24
P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16
P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8
P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0
P7 P6 P5 P4 P3 P2 P1 P0

32058K AVR32-01/12

188

AT32UC3A

22.5.14 Interrupt Flag Register
Name: IFR

Access: Read, Clear

• P0-31: Interrupt Flag
0 = An interrupt condition has been detected on the corresponding pin.

1 = No interrupt condition has been detected on the corresponding pin.

The number of interrupt request lines is dependant on the number of I/O pins on the MCU. Refer to the product specific
data for details. Note also that a bit in the Interrupt Flag register is only valid if the corresponding bit in IER is set.

31 30 29 28 27 26 25 24
P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16
P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8
P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0
P7 P6 P5 P4 P3 P2 P1 P0

32058K AVR32-01/12

189

AT32UC3A

22.6 Programming Examples

22.6.1 8-bit LED-Chaser
 // Set R0 to GPIO base address

 mov R0, LO(AVR32_GPIO_BASE_ADDRESS)

 orh R0, HI(AVR32_GPIO_BASE_ADDRESS)

 // Enable GPIO control of pin 0-8

 mov R1, 0xFF

 st.w R0[AVR32_GPIO_GPERS], R1

 // Set initial value of port

 mov R2, 0x01

 st.w R0[AVR32_GPIO_OVRS], R2

 // Set up toggle value. Two pins are toggled

 // in each round. The bit that is currently set,

 // and the next bit to be set.

 mov R2, 0x0303

 orh R2, 0x0303

loop:

 // Only change 8 LSB

 mov R3, 0x00FF

 and R3, R2

 st.w R0[AVR32_GPIO_OVRT], R3

 rol R2

 rcall delay

 rjmp loop

It is assumed in this example that a subroutine "delay" exists that returns after a given time.

22.6.2 Configuration of USART pins
The example below shows how to configure a peripheral module to control I/O pins. It assumed
in this example that the USART receive pin (RXD) is connected to PC16 and that the USART
transmit pin (TXD) is connected to PC17. For both pins, the USART is peripheral B. In this
example, the state of the GPIO registers is assumed to be unknown. The two USART pins are
therefore first set to be controlled by the GPIO with output drivers disabled. The pins can then be
assured to be tri-stated while changing the Peripheral Mux Registers.

 // Set up pointer to GPIO, PORTC

 mov R0, LO(AVR32_GPIO_BASE_ADDRESS + PORTC_OFFSET)

 orh R0, HI(AVR32_GPIO_BASE_ADDRESS + PORTC_OFFSET)

 // Disable output drivers

32058K AVR32-01/12

190

AT32UC3A

 mov R1, 0x0000

 orh R1, 0x0003

 st.w R0[AVR32_GPIO_ODERC], R1

 // Make the GPIO control the pins

 st.w R0[AVR32_GPIO_GPERS], R1

 // Select peripheral B on PC16-PC17

 st.w R0[AVR32_GPIO_PMR0S], R1

 st.w R0[GPIO_PMR1C], R1

 // Enable peripheral control

 st.w R0[AVR32_GPIO_GPERC], R1

32058K AVR32-01/12

191

AT32UC3A

23. Serial Peripheral Interface (SPI)

Rev: 1.9.9.3

23.1 Features

• Supports Communication with Serial External Devices
– Four Chip Selects with External Decoder Support Allow Communication with Up to 15

Peripherals
– Serial Memories, such as DataFlash and 3-wire EEPROMs
– Serial Peripherals, such as ADCs, DACs, LCD Controllers, CAN Controllers and Sensors
– External Co-processors

• Master or Slave Serial Peripheral Bus Interface
– 8- to 16-bit Programmable Data Length Per Chip Select
– Programmable Phase and Polarity Per Chip Select
– Programmable Transfer Delays Between Consecutive Transfers and Between Clock and Data

Per Chip Select
– Programmable Delay Between Consecutive Transfers
– Selectable Mode Fault Detection

• Connection to PDC Channel Capabilities Optimizes Data Transfers
– One Channel for the Receiver, One Channel for the Transmitter
– Next Buffer Support

23.2 Description

The Serial Peripheral Interface (SPI) circuit is a synchronous serial data link that provides com-
munication with external devices in Master or Slave Mode. It also enables communication
between processors if an external processor is connected to the system.

The Serial Peripheral Interface is essentially a shift register that serially transmits data bits to
other SPIs. During a data transfer, one SPI system acts as the “master”' which controls the data
flow, while the other devices act as “slaves'' which have data shifted into and out by the master.
Different CPUs can take turn being masters (Multiple Master Protocol opposite to Single Master
Protocol where one CPU is always the master while all of the others are always slaves) and one
master may simultaneously shift data into multiple slaves. However, only one slave may drive its
output to write data back to the master at any given time.

A slave device is selected when the master asserts its NSS signal. If multiple slave devices
exist, the master generates a separate slave select signal for each slave (NPCS).

The SPI system consists of two data lines and two control lines:

• Master Out Slave In (MOSI): This data line supplies the output data from the master shifted
into the input(s) of the slave(s).

• Master In Slave Out (MISO): This data line supplies the output data from a slave to the input of
the master. There may be no more than one slave transmitting data during any particular
transfer.

• Serial Clock (SPCK): This control line is driven by the master and regulates the flow of the data
bits. The master may transmit data at a variety of baud rates; the SPCK line cycles once for
each bit that is transmitted.

• Slave Select (NSS): This control line allows slaves to be turned on and off by hardware.

32058K AVR32-01/12

192

AT32UC3A

23.3 Block Diagram

Figure 23-1. Block Diagram

SPI Interface

Interrupt Control

PIO

PDC

Power
Manager

MCK

SPI Interrupt

SPCK

MISO

MOSI

NPCS0/NSS

NPCS1

NPCS2

DIV

NPCS3

eral Bus

MCK
32

(1)

32058K AVR32-01/12

193

AT32UC3A

23.4 Application Block Diagram

Figure 23-2. Application Block Diagram: Single Master/Multiple Slave Implementation

SPI Master

SPCK

MISO

MOSI

NPCS0

NPCS1

NPCS2

SPCK

MISO

MOSI

NSS

Slave 0

SPCK

MISO

MOSI

NSS

Slave 1

SPCK

MISO

MOSI

NSS

Slave 2

NC

NPCS3

32058K AVR32-01/12

194

AT32UC3A

23.5 Signal Description

Table 23-1. Signal Description

Pin Name Pin Description

Type

Master Slave

MISO Master In Slave Out Input Output

MOSI Master Out Slave In Output Input

SPCK Serial Clock Output Input

NPCS1-NPCS3 Peripheral Chip Selects Output Unused

NPCS0/NSS Peripheral Chip Select/Slave Select Output Input

32058K AVR32-01/12

195

AT32UC3A

23.6 Product Dependencies

23.6.1 I/O Lines

The pins used for interfacing the compliant external devices may be multiplexed with PIO lines.
The programmer must first program the PIO controllers to assign the SPI pins to their peripheral
functions. To use the local loopback function the SPI pins must be controlled by the SPI.

23.6.2 Power Management

The SPI clock is generated by the Power Manager. Before using the SPI, the programmer must
ensure that the SPI clock is enabled in the Power Manager.

In the SPI description, Master Clock (MCK) is the clock of the peripheral bus to which the SPI is
connected.

23.6.3 Interrupt

The SPI interface has an interrupt line connected to the Interrupt Controller. Handling the SPI
interrupt requires programming the interrupt controller before configuring the SPI.

32058K AVR32-01/12

196

AT32UC3A

23.7 Functional Description

23.7.1 Modes of Operation

The SPI operates in Master Mode or in Slave Mode.

Operation in Master Mode is programmed by writing at 1 the MSTR bit in the Mode Register.
The pins NPCS0 to NPCS3 are all configured as outputs, the SPCK pin is driven, the MISO line
is wired on the receiver input and the MOSI line driven as an output by the transmitter.

If the MSTR bit is written at 0, the SPI operates in Slave Mode. The MISO line is driven by the
transmitter output, the MOSI line is wired on the receiver input, the SPCK pin is driven by the
transmitter to synchronize the receiver. The NPCS0 pin becomes an input, and is used as a
Slave Select signal (NSS). The pins NPCS1 to NPCS3 are not driven and can be used for other
purposes.

The data transfers are identically programmable for both modes of operations. The baud rate
generator is activated only in Master Mode.

23.7.2 Data Transfer

Four combinations of polarity and phase are available for data transfers. The clock polarity is
programmed with the CPOL bit in the Chip Select Register. The clock phase is programmed with
the NCPHA bit. These two parameters determine the edges of the clock signal on which data is
driven and sampled. Each of the two parameters has two possible states, resulting in four possi-
ble combinations that are incompatible with one another. Thus, a master/slave pair must use the
same parameter pair values to communicate. If multiple slaves are used and fixed in different
configurations, the master must reconfigure itself each time it needs to communicate with a dif-
ferent slave.

Table 23-2 shows the four modes and corresponding parameter settings.

Figure 23-3 and Figure 23-4 show examples of data transfers.

Table 23-2. SPI Bus Protocol Mode

SPI Mode CPOL NCPHA

0 0 1

1 0 0

2 1 1

3 1 0

32058K AVR32-01/12

197

AT32UC3A

Figure 23-3. SPI Transfer Format (NCPHA = 1, 8 bits per transfer)

Figure 23-4. SPI Transfer Format (NCPHA = 0, 8 bits per transfer)

6

*

SPCK
(CPOL = 0)

SPCK
(CPOL = 1)

MOSI
(from master)

MISO
(from slave)

NSS
(to slave)

SPCK cycle (for reference)

MSB

MSB

LSB

LSB

6

6

5

5

4

4

3

3

2

2

1

1

* Not defined, but normally MSB of previous character received.

1 2 3 4 5 7 86

*

SPCK
(CPOL = 0)

SPCK
(CPOL = 1)

1 2 3 4 5 7

MOSI
(from master)

MISO
(from slave)

NSS
(to slave)

SPCK cycle (for reference) 8

MSB

MSB

LSB

LSB

6

6

5

5

4

4

3

3

1

1

* Not defined but normally LSB of previous character transmitted.

2

2

6

32058K AVR32-01/12

198

AT32UC3A

23.7.3 Master Mode Operations

When configured in Master Mode, the SPI uses the internal programmable baud rate generator
as clock source. It fully controls the data transfers to and from the slave(s) connected to the SPI
bus. The SPI drives the chip select line to the slave and the serial clock signal (SPCK).

The SPI features two holding registers, the Transmit Data Register and the Receive Data Regis-
ter, and a single Shift Register. The holding registers maintain the data flow at a constant rate.

After enabling the SPI, a data transfer begins when the processor writes to the TDR (Transmit
Data Register). The written data is immediately transferred in the Shift Register and transfer on
the SPI bus starts. While the data in the Shift Register is shifted on the MOSI line, the MISO line
is sampled and shifted in the Shift Register. Transmission cannot occur without reception.

Before writing the TDR, the PCS field must be set in order to select a slave.

If new data is written in TDR during the transfer, it stays in it until the current transfer is com-
pleted. Then, the received data is transferred from the Shift Register to RDR, the data in TDR is
loaded in the Shift Register and a new transfer starts.

The transfer of a data written in TDR in the Shift Register is indicated by the TDRE bit (Transmit
Data Register Empty) in the Status Register (SR). When new data is written in TDR, this bit is
cleared. The TDRE bit is used to trigger the Transmit PDC channel.

The end of transfer is indicated by the TXEMPTY flag in the SR register. If a transfer delay (DLY-
BCT) is greater than 0 for the last transfer, TXEMPTY is set after the completion of said delay.
The master clock (MCK) can be switched off at this time.

The transfer of received data from the Shift Register in RDR is indicated by the RDRF bit
(Receive Data Register Full) in the Status Register (SR). When the received data is read, the
RDRF bit is cleared.

If the RDR (Receive Data Register) has not been read before new data is received, the Overrun
Error bit (OVRES) in SR is set. When this bit is set the SPI will continue to update RDR when
data is received, overwriting the previously received data. The user has to read the status regis-
ter to clear the OVRES bit.

Figure 23-5 on page 199 shows a block diagram of the SPI when operating in Master Mode. Fig-
ure 23-6 on page 200 shows a flow chart describing how transfers are handled.

32058K AVR32-01/12

199

AT32UC3A

23.7.3.1 Master Mode Block Diagram

Figure 23-5. Master Mode Block Diagram

Shift Register

SPCK

MOSI
LSB MSB

MISO

SPI_RDR
RD

SPI
Clock

TDRE
SPI_TDR

TD

RDRF
OVRES

SPI_CSR0..3

CPOL
NCPHA

BITS

0

1

FDIV

MCK

MCK/N

Baud Rate Generator

SPI_CSR0..3
SCBR

NPCS3

NPCS0

NPCS2

NPCS1

NPCS0

0

1

PS

SPI_MR
PCS

SPI_TDR
PCS

MODF

Current
Peripheral

SPI_RDR
PCS

SPI_CSR0..3
CSAAT

PCSDEC

MODFDIS

MSTR

32058K AVR32-01/12

200

AT32UC3A

23.7.3.2 Master Mode Flow Diagram

Figure 23-6. Master Mode Flow Diagram S

SPI Enable

CSAAT ?

PS ?

1

0

0

1

1

NPCS = SPI_TDR(PCS) NPCS = SPI_MR(PCS)

Delay DLYBS

Serializer = SPI_TDR(TD)
TDRE = 1

Data Transfer

SPI_RDR(RD) = Serializer
RDRF = 1

TDRE ?

NPCS = 0xF

Delay DLYBCS

Fixed
 peripheral

Variable
peripheral

Delay DLYBCT

0

1
CSAAT ?

0

TDRE ?
1

0

PS ?
0

1

SPI_TDR(PCS)
= NPCS ?

no

yes
SPI_MR(PCS)

= NPCS ?

no

NPCS = 0xF

Delay DLYBCS

NPCS = SPI_TDR(PCS)

NPCS = 0xF

Delay DLYBCS

NPCS = SPI_MR(PCS),
 SPI_TDR(PCS)

Fixed
 peripheral

Variable
peripheral

- NPCS defines the current Chip Select
- CSAAT, DLYBS, DLYBCT refer to the fields of the
 Chip Select Register corresponding to the Current Chip Select
- When NPCS is 0xF, CSAAT is 0.

32058K AVR32-01/12

201

AT32UC3A

23.7.3.3 Clock Generation

The SPI Baud rate clock is generated by dividing the Master Clock (MCK) or the Master Clock
divided by 32, by a value between 1 and 255. The selection between Master Clock or Master
Clock divided by 32 is done by the FDIV value set in the Mode Register

This allows a maximum operating baud rate at up to Master Clock and a minimum operating
baud rate of MCK divided by 255*32.

Programming the SCBR field at 0 is forbidden. Triggering a transfer while SCBR is at 0 can lead
to unpredictable results.

At reset, SCBR is 0 and the user has to program it at a valid value before performing the first
transfer.

The divisor can be defined independently for each chip select, as it has to be programmed in the
SCBR field of the Chip Select Registers. This allows the SPI to automatically adapt the baud
rate for each interfaced peripheral without reprogramming.

23.7.3.4 Transfer Delays

Figure 23-7 shows a chip select transfer change and consecutive transfers on the same chip
select. Three delays can be programmed to modify the transfer waveforms:

• The delay between chip selects, programmable only once for all the chip selects by writing the
DLYBCS field in the Mode Register. Allows insertion of a delay between release of one chip
select and before assertion of a new one.

• The delay before SPCK, independently programmable for each chip select by writing the field
DLYBS. Allows the start of SPCK to be delayed after the chip select has been asserted.

• The delay between consecutive transfers, independently programmable for each chip select by
writing the DLYBCT field. Allows insertion of a delay between two transfers occurring on the
same chip select

These delays allow the SPI to be adapted to the interfaced peripherals and their speed and bus
release time.

Figure 23-7. Programmable Delays

DLYBCS DLYBS DLYBCT DLYBCT

Chip Select 1

Chip Select 2

SPCK

32058K AVR32-01/12

202

AT32UC3A

23.7.3.5 Peripheral Selection

The serial peripherals are selected through the assertion of the NPCS0 to NPCS3 signals. By
default, all the NPCS signals are high before and after each transfer.

The peripheral selection can be performed in two different ways:

• Fixed Peripheral Select: SPI exchanges data with only one peripheral
• Variable Peripheral Select: Data can be exchanged with more than one peripheral
Fixed Peripheral Select is activated by writing the PS bit to zero in MR (Mode Register). In this
case, the current peripheral is defined by the PCS field in MR and the PCS field in TDR have no
effect.

Variable Peripheral Select is activated by setting PS bit to one. The PCS field in TDR is used to
select the current peripheral. This means that the peripheral selection can be defined for each
new data.

The Fixed Peripheral Selection allows buffer transfers with a single peripheral. Using the PDC is
an optimal means, as the size of the data transfer between the memory and the SPI is either 8
bits or 16 bits. However, changing the peripheral selection requires the Mode Register to be
reprogrammed.

The Variable Peripheral Selection allows buffer transfers with multiple peripherals without repro-
gramming the Mode Register. Data written in TDR is 32 bits wide and defines the real data to be
transmitted and the peripheral it is destined to. Using the PDC in this mode requires 32-bit wide
buffers, with the data in the LSBs and the PCS and LASTXFER fields in the MSBs, however the
SPI still controls the number of bits (8 to16) to be transferred through MISO and MOSI lines with
the chip select configuration registers. This is not the optimal means in term of memory size for
the buffers, but it provides a very effective means to exchange data with several peripherals
without any intervention of the processor.

23.7.3.6 Peripheral Chip Select Decoding

The user can program the SPI to operate with up to 15 peripherals by decoding the four Chip
Select lines, NPCS0 to NPCS3 with an external logic. This can be enabled by writing the PCS-
DEC bit at 1 in the Mode Register (MR).

When operating without decoding, the SPI makes sure that in any case only one chip select line
is activated, i.e. driven low at a time. If two bits are defined low in a PCS field, only the lowest
numbered chip select is driven low.

When operating with decoding, the SPI directly outputs the value defined by the PCS field of
either the Mode Register or the Transmit Data Register (depending on PS).

As the SPI sets a default value of 0xF on the chip select lines (i.e. all chip select lines at 1) when
not processing any transfer, only 15 peripherals can be decoded.

The SPI has only four Chip Select Registers, not 15. As a result, when decoding is activated,
each chip select defines the characteristics of up to four peripherals. As an example, CRS0
defines the characteristics of the externally decoded peripherals 0 to 3, corresponding to the
PCS values 0x0 to 0x3. Thus, the user has to make sure to connect compatible peripherals on
the decoded chip select lines 0 to 3, 4 to 7, 8 to 11 and 12 to 14.

32058K AVR32-01/12

203

AT32UC3A

23.7.3.7 Peripheral Deselection

When operating normally, as soon as the transfer of the last data written in TDR is completed,
the NPCS lines all rise. This might lead to runtime error if the processor is too long in responding
to an interrupt, and thus might lead to difficulties for interfacing with some serial peripherals
requiring the chip select line to remain active during a full set of transfers.

To facilitate interfacing with such devices, the Chip Select Register can be programmed with the
CSAAT bit (Chip Select Active After Transfer) at 1. This allows the chip select lines to remain in
their current state (low = active) until transfer to another peripheral is required.

Figure 23-8 shows different peripheral deselection cases and the effect of the CSAAT bit.

Figure 23-8. Peripheral Deselection

A

NPCS[0..3]

Write SPI_TDR

TDRE

NPCS[0..3]

Write SPI_TDR

TDRE

NPCS[0..3]

Write SPI_TDR

TDRE

DLYBCS

PCS = A

DLYBCS

DLYBCT

A

PCS = B

B

DLYBCS

PCS = A

DLYBCS

DLYBCT

A

PCS = B

B

DLYBCS

DLYBCT

PCS=A

A

DLYBCS

DLYBCT

A

PCS = A

AA

DLYBCT

A A

CSAAT = 0

DLYBCT

A A

CSAAT = 1

A

32058K AVR32-01/12

204

AT32UC3A

23.7.3.8 Mode Fault Detection

A mode fault is detected when the SPI is programmed in Master Mode and a low level is driven
by an external master on the NPCS0/NSS signal. NPCS0, MOSI, MISO and SPCK must be con-
figured in open-drain through the PIO controller, so that external pull up resistors are needed to
guarantee high level.

When a mode fault is detected, the MODF bit in the SR is set until the SR is read and the SPI is
automatically disabled until re-enabled by writing the SPIEN bit in the CR (Control Register) at 1.

By default, the Mode Fault detection circuitry is enabled. The user can disable Mode Fault
detection by setting the MODFDIS bit in the SPI Mode Register (MR).

23.7.4 SPI Slave Mode

When operating in Slave Mode, the SPI processes data bits on the clock provided on the SPI
clock pin (SPCK).

The SPI waits for NSS to go active before receiving the serial clock from an external master.
When NSS falls, the clock is validated on the serializer, which processes the number of bits
defined by the BITS field of the Chip Select Register 0 (CSR0). These bits are processed follow-
ing a phase and a polarity defined respectively by the NCPHA and CPOL bits of the CSR0. Note
that BITS, CPOL and NCPHA of the other Chip Select Registers have no effect when the SPI is
programmed in Slave Mode.

The bits are shifted out on the MISO line and sampled on the MOSI line.

When all the bits are processed, the received data is transferred in the Receive Data Register
and the RDRF bit rises. If RDRF is already high when the data is transferred, the Overrun bit
rises and the data transfer to RDR is aborted.

When a transfer starts, the data shifted out is the data present in the Shift Register. If no data
has been written in the Transmit Data Register (TDR), the last data received is transferred. If no
data has been received since the last reset, all bits are transmitted low, as the Shift Register
resets at 0.

When a first data is written in TDR, it is transferred immediately in the Shift Register and the
TDRE bit rises. If new data is written, it remains in TDR until a transfer occurs, i.e. NSS falls and
there is a valid clock on the SPCK pin. When the transfer occurs, the last data written in TDR is
transferred in the Shift Register and the TDRE bit rises. This enables frequent updates of critical
variables with single transfers.

Then, a new data is loaded in the Shift Register from the Transmit Data Register. In case no
character is ready to be transmitted, i.e. no character has been written in TDR since the last load
from TDR to the Shift Register, the Shift Register is not modified and the last received character
is retransmitted.

Figure 23-9 shows a block diagram of the SPI when operating in Slave Mode.

32058K AVR32-01/12

205

AT32UC3A

Figure 23-9. Slave Mode Functional Block Diagram

Shift Register

SPCK

SPIENS

LSB MSB

NSS

MOSI

SPI_RDR
RD

SPI
Clock

TDRE
SPI_TDR

TD

RDRF
OVRES

SPI_CSR0

CPOL
NCPHA

BITS

FLOAD

SPIEN

SPIDIS

MISO

32058K AVR32-01/12

206

AT32UC3A

23.8 Serial Peripheral Interface (SPI) User Interface

Table 23-3. SPI Register Mapping

Offset Register Register Name Access Reset

0x00 Control Register CR Write-only ---

0x04 Mode Register MR Read/Write 0x0

0x08 Receive Data Register RDR Read-only 0x0

0x0C Transmit Data Register TDR Write-only ---

0x10 Status Register SR Read-only 0x000000F0

0x14 Interrupt Enable Register IER Write-only ---

0x18 Interrupt Disable Register IDR Write-only ---

0x1C Interrupt Mask Register IMR Read-only 0x0

0x20 - 0x2C Reserved

0x30 Chip Select Register 0 CSR0 Read/Write 0x0

0x34 Chip Select Register 1 CSR1 Read/Write 0x0

0x38 Chip Select Register 2 CSR2 Read/Write 0x0

0x3C Chip Select Register 3 CSR3 Read/Write 0x0

32058K AVR32-01/12

207

AT32UC3A

23.8.1 SPI Control Register

Name: CR

Access Type: Write-only

• SPIEN: SPI Enable

0 = No effect.

1 = Enables the SPI to transfer and receive data.

• SPIDIS: SPI Disable

0 = No effect.

1 = Disables the SPI.

As soon as SPDIS is set, SPI finishes its transfer.

All pins are set in input mode and no data is received or transmitted.

If a transfer is in progress, the transfer is finished before the SPI is disabled.

If both SPIEN and SPIDIS are equal to one when the control register is written, the SPI is disabled.

• SWRST: SPI Software Reset

0 = No effect.

1 = Reset the SPI. A software-triggered hardware reset of the SPI interface is performed.

The SPI is in slave mode after a software reset.

PDC channels are not affected by software reset.

• LASTXFER: Last Transfer

0 = No effect.

1 = The current NPCS will be deasserted after the character written in TD has been transferred. When CSAAT is set, this
allows to close the communication with the current serial peripheral by raising the corresponding NPCS line as soon as TD
transfer has completed.

31 30 29 28 27 26 25 24
– – – – – – – LASTXFER

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
SWRST – – – – – SPIDIS SPIEN

32058K AVR32-01/12

208

AT32UC3A

23.8.2 SPI Mode Register

Name: MR

Access Type: Read/Write

• MSTR: Master/Slave Mode

0 = SPI is in Slave mode.

1 = SPI is in Master mode.

• PS: Peripheral Select

0 = Fixed Peripheral Select.

1 = Variable Peripheral Select.

• PCSDEC: Chip Select Decode

0 = The chip selects are directly connected to a peripheral device.

1 = The four chip select lines are connected to a 4- to 16-bit decoder.

When PCSDEC equals one, up to 15 Chip Select signals can be generated with the four lines using an external 4- to 16-bit
decoder. The Chip Select Registers define the characteristics of the 15 chip selects according to the following rules:

CSR0 defines peripheral chip select signals 0 to 3.

CSR1 defines peripheral chip select signals 4 to 7.

CSR2 defines peripheral chip select signals 8 to 11.

CSR3 defines peripheral chip select signals 12 to 14.

• FDIV: Clock Selection

0 = The SPI operates at MCK.

1 = The SPI operates at MCK/32.

• MODFDIS: Mode Fault Detection

0 = Mode fault detection is enabled.

1 = Mode fault detection is disabled.

• LLB: Local Loopback Enable

0 = Local loopback path disabled.

1 = Local loopback path enabled.

LLB controls the local loopback on the data serializer for testing in Master Mode only. MISO is internally connected to
MOSI.

31 30 29 28 27 26 25 24
DLYBCS

23 22 21 20 19 18 17 16
– – – – PCS

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
LLB – – MODFDIS FDIV PCSDEC PS MSTR

32058K AVR32-01/12

209

AT32UC3A

• PCS: Peripheral Chip Select

This field is only used if Fixed Peripheral Select is active (PS = 0).

If PCSDEC = 0:

PCS = xxx0 NPCS[3:0] = 1110

PCS = xx01 NPCS[3:0] = 1101

PCS = x011 NPCS[3:0] = 1011

PCS = 0111 NPCS[3:0] = 0111

PCS = 1111 forbidden (no peripheral is selected)

(x = don’t care)

If PCSDEC = 1:

NPCS[3:0] output signals = PCS.

• DLYBCS: Delay Between Chip Selects

This field defines the delay from NPCS inactive to the activation of another NPCS. The DLYBCS time guarantees non-over-
lapping chip selects and solves bus contentions in case of peripherals having long data float times.

If DLYBCS is less than or equal to six, six MCK periods (or 6*N MCK periods if FDIV is set) will be inserted by default.

Otherwise, the following equation determines the delay:

If FDIV is 0:

If FDIV is 1:

Delay Between Chip Selects DLYBCS
MCK

------------------------=

Delay Between Chip Selects DLYBCS N×
MCK

---------------------------------=

32058K AVR32-01/12

210

AT32UC3A

23.8.3 SPI Receive Data Register

Name: RDR

Access Type: Read-only

• RD: Receive Data

Data received by the SPI Interface is stored in this register right-justified. Unused bits read zero.

• PCS: Peripheral Chip Select

In Master Mode only, these bits indicate the value on the NPCS pins at the end of a transfer. Otherwise, these bits read
zero.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – PCS

15 14 13 12 11 10 9 8
RD

7 6 5 4 3 2 1 0
RD

32058K AVR32-01/12

211

AT32UC3A

23.8.4 SPI Transmit Data Register

Name: TDR

Access Type: Write-only

• TD: Transmit Data

Data to be transmitted by the SPI Interface is stored in this register. Information to be transmitted must be written to the
transmit data register in a right-justified format.

PCS: Peripheral Chip Select

This field is only used if Variable Peripheral Select is active (PS = 1).

If PCSDEC = 0:

PCS = xxx0 NPCS[3:0] = 1110

PCS = xx01 NPCS[3:0] = 1101

PCS = x011 NPCS[3:0] = 1011

PCS = 0111 NPCS[3:0] = 0111

PCS = 1111 forbidden (no peripheral is selected)

(x = don’t care)

If PCSDEC = 1:

NPCS[3:0] output signals = PCS

• LASTXFER: Last Transfer

0 = No effect.

1 = The current NPCS will be deasserted after the character written in TD has been transferred. When CSAAT is set, this
allows to close the communication with the current serial peripheral by raising the corresponding NPCS line as soon as TD
transfer has completed.

This field is only used if Variable Peripheral Select is active (PS = 1).

31 30 29 28 27 26 25 24
– – – – – – – LASTXFER

23 22 21 20 19 18 17 16
– – – – PCS

15 14 13 12 11 10 9 8
TD

7 6 5 4 3 2 1 0
TD

32058K AVR32-01/12

212

AT32UC3A

23.8.5 SPI Status Register

Name: SR

Access Type: Read-only

• RDRF: Receive Data Register Full

0 = No data has been received since the last read of RDR

1 = Data has been received and the received data has been transferred from the serializer to RDR since the last read of
RDR.

• TDRE: Transmit Data Register Empty

0 = Data has been written to TDR and not yet transferred to the serializer.

1 = The last data written in the Transmit Data Register has been transferred to the serializer.

TDRE equals zero when the SPI is disabled or at reset. The SPI enable command sets this bit to one.

• MODF: Mode Fault Error

0 = No Mode Fault has been detected since the last read of SR.

1 = A Mode Fault occurred since the last read of the SR.

• OVRES: Overrun Error Status

0 = No overrun has been detected since the last read of SR.

1 = An overrun has occurred since the last read of SR.

An overrun occurs when RDR is loaded at least twice from the serializer since the last read of the RDR.

• ENDRX: End of RX buffer

0 = The Receive Counter Register has not reached 0 since the last write in RCR or RNCR.

1 = The Receive Counter Register has reached 0 since the last write in RCR or RNCR.

• ENDTX: End of TX buffer

0 = The Transmit Counter Register has not reached 0 since the last write in TCR or TNCR.

1 = The Transmit Counter Register has reached 0 since the last write in TCR or TNCR.

• RXBUFF: RX Buffer Full

0 = RCR or RNCR has a value other than 0.

1 = Both RCR and RNCR has a value of 0.

• TXBUFE: TX Buffer Empty

0 = TCR or TNCR has a value other than 0.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – SPIENS

15 14 13 12 11 10 9 8
– – – – – – TXEMPTY NSSR

7 6 5 4 3 2 1 0
TXBUFE RXBUFF ENDTX ENDRX OVRES MODF TDRE RDRF

32058K AVR32-01/12

213

AT32UC3A

1 = Both TCR and TNCR has a value of 0.

• NSSR: NSS Rising

0 = No rising edge detected on NSS pin since last read.

1 = A rising edge occurred on NSS pin since last read.

• TXEMPTY: Transmission Registers Empty

0 = As soon as data is written in TDR.

1 = TDR and internal shifter are empty. If a transfer delay has been defined, TXEMPTY is set after the completion of such
delay.

• SPIENS: SPI Enable Status

0 = SPI is disabled.

1 = SPI is enabled.

32058K AVR32-01/12

214

AT32UC3A

23.8.6 SPI Interrupt Enable Register

Name: IER

Access Type: Write-only

• RDRF: Receive Data Register Full Interrupt Enable

• TDRE: SPI Transmit Data Register Empty Interrupt Enable

• MODF: Mode Fault Error Interrupt Enable

• OVRES: Overrun Error Interrupt Enable
• ENDRX: End of Receive Buffer Interrupt Enable
• ENDTX: End of Transmit Buffer Interrupt Enable
• RXBUFF: Receive Buffer Full Interrupt Enable
• TXBUFE: Transmit Buffer Empty Interrupt Enable
• TXEMPTY: Transmission Registers Empty Enable
• NSSR: NSS Rising Interrupt Enable

0 = No effect.

1 = Enables the corresponding interrupt.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – TXEMPTY NSSR

7 6 5 4 3 2 1 0
TXBUFE RXBUFF ENDTX ENDRX OVRES MODF TDRE RDRF

32058K AVR32-01/12

215

AT32UC3A

23.8.7 SPI Interrupt Disable Register

Name: IDR

Access Type: Write-only

• RDRF: Receive Data Register Full Interrupt Disable

• TDRE: SPI Transmit Data Register Empty Interrupt Disable

• MODF: Mode Fault Error Interrupt Disable

• OVRES: Overrun Error Interrupt Disable
• ENDRX: End of Receive Buffer Interrupt Disable
• ENDTX: End of Transmit Buffer Interrupt Disable
• RXBUFF: Receive Buffer Full Interrupt Disable
• TXBUFE: Transmit Buffer Empty Interrupt Disable
• TXEMPTY: Transmission Registers Empty Disable
• NSSR: NSS Rising Interrupt Disable

0 = No effect.

1 = Disables the corresponding interrupt.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – TXEMPTY NSSR

7 6 5 4 3 2 1 0
TXBUFE RXBUFF ENDTX ENDRX OVRES MODF TDRE RDRF

32058K AVR32-01/12

216

AT32UC3A

23.8.8 SPI Interrupt Mask Register

Name: IMR

Access Type: Read-only

• RDRF: Receive Data Register Full Interrupt Mask

• TDRE: SPI Transmit Data Register Empty Interrupt Mask

• MODF: Mode Fault Error Interrupt Mask

• OVRES: Overrun Error Interrupt Mask
• ENDRX: End of Receive Buffer Interrupt Mask
• ENDTX: End of Transmit Buffer Interrupt Mask
• RXBUFF: Receive Buffer Full Interrupt Mask
• TXBUFE: Transmit Buffer Empty Interrupt Mask
• TXEMPTY: Transmission Registers Empty Mask
• NSSR: NSS Rising Interrupt Mask

0 = The corresponding interrupt is not enabled.

1 = The corresponding interrupt is enabled.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – TXEMPTY NSSR

7 6 5 4 3 2 1 0
TXBUFE RXBUFF ENDTX ENDRX OVRES MODF TDRE RDRF

32058K AVR32-01/12

217

AT32UC3A

23.8.9 SPI Chip Select Register

Name: CSR0... CSR3

Access Type: Read/Write

• CPOL: Clock Polarity

0 = The inactive state value of SPCK is logic level zero.

1 = The inactive state value of SPCK is logic level one.

CPOL is used to determine the inactive state value of the serial clock (SPCK). It is used with NCPHA to produce the
required clock/data relationship between master and slave devices.

• NCPHA: Clock Phase

0 = Data is changed on the leading edge of SPCK and captured on the following edge of SPCK.

1 = Data is captured on the leading edge of SPCK and changed on the following edge of SPCK.

NCPHA determines which edge of SPCK causes data to change and which edge causes data to be captured. NCPHA is
used with CPOL to produce the required clock/data relationship between master and slave devices.

• CSNAAT: Chip Select Not Active After Transfer

0 = The Peripheral Chip Select Line rises as soon as the last transfer is acheived

1 = The Peripheral Chip Select Line rises after every transfer

CSNAAT can be used to force the Peripheral Chip Select Line to go inactive after every transfer. This allows successful
interfacing to SPI slave devices that require this behavior.

• CSAAT: Chip Select Active After Transfer

0 = The Peripheral Chip Select Line rises as soon as the last transfer is achieved.

1 = The Peripheral Chip Select does not rise after the last transfer is achieved. It remains active until a new transfer is
requested on a different chip select.

• BITS: Bits Per Transfer

The BITS field determines the number of data bits transferred. Reserved values should not be used, see Table 23-4 on
page 218.

31 30 29 28 27 26 25 24
DLYBCT

23 22 21 20 19 18 17 16
DLYBS

15 14 13 12 11 10 9 8
SCBR

7 6 5 4 3 2 1 0
BITS CSAAT CSNAAT NCPHA CPOL

32058K AVR32-01/12

218

AT32UC3A

.

• SCBR: Serial Clock Baud Rate

In Master Mode, the SPI Interface uses a modulus counter to derive the SPCK baud rate from the Master Clock MCK. The
Baud rate is selected by writing a value from 1 to 255 in the SCBR field. The following equations determine the SPCK baud
rate:

If FDIV is 0:

If FDIV is 1:

Note: N = 32

Programming the SCBR field at 0 is forbidden. Triggering a transfer while SCBR is at 0 can lead to unpredictable results.

At reset, SCBR is 0 and the user has to program it at a valid value before performing the first transfer.

• DLYBS: Delay Before SPCK

This field defines the delay from NPCS valid to the first valid SPCK transition.

When DLYBS equals zero, the NPCS valid to SPCK transition is 1/2 the SPCK clock period.

Table 23-4. BITS, Bits Per Transfer

BITS Bits Per Transfer

0000 8

0001 9

0010 10

0011 11

0100 12

0101 13

0110 14

0111 15

1000 16

1001 Reserved

1010 Reserved

1011 Reserved

1100 Reserved

1101 Reserved

1110 Reserved

1111 Reserved

 SPCK Baudrate MCK
SCBR
----------------=

SPCK Baudrate MCK
N SCBR×()

------------------------------=

32058K AVR32-01/12

219

AT32UC3A

Otherwise, the following equations determine the delay:

If FDIV is 0:

If FDIV is 1:

Note: N = 32

• DLYBCT: Delay Between Consecutive Transfers

This field defines the delay between two consecutive transfers with the same peripheral without removing the chip select.
The delay is always inserted after each transfer and before removing the chip select if needed.

When DLYBCT equals zero, no delay between consecutive transfers is inserted and the clock keeps its duty cycle over the
character transfers.

Otherwise, the following equation determines the delay:

If FDIV is 0:

If FDIV is 1:

N = 32

Delay Before SPCK DLYBS
MCK

--------------------=

Delay Before SPCK N DLYBS×
MCK

------------------------------=

Delay Between Consecutive Transfers 32 DLYBCT×------------------------------------ SCBR
MCK 2MCK

------------------+=

Delay Between Consecutive Transfers 32 N× DLYBCT×
MCK

-- N SCBR×
2MCK

-------------------------+=

32058K AVR32-01/12

220

AT32UC3A

24. Two-Wire Interface (TWI)

2.1.1.0

24.1 Features

• Compatible with Atmel Two-wire Interface Serial Memory and I²C Compatible Devices(1)

• One, Two or Three Bytes for Slave Address
• Sequential Read-write Operations
• Master, Multi-master and Slave Mode Operation
• Bit Rate: Up to 400 Kbits
• General Call Supported in Slave mode
• Connection to Peripheral DMA Controller (PDC) Channel Capabilities Optimizes Data Transfers in

Master Mode Only
– One Channel for the Receiver, One Channel for the Transmitter
– Next Buffer Support

Note: 1. See Table 24-1 below for details on compatibility with I²C Standard.

24.2 Overview

The Atmel Two-wire Interface (TWI) interconnects components on a unique two-wire bus, made
up of one clock line and one data line with speeds of up to 400 Kbits per second, based on a
byte-oriented transfer format. It can be used with any Atmel Two-wire Interface bus Serial
EEPROM and I²C compatible device such as Real Time Clock (RTC), Dot Matrix/Graphic LCD
Controllers and Temperature Sensor, to name but a few. The TWI is programmable as a master
or a slave with sequential or single-byte access. Multiple master capability is supported. Arbitra-
tion of the bus is performed internally and puts the TWI in slave mode automatically if the bus
arbitration is lost.

A configurable baud rate generator permits the output data rate to be adapted to a wide range of
core clock frequencies.

Below, Table 24-1 lists the compatibility level of the Atmel Two-wire Interface in Master Mode and
a full I2C compatible device.

Note: 1. START + b000000001 + Ack + Sr

Table 24-1. Atmel TWI compatibility with I2C Standard
I2C Standard Atmel TWI

Standard Mode Speed (100 KHz) Supported

Fast Mode Speed (400 KHz) Supported

7 or 10 bits Slave Addressing Supported

START BYTE(1) Not Supported

Repeated Start (Sr) Condition Supported

ACK and NACK Management Supported

Slope control and input filtering (Fast mode) Not Supported

Clock stretching Supported

32058K AVR32-01/12

221

AT32UC3A

24.3 List of Abbreviations

24.4 Block Diagram

Figure 24-1. Block Diagram

Table 24-2. Abbreviations

Abbreviation Description

TWI Two-wire Interface

A Acknowledge

NA Non Acknowledge

P Stop

S Start

Sr Repeated Start

SADR Slave Address

ADR Any address except SADR

R Read

W Write

Peripheral Bus
 Bridge

PM MCK

Two-wire
Interface

PIO

INTC
TWI

Interrupt

TWCK

TWD

32058K AVR32-01/12

222

AT32UC3A

24.5 Application Block Diagram

Figure 24-2. Application Block Diagram

24.6 I/O Lines Description

24.7 Product Dependencies

24.7.1 I/O Lines

Both TWD and TWCK are bidirectional lines, connected to a positive supply voltage via a current
source or pull-up resistor (see Figure 24-2 on page 222). When the bus is free, both lines are
high. The output stages of devices connected to the bus must have an open-drain or open-col-
lector to perform the wired-AND function.

TWD and TWCK pins may be multiplexed with GPIO lines. To enable the TWI, the programmer
must perform the following steps:

• Program the GPIO controller to:
– Dedicate TWD and TWCK as peripheral lines.
– Define TWD and TWCK as open-drain.

24.7.2 Power Management

The TWI clock is generated by the Power Manager (PM). Before using the TWI, the programmer
must ensure that the TWI clock is enabled in the PM.

In the TWI description, Master Clock (MCK) is the clock of the peripheral bus to which the TWI is
connected.

Table 24-3. I/O Lines Description

Pin Name Pin Description Type

TWD Two-wire Serial Data Input/Output

TWCK Two-wire Serial Clock Input/Output

Host with
TWI

Interface

TWD

TWCK

Atmel TWI
Serial EEPROM I²C RTC I²C LCD

Controller

Slave 1 Slave 2 Slave 3

VDD

I²C Temp.
Sensor

Slave 4

Rp: Pull up value as given by the I²C Standard

Rp Rp

32058K AVR32-01/12

223

AT32UC3A

24.7.3 Interrupt

The TWI interface has an interrupt line connected to the Interrupt Controller (INTC). In order to
handle interrupts, the INTC must be programmed before configuring the TWI.

24.8 Functional Description

24.8.1 Transfer Format

The data put on the TWD line must be 8 bits long. Data is transferred MSB first; each byte must
be followed by an acknowledgement. The number of bytes per transfer is unlimited (see Figure
24-4).

Each transfer begins with a START condition and terminates with a STOP condition (see Figure
24-3).

• A high-to-low transition on the TWD line while TWCK is high defines the START condition.
• A low-to-high transition on the TWD line while TWCK is high defines a STOP condition.

Figure 24-3. START and STOP Conditions

Figure 24-4. Transfer Format

24.9 Modes of Operation
The TWI has six modes of operations:

• Master transmitter mode
• Master receiver mode
• Multi-master transmitter mode
• Multi-master receiver mode
• Slave transmitter mode
• Slave receiver mode
These modes are described in the following chapters.

TWD

TWCK

Start Stop

TWD

TWCK

Start Address R/W Ack Data Ack Data Ack Stop

32058K AVR32-01/12

224

AT32UC3A

24.10 Master Mode

24.10.1 Definition

The Master is the device which starts a transfer, generates a clock and stops it.

24.10.2 Application Block Diagram

Figure 24-5. Master Mode Typical Application Block Diagram

24.10.3 Programming Master Mode

The following registers have to be programmed before entering Master mode:

1. DADR (+ IADRSZ + IADR if a 10 bit device is addressed): The device address is used to
access slave devices in read or write mode.

2. CKDIV + CHDIV + CLDIV: Clock Waveform.
3. SVDIS: Disable the slave mode.
4. MSEN: Enable the master mode.

24.10.4 Master Transmitter Mode

After the master initiates a Start condition when writing into the Transmit Holding Register, THR,
it sends a 7-bit slave address, configured in the Master Mode register (DADR in MMR), to notify
the slave device. The bit following the slave address indicates the transfer direction, 0 in this
case (MREAD = 0 in MMR).

The TWI transfers require the slave to acknowledge each received byte. During the acknowl-
edge clock pulse (9th pulse), the master releases the data line (HIGH), enabling the slave to pull
it down in order to generate the acknowledge. The master polls the data line during this clock
pulse and sets the NACK in the status register if the slave does not acknowledge the byte. As
with the other status bits, an interrupt can be generated if enabled in the interrupt enable register
(IER). If the slave acknowledges the byte, the data written in the THR, is then shifted in the inter-
nal shifter and transferred. When an acknowledge is detected, the TXRDY bit is set until a new
write in the THR. When no more data is written into the THR, the master generates a stop condi-
tion to end the transfer. The end of the complete transfer is marked by the TXCOMP bit set to
one. See Figure 24-6, Figure 24-7, and Figure 24-8 on page 225.

TXRDY is used as Transmit Ready for the PDC transmit channel.

Host with
TWI

Interface

TWD

TWCK

Atmel TWI
Serial EEPROM I²C RTC I²C LCD

Controller

Slave 1 Slave 2 Slave 3

VDD

I²C Temp.
Sensor

Slave 4

Rp: Pull up value as given by the I²C Standard

Rp Rp

32058K AVR32-01/12

225

AT32UC3A

Figure 24-6. Master Write with One Data Byte

Figure 24-7. Master Write with Multiple Data Byte

Figure 24-8. Master Write with One Byte Internal Address and Multiple Data Bytes

24.10.5 Master Receiver Mode

The read sequence begins by setting the START bit. After the start condition has been sent, the
master sends a 7-bit slave address to notify the slave device. The bit following the slave address
indicates the transfer direction, 1 in this case (MREAD = 1 in MMR). During the acknowledge
clock pulse (9th pulse), the master releases the data line (HIGH), enabling the slave to pull it
down in order to generate the acknowledge. The master polls the data line during this clock
pulse and sets the NACK bit in the status register if the slave does not acknowledge the byte.

If an acknowledge is received, the master is then ready to receive data from the slave. After data
has been received, the master sends an acknowledge condition to notify the slave that the data
has been received except for the last data, after the stop condition. See Figure 24-9. When the

TXCOMP

TXRDY

Write THR (DATA) STOP sent automaticaly
(ACK received and TXRDY = 1)

TWD A DATA AS DADR W P

A DATA n AS DADR W DATA n+5 A PDATA n+x A

TXCOMP

TXRDY

Write THR (Data n) Write THR (Data n+1) Write THR (Data n+x)
Last data sent

STOP sent automaticaly
(ACK received and TXRDY = 1)

TWD

A IADR(7:0) A DATA n AS DADR W DATA n+5 A PDATA n+x A

TXCOMP

TXRDY

TWD

Write THR (Data n) Write THR (Data n+1) Write THR (Data n+x)
Last data sent

STOP sent automaticaly
(ACK received and TXRDY = 1)

32058K AVR32-01/12

226

AT32UC3A

RXRDY bit is set in the status register, a character has been received in the receive-holding reg-
ister (RHR). The RXRDY bit is reset when reading the RHR.

When a single data byte read is performed, with or without internal address (IADR), the START
and STOP bits must be set at the same time. See Figure 24-9. When a multiple data byte read is
performed, with or without IADR, the STOP bit must be set after the next-to-last data received.
See Figure 24-10. For Internal Address usage see ”Internal Address” on page 226.

Figure 24-9. Master Read with One Data Byte

Figure 24-10. Master Read with Multiple Data Bytes

RXRDY is used as Receive Ready for the PDC receive channel.

24.10.6 Internal Address

The TWI interface can perform various transfer formats: Transfers with 7-bit slave address
devices and 10-bit slave address devices.

24.10.6.1 7-bit Slave Addressing

When Addressing 7-bit slave devices, the internal address bytes are used to perform random
address (read or write) accesses to reach one or more data bytes, within a memory page loca-
tion in a serial memory, for example. When performing read operations with an internal address,
the TWI performs a write operation to set the internal address into the slave device, and then
switch to Master Receiver mode. Note that the second start condition (after sending the IADR) is
sometimes called “repeated start” (Sr) in I2C fully-compatible devices. See Figure 24-12. See
Figure 24-11 and Figure 24.11 for Master Write operation with internal address.

The three internal address bytes are configurable through the Master Mode register (MMR).

AS DADR R DATA N P

TXCOMP

Write START &
STOP Bit

RXRDY

Read RHR

TWD

NAS DADR R DATA n A ADATA (n+1) A DATA (n+m)DATA (n+m)-1 PTWD

TXCOMP

Write START Bit

RXRDY

Write STOP Bit
after next-to-last data read

Read RHR
DATA n

Read RHR
DATA (n+1)

Read RHR
DATA (n+m)-1

Read RHR
DATA (n+m)

32058K AVR32-01/12

227

AT32UC3A

If the slave device supports only a 7-bit address, i.e. no internal address, IADRSZ must be set to
0.

n the figures below the following abbreviations are used:I

Figure 24-11. Master Write with One, Two or Three Bytes Internal Address and One Data Byte

Figure 24-12. Master Read with One, Two or Three Bytes Internal Address and One Data Byte

• S Start
• Sr Repeated Start
• P Stop
• W Write
• R Read
• A Acknowledge
• N Not Acknowledge
• DADR Device Address
• IADR Internal Address

S DADR W A IADR(23:16) A IADR(15:8) A IADR(7:0) A DATA A P

S DADR W A IADR(15:8) A IADR(7:0) A PDATA A

A IADR(7:0) A PDATA AS DADR W

TWD
Three bytes internal address

Two bytes internal address

One byte internal address

TWD

TWD

S DADR W A IADR(23:16) A IADR(15:8) A IADR(7:0) A

S DADR W A IADR(15:8) A IADR(7:0) A

A IADR(7:0) AS DADR W

DATA N P

Sr DADR R A

Sr DADR R A DATA N P

Sr DADR R A DATA N P

TWD

TWD

TWD

Three bytes internal address

Two bytes internal address

One byte internal address

32058K AVR32-01/12

228

AT32UC3A

24.10.6.2 10-bit Slave Addressing

For a slave address higher than 7 bits, the user must configure the address size (IADRSZ) and
set the other slave address bits in the internal address register (IADR). The two remaining Inter-
nal address bytes, IADR[15:8] and IADR[23:16] can be used the same as in 7-bit Slave
Addressing.

Example: Address a 10-bit device:

(10-bit device address is b1 b2 b3 b4 b5 b6 b7 b8 b9 b10)

1. Program IADRSZ = 1,
2. Program DADR with 1 1 1 1 0 b1 b2 (b1 is the MSB of the 10-bit address, b2, etc.)
3. Program IADR with b3 b4 b5 b6 b7 b8 b9 b10 (b10 is the LSB of the 10-bit address)

Figure 24.11 below shows a byte write to an Atmel AT24LC512 EEPROM. This demonstrates
the use of internal addresses to access the device.

24.11 Internal Address Usage Using the Peripheral DMA Controller (PDC)

The use of the PDC significantly reduces the CPU load.

To assure correct implementation, respect the following programming sequences:

24.11.1 Data Transmit with the PDC

1. Initialize the transmit PDC (memory pointers, size, etc.).
2. Configure the master mode (DADR, CKDIV, etc.).
3. Start the transfer by setting the PDC TXTEN bit.
4. Wait for the PDC end TX flag.
5. Disable the PDC by setting the PDC TXDIS bit.

24.11.2 Data Receive with the PDC

1. Initialize the receive PDC (memory pointers, size - 1, etc.).
2. Configure the master mode (DADR, CKDIV, etc.).
3. Start the transfer by setting the PDC RXTEN bit.
4. Wait for the PDC end RX flag.
5. Disable the PDC by setting the PDC RXDIS bit.

S
T
A
R
T

M
S
B

Device
Address

0

L
S
B

R
/

W

A
C
K

M
S
B

W
R
I
T
E

A
C
K

A
C
K

L
S
B

A
C
K

FIRST
WORD ADDRESS

SECOND
WORD ADDRESS DATA

S
T
O
P

32058K AVR32-01/12

229

AT32UC3A

24.11.3 Read-write Flowcharts

The following flowcharts shown in Figure 24-13 to Figure 24-18 on page 234 give examples for
read and write operations. A polling or interrupt method can be used to check the status bits.
The interrupt method requires that the interrupt enable register (IER) be configured first.

Figure 24-13. TWI Write Operation with Single Data Byte without Internal Address.

Set TWI clock
(CLDIV, CHDIV, CKDIV) in TWI_CWGR

(Needed only once)

Set the Control register:
- Master enable

TWI_CR = MSEN + SVDIS

Set the Master Mode register:
- Device slave address (DADR)

- Transfer direction bit
Write ==> bit MREAD = 0

Load Transmit register
TWI_THR = Data to send

Read Status register

TXRDY = 1?

Read Status register

TXCOMP = 1?

Transfer finished

Yes

Yes

BEGIN

No

No

32058K AVR32-01/12

230

AT32UC3A

Figure 24-14. TWI Write Operation with Single Data Byte and Internal Address

BEGIN

Set TWI clock
(CLDIV, CHDIV, CKDIV) in TWI_CWGR

(Needed only once)

Set the Control register:
- Master enable

TWI_CR = MSEN + SVDIS

Set the Master Mode register:
- Device slave address (DADR)

- Internal address size (IADRSZ)
- Transfer direction bit

Write ==> bit MREAD = 0

Load transmit register
TWI_THR = Data to send

Read Status register

TXRDY = 1?

Read Status register

TXCOMP = 1?

Transfer finished

Set the internal address
TWI_IADR = address

Yes

Yes

No

No

32058K AVR32-01/12

231

AT32UC3A

Figure 24-15. TWI Write Operation with Multiple Data Bytes with or without Internal Address

Set the Control register:
- Master enable

TWI_CR = MSEN + SVDIS

Set the Master Mode register:
- Device slave address

- Internal address size (if IADR used)
- Transfer direction bit

Write ==> bit MREAD = 0

Internal address size = 0?

Load Transmit register
TWI_THR = Data to send

Read Status register

TXRDY = 1?

Data to send?

Read Status register

TXCOMP = 1?

END

BEGIN

Set the internal address
TWI_IADR = address

Yes

TWI_THR = data to send

Yes

Yes

Yes

No

No

No

Set TWI clock
(CLDIV, CHDIV, CKDIV) in TWI_CWGR

(Needed only once)

32058K AVR32-01/12

232

AT32UC3A

Figure 24-16. TWI Read Operation with Single Data Byte without Internal Address

Set the Control register:
- Master enable

TWI_CR = MSEN + SVDIS

Set the Master Mode register:
- Device slave address
- Transfer direction bit

Read ==> bit MREAD = 1

Start the transfer
TWI_CR = START | STOP

Read status register

RXRDY = 1?

Read Status register

TXCOMP = 1?

END

BEGIN

Yes

Yes

Set TWI clock
(CLDIV, CHDIV, CKDIV) in TWI_CWGR

(Needed only once)

Read Receive Holding Register

No

No

32058K AVR32-01/12

233

AT32UC3A

Figure 24-17. TWI Read Operation with Single Data Byte and Internal Address

Set the Control register:
- Master enable

TWI_CR = MSEN + SVDIS

Set the Master Mode register:
- Device slave address

- Internal address size (IADRSZ)
- Transfer direction bit

Read ==> bit MREAD = 1

Read Status register

TXCOMP = 1?

END

BEGIN

Yes

Set TWI clock
(CLDIV, CHDIV, CKDIV) in TWI_CWGR

(Needed only once)

Yes

Set the internal address
TWI_IADR = address

Start the transfer
TWI_CR = START | STOP

Read Status register

RXRDY = 1?

Read Receive Holding register

No

No

32058K AVR32-01/12

234

AT32UC3A

Figure 24-18. TWI Read Operation with Multiple Data Bytes with or without Internal Address

Internal address size = 0?

Start the transfer
TWI_CR = START

Stop the transfer
TWI_CR = STOP

Read Status register

RXRDY = 1?

Last data to read
but one?

Read status register

TXCOMP = 1?

END

Set the internal address
TWI_IADR = address

Yes

Yes

Yes

No

Yes

Read Receive Holding register (TWI_RHR)

No

Set the Control register:
- Master enable

TWI_CR = MSEN + SVDIS

Set the Master Mode register:
- Device slave address

- Internal address size (if IADR used)
- Transfer direction bit

Read ==> bit MREAD = 1

BEGIN

Set TWI clock
(CLDIV, CHDIV, CKDIV) in TWI_CWGR

(Needed only once)

No

Read Status register

RXRDY = 1?

Yes

Read Receive Holding register (TWI_RHR)

No

32058K AVR32-01/12

235

AT32UC3A

24.12 Multi-master Mode

24.12.1 Definition

More than one master may handle the bus at the same time without data corruption by using
arbitration.

Arbitration starts as soon as two or more masters place information on the bus at the same time,
and stops (arbitration is lost) for the master that intends to send a logical one while the other
master sends a logical zero.

As soon as arbitration is lost by a master, it stops sending data and listens to the bus in order to
detect a stop. When the stop is detected, the master who has lost arbitration may put its data on
the bus by respecting arbitration.

Arbitration is illustrated in Figure 24-20 on page 236.

24.12.2 Different Multi-master Modes

Two multi-master modes may be distinguished:

1. TWI is considered as a Master only and will never be addressed.
2. TWI may be either a Master or a Slave and may be addressed.
Note: Arbitration is supported in both Multi-master modes.

24.12.2.1 TWI as Master Only

In this mode, TWI is considered as a Master only (MSEN is always at one) and must be driven
like a Master with the ARBLST (ARBitration Lost) flag in addition.

If arbitration is lost (ARBLST = 1), the programmer must reinitiate the data transfer.

If the user starts a transfer (ex.: DADR + START + W + Write in THR) and if the bus is busy, the
TWI automatically waits for a STOP condition on the bus to initiate the transfer (see Figure 24-
19 on page 236).

Note: The state of the bus (busy or free) is not indicated in the user interface.
24.12.2.2 TWI as Master or Slave

The automatic reversal from Master to Slave is not supported in case of a lost arbitration.

Then, in the case where TWI may be either a Master or a Slave, the programmer must manage
the pseudo Multi-master mode described in the steps below.

1. Program TWI in Slave mode (SADR + MSDIS + SVEN) and perform Slave Access (if
TWI is addressed).

2. If TWI has to be set in Master mode, wait until TXCOMP flag is at 1.
3. Program Master mode (DADR + SVDIS + MSEN) and start the transfer (ex: START +

Write in THR).
4. As soon as the Master mode is enabled, TWI scans the bus in order to detect if it is busy

or free. When the bus is considered as free, TWI initiates the transfer.
5. As soon as the transfer is initiated and until a STOP condition is sent, the arbitration

becomes relevant and the user must monitor the ARBLST flag.
6. If the arbitration is lost (ARBLST is set to 1), the user must program the TWI in Slave

mode in the case where the Master that won the arbitration wanted to access the TWI.

32058K AVR32-01/12

236

AT32UC3A

7. If TWI has to be set in Slave mode, wait until TXCOMP flag is at 1 and then program the
Slave mode.

Note: In the case where the arbitration is lost and TWI is addressed, TWI will not acknowledge even if it
is programmed in Slave mode as soon as ARBLST is set to 1. Then, the Master must repeat
SADR.

Figure 24-19. Programmer Sends Data While the Bus is Busy

Figure 24-20. Arbitration Cases

The flowchart shown in Figure 24-21 on page 237 gives an example of read and write operations
in Multi-master mode.

TWCK

TWD DATA sent by a master

STOP sent by the master START sent by the TWI

DATA sent by the TWI

Bus is busy

Bus is free

A transfer is programmed
(DADR + W + START + Write THR) Transfer is initiated

TWI DATA transfer Transfer is kept

Bus is considered as free

TWCK

Bus is busy Bus is free

A transfer is programmed
(DADR + W + START + Write THR) Transfer is initiated

TWI DATA transfer Transfer is kept

Bus is considered as free

Data from a Master

Data from TWI S 0

S 0 0

1

1

1

ARBLST

S 0

S 0 0

1

1

1

TWD S 0 01

1 1

1 1

Arbitration is lost

TWI stops sending data

P

S 01P 0

1 1

1 1Data from the master Data from the TWI

Arbitration is lost

The master stops sending data

Transfer is stopped
Transfer is programmed again

(DADR + W + START + Write THR)

TWCK

TWD

32058K AVR32-01/12

237

AT32UC3A

Figure 24-21. Multi-master Flowchart

Programm the SLAVE mode:
SADR + MSDIS + SVEN

SVACC = 1 ?

TXCOMP = 1 ?

GACC = 1 ?

Decoding of the
programming sequence

Prog seq
OK ?

Change SADR

SVREAD = 0 ?

Read Status Register

RXRDY= 0 ?

Read TWI_RHR

TXRDY= 1 ?EOSACC = 1 ?

Write in TWI_THR

Need to perform
a master access ?

Program the Master mode
DADR + SVDIS + MSEN + CLK + R / W

Read Status Register

ARBLST = 1 ?

MREAD = 1 ?

TXRDY= 0 ?

Write in TWI_THRData to send ?

RXRDY= 0 ?

Read TWI_RHR Data to read?

Stop transfer

Read Status Register

TXCOMP = 0 ?

GENERAL CALL TREATMENT

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

START

32058K AVR32-01/12

238

AT32UC3A

24.13 Slave Mode

24.13.1 Definition

The Slave Mode is defined as a mode where the device receives the clock and the address from
another device called the master.

In this mode, the device never initiates and never completes the transmission (START,
REPEATED_START and STOP conditions are always provided by the master).

24.13.2 Application Block Diagram

Figure 24-22. Slave Mode Typical Application Block Diagram

24.13.3 Programming Slave Mode

The following fields must be programmed before entering Slave mode:

1. SADR (SMR): The slave device address is used in order to be accessed by master
devices in read or write mode.

2. MSDIS (CR): Disable the master mode.
3. SVEN (CR): Enable the slave mode.
As the device receives the clock, values written in CWGR are not taken into account.

24.13.4 Receiving Data

After a Start or Repeated Start condition is detected and if the address sent by the Master
matches with the Slave address programmed in the SADR (Slave ADdress) field, SVACC (Slave
ACCess) flag is set and SVREAD (Slave READ) indicates the direction of the transfer.

SVACC remains high until a STOP condition or a repeated START is detected. When such a
condition is detected, EOSACC (End Of Slave ACCess) flag is set.

24.13.4.1 Read Sequence

In the case of a Read sequence (SVREAD is high), TWI transfers data written in the THR (TWI
Transmit Holding Register) until a STOP condition or a REPEATED_START + an address differ-
ent from SADR is detected. Note that at the end of the read sequence TXCOMP (Transmission
Complete) flag is set and SVACC reset.

Host with
TWI

Interface

TWD

TWCK

LCD Controller

Slave 1 Slave 2 Slave 3

R R

VDD

Host with TWI
Interface

Host with TWI
Interface

Master

32058K AVR32-01/12

239

AT32UC3A

As soon as data is written in the THR, TXRDY (Transmit Holding Register Ready) flag is reset,
and it is set when the shift register is empty and the sent data acknowledged or not. If the data is
not acknowledged, the NACK flag is set.

Note that a STOP or a repeated START always follows a NACK.

See Figure 24-23 on page 240.

24.13.4.2 Write Sequence

In the case of a Write sequence (SVREAD is low), the RXRDY (Receive Holding Register
Ready) flag is set as soon as a character has been received in the RHR (TWI Receive Holding
Register). RXRDY is reset when reading the RHR.

TWI continues receiving data until a STOP condition or a REPEATED_START + an address dif-
ferent from SADR is detected. Note that at the end of the write sequence TXCOMP flag is set
and SVACC reset.

See Figure 24-24 on page 241.

24.13.4.3 Clock Synchronization Sequence

In the case where THR or RHR is not written/read in time, TWI performs a clock synchronization.

Clock stretching information is given by the SCLWS (Clock Wait state) bit.

See Figure 24-26 on page 242 and Figure 24-27 on page 243.

24.13.4.4 General Call

In the case where a GENERAL CALL is performed, GACC (General Call ACCess) flag is set.

After GACC is set, it is up to the programmer to interpret the meaning of the GENERAL CALL
and to decode the new address programming sequence.

See Figure 24-25 on page 241.

24.13.4.5 PDC

As it is impossible to know the exact number of data to receive/send, the use of PDC is NOT rec-
ommended in SLAVE mode.

32058K AVR32-01/12

240

AT32UC3A

As it is impossible to know the exact number of data to receive/send, the use of PDC is NOT rec-
ommended in SLAVE mode.

24.13.5 Data Transfer

24.13.5.1 Read Operation

The read mode is defined as a data requirement from the master.

After a START or a REPEATED START condition is detected, the decoding of the address
starts. If the slave address (SADR) is decoded, SVACC is set and SVREAD indicates the direc-
tion of the transfer.

Until a STOP or REPEATED START condition is detected, TWI continues sending data loaded
in the THR register.

If a STOP condition or a REPEATED START + an address different from SADR is detected,
SVACC is reset.

Figure 24-23 on page 240 describes the write operation.

Figure 24-23. Read Access Ordered by a MASTER

Notes: 1. When SVACC is low, the state of SVREAD becomes irrelevant.
2. TXRDY is reset when data has been transmitted from THR to the shift register and set when

this data has been acknowledged or non acknowledged.

24.13.5.2 Write Operation

The write mode is defined as a data transmission from the master.

After a START or a REPEATED START, the decoding of the address starts. If the slave address
is decoded, SVACC is set and SVREAD indicates the direction of the transfer (SVREAD is low in
this case).

Until a STOP or REPEATED START condition is detected, TWI stores the received data in the
RHR register.

If a STOP condition or a REPEATED START + an address different from SADR is detected,
SVACC is reset.

Figure 24-24 on page 241 describes the Write operation.

Write THR Read RHR

SVREAD has to be taken into account only while SVACC is active

TWD

TXRDY

NACK

SVACC

SVREAD

EOSVACC

SADRS ADR R NA R A DATA A A DATA NA S/SrDATA NA P/S/Sr

SADR matches,
TWI answers with an ACK

SADR does not match,
TWI answers with a NACK

ACK/NACK from the Master

32058K AVR32-01/12

241

AT32UC3A

Figure 24-24. Write Access Ordered by a Master

Notes: 1. When SVACC is low, the state of SVREAD becomes irrelevant.
2. RXRDY is set when data has been transmitted from the shift register to the RHR and reset

when this data is read.

24.13.5.3 General Call

The general call is performed in order to change the address of the slave.

If a GENERAL CALL is detected, GACC is set.

After the detection of General Call, it is up to the programmer to decode the commands which
come afterwards.

In case of a WRITE command, the programmer has to decode the programming sequence and
program a new SADR if the programming sequence matches.

Figure 24-25 on page 241 describes the General Call access.

Figure 24-25. Master Performs a General Call

Note: 1. This method allows the user to create an own programming sequence by choosing the pro-
gramming bytes and the number of them. The programming sequence has to be provided to
the master.

RXRDY

Read RHR

SVREAD has to be taken into account only while SVACC is active

TWD

SVACC

SVREAD

EOSVACC

SADR does not match,
TWI answers with a NACK

SADRS ADR W NA W A DATA A A DATA NA S/SrDATA NA P/S/Sr

SADR matches,
TWI answers with an ACK

0000000 + W

GGGEEENNNEEERRRAAALLL CCCAAALLLLLL PS A Reset or write DADD A New SADRDATA1 A DATA2 AA

New SADR
Programming sequence

TXD

GCACC

SVACC

RESET command = 00000110X
WRITE command = 00000100X

Reset after read

32058K AVR32-01/12

242

AT32UC3A

24.13.6 Clock Synchronization

In both read and write modes, it may happen that THR/RHR buffer is not filled /emptied before
the emission/reception of a new character. In this case, to avoid sending/receiving undesired
data, a clock stretching mechanism is implemented.

24.13.6.1 Clock Synchronization in Read Mode

The clock is tied low if the shift register is empty and if a STOP or REPEATED START condition
was not detected. It is tied low until the shift register is loaded.

Figure 24-26 on page 242 describes the clock synchronization in Read mode.

Figure 24-26. Clock Synchronization in Read Mode

Notes: 1. TXRDY is reset when data has been written in the TH to the shift register and set when this data has been acknowledged or
non acknowledged.

2. At the end of the read sequence, TXCOMP is set after a STOP or after a REPEATED_START + an address different from
SADR.

3. SCLWS is automatically set when the clock synchronization mechanism is started.

DATA1

The clock is stretched after the ACK, the state of TWD is undefined during clock stretching

SCLWS

SVACC
SVREAD

TXRDY

TWCK

TWI_THR

TXCOMP

The data is memorized in TWI_THR until a new value is written

TWI_THR is transmitted to the shift register Ack or Nack from the master

DDDAAATTTAAA000 DATA2

1

2

1

CLOCK is tied low by the TWI
as long as THR is empty

S SADRS R DATA0A A DATA1 A DATA2 NA SXXXXXXX

2

Write THR

As soon as a START is detected

32058K AVR32-01/12

243

AT32UC3A

24.13.6.2 Clock Synchronization in Write Mode

The clock is tied low if the shift register and the RHR is full. If a STOP or REPEATED_START
condition was not detected, it is tied low until RHR is read.

Figure 24-27 on page 243 describes the clock synchronization in Read mode.

Figure 24-27. Clock Synchronization in Write Mode

Notes: 1. At the end of the read sequence, TXCOMP is set after a STOP or after a REPEATED_START + an address different from
SADR.

2. SCLWS is automatically set when the clock synchronization mechanism is started and automatically reset when the mecha-
nism is finished.

Rd DATA0 Rd DATA1 Rd DATA2
SVACC

SVREAD

RXRDY

SCLWS

TXCOMP

DATA1 DATA2

SCL is stretched on the last bit of DATA1

As soon as a START is detected

TWCK

TWD

TWI_RHR

CLOCK is tied low by the TWI as long as RHR is full

DATA0 is not read in the RHR

ADRS SADR W ADATA0A A DATA2DATA1 SNA

32058K AVR32-01/12

244

AT32UC3A

24.13.7 Reversal after a Repeated Start

24.13.7.1 Reversal of Read to Write

The master initiates the communication by a read command and finishes it by a write command.

Figure 24-28 on page 244 describes the repeated start + reversal from Read to Write mode.

Figure 24-28. Repeated Start + Reversal from Read to Write Mode

1. TXCOMP is only set at the end of the transmission because after the repeated start, SADR is detected again.

24.13.7.2 Reversal of Write to Read

The master initiates the communication by a write command and finishes it by a read com-
mand.Figure 24-29 on page 244 describes the repeated start + reversal from Write to Read
mode.

Figure 24-29. Repeated Start + Reversal from Write to Read Mode

Notes: 1. In this case, if THR has not been written at the end of the read command, the clock is automatically stretched before the
ACK.

2. TXCOMP is only set at the end of the transmission because after the repeated start, SADR is detected again.

S SADR R ADATA0A DATA1 SADRSrNA W A DATA2 A DATA3 A P

Cleared after read

DATA0 DATA1

DATA2 DATA3

SVACC

SVREAD

TWD

TWI_THR

TWI_RHR

EOSACC

TXRDY

RXRDY

TXCOMP As soon as a START is detected

S SADR W ADATA0A DATA1 SADRSrA R A DATA2 A DATA3 NA P

Cleared after read

DATA0

DATA2 DATA3

DATA1

TXCOMP

TXRDY

RXRDY

As soon as a START is detected

Read TWI_RHR

SVACC

SVREAD

TWD

TWI_RHR

TWI_THR

EOSACC

32058K AVR32-01/12

245

AT32UC3A

24.13.8 Read Write Flowcharts

The flowchart shown in Figure 24-30 on page 245 gives an example of read and write operations
in Slave mode. A polling or interrupt method can be used to check the status bits. The interrupt
method requires that the interrupt enable register (IER) be configured first.

Figure 24-30. Read Write Flowchart in Slave Mode

Set the SLAVE mode:
SADR + MSDIS + SVEN

SVACC = 1 ?

TXCOMP = 1 ?

GACC = 1 ?

Decoding of the
programming sequence

Prog seq
OK ?

Change SADR

SVREAD = 0 ?

Read Status Register

RXRDY= 0 ?

Read TWI_RHR

TXRDY= 1 ?EOSACC = 1 ?

Write in TWI_THR

END

GENERAL CALL TREATMENT

32058K AVR32-01/12

246

AT32UC3A

24.14 Two-wire Interface (TWI) User Interface

24.14.1 Register Mapping

Note: 1. Values in the Version Register vary with the version of the IP block implementation.

24.14.2 TWI Control Register

Name: CR

Access: Write-only

Reset Value: 0x00000000

• START: Send a START Condition
0 = No effect.

1 = A frame beginning with a START bit is transmitted according to the features defined in the mode register.

Table 24-4. TWI User Interface

Offset Register Name Access Reset

0x00 Control Register CR Write-only N / A

0x04 Master Mode Register MMR Read-write 0x00000000

0x08 Slave Mode Register SMR Read-write 0x00000000

0x0C Internal Address Register IADR Read-write 0x00000000

0x10 Clock Waveform Generator Register CWGR Read-write 0x00000000

0x20 Status Register SR Read-only 0x0000F009

0x24 Interrupt Enable Register IER Write-only N / A

0x28 Interrupt Disable Register IDR Write-only N / A

0x2C Interrupt Mask Register IMR Read-only 0x00000000

0x30 Receive Holding Register RHR Read-only 0x00000000

0x34 Transmit Holding Register THR Write-only 0x00000000

0x38 - 0xF8 Reserved – – –

0xFC Version Register TWI_VER Read-only 0x00000000(1)

0x38 - 0xFC Reserved – – –

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
SWRST – SVDIS SVEN MSDIS MSEN STOP START

32058K AVR32-01/12

247

AT32UC3A

This action is necessary when the TWI peripheral wants to read data from a slave. When configured in Master Mode with a
write operation, a frame is sent as soon as the user writes a character in the Transmit Holding Register (THR).

• STOP: Send a STOP Condition
0 = No effect.

1 = STOP Condition is sent just after completing the current byte transmission in master read mode.

• MSEN: TWI Master Mode Enabled
0 = No effect.

1 = If MSDIS = 0, the master mode is enabled.

Note: Switching from Slave to Master mode is only permitted when TXCOMP = 1.

• MSDIS: TWI Master Mode Disabled
0 = No effect.

1 = The master mode is disabled, all pending data is transmitted. The shifter and holding characters (if it contains data) are
transmitted in case of write operation. In read operation, the character being transferred must be completely received
before disabling.

• SVEN: TWI Slave Mode Enabled
0 = No effect.

1 = If SVDIS = 0, the slave mode is enabled.

Note: Switching from Master to Slave mode is only permitted when TXCOMP = 1.

• SVDIS: TWI Slave Mode Disabled
0 = No effect.

1 = The slave mode is disabled. The shifter and holding characters (if it contains data) are transmitted in case of read oper-
ation. In write operation, the character being transferred must be completely received before disabling.

• SWRST: Software Reset
0 = No effect.

1 = Equivalent to a system reset.

- In single data byte master read, the START and STOP must both be set.
- In multiple data bytes master read, the STOP must be set after the last data received but one.
- In master read mode, if a NACK bit is received, the STOP is automatically performed.
- In multiple data write operation, when both THR and shift register are empty, a STOP condition is automatically sent.

32058K AVR32-01/12

248

AT32UC3A

24.14.3 TWI Master Mode Register

Name: MMR

Access: Read-write

Reset Value: 0x00000000

• IADRSZ: Internal Device Address Size

• MREAD: Master Read Direction
0 = Master write direction.

1 = Master read direction.

• DADR: Device Address
The device address is used to access slave devices in read or write mode. Those bits are only used in Master mode.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– DADR

15 14 13 12 11 10 9 8
– – – MREAD – – IADRSZ

7 6 5 4 3 2 1 0
– – – – – – – –

IADRSZ[9:8] Description

0 0 No internal device address

0 1 One-byte internal device address

1 0 Two-byte internal device address

1 1 Three-byte internal device address

32058K AVR32-01/12

249

AT32UC3A

24.14.4 TWI Slave Mode Register

Name: SMR

Access: Read-write

Reset Value: 0x00000000

• SADR: Slave Address
The slave device address is used in Slave mode in order to be accessed by master devices in read or write mode.

SADR must be programmed before enabling the Slave mode or after a general call. Writes at other times have no effect.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– SADR

15 14 13 12 11 10 9 8
– – – – – –

7 6 5 4 3 2 1 0
– – – – – – – –

32058K AVR32-01/12

250

AT32UC3A

24.14.5 TWI Internal Address Register

Name: IADR

Access: Read-write

Reset Value: 0x00000000

• IADR: Internal Address
0, 1, 2 or 3 bytes depending on IADRSZ.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
IADR

15 14 13 12 11 10 9 8
IADR

7 6 5 4 3 2 1 0
IADR

32058K AVR32-01/12

251

AT32UC3A

24.14.6 TWI Clock Waveform Generator Register

Name: CWGR

Access: Read-write

Reset Value: 0x00000000

CWGR is only used in Master mode.

• CLDIV: Clock Low Divider
The SCL low period is defined as follows:

• CHDIV: Clock High Divider
The SCL high period is defined as follows:

• CKDIV: Clock Divider
The CKDIV is used to increase both SCL high and low periods.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
CKDIV

15 14 13 12 11 10 9 8
CHDIV

7 6 5 4 3 2 1 0
CLDIV

Tlow CLDIV(2CKDIV×() 4)+ TMCK ×=

Thigh CHDIV(2CKDIV×() 4)+ TMCK ×=

32058K AVR32-01/12

252

AT32UC3A

24.14.7 TWI Status Register

Name: SR

Access: Read-only

Reset Value: 0x0000F009

• TXCOMP: Transmission Completed (automatically set / reset)
TXCOMP used in Master mode:

0 = During the length of the current frame.

1 = When both holding and shifter registers are empty and STOP condition has been sent.

TXCOMP behavior in Master mode can be seen in Figure 24-8 on page 225 and in Figure 24-10 on page 226.

TXCOMP used in Slave mode:

0 = As soon as a Start is detected.

1 = After a Stop or a Repeated Start + an address different from SADR is detected.

TXCOMP behavior in Slave mode can be seen in Figure 24-26 on page 242, Figure 24-27 on page 243, Figure 24-28 on
page 244 and Figure 24-29 on page 244.

• RXRDY: Receive Holding Register Ready (automatically set / reset)
0 = No character has been received since the last RHR read operation.

1 = A byte has been received in the RHR since the last read.

RXRDY behavior in Master mode can be seen in Figure 24-10 on page 226.

RXRDY behavior in Slave mode can be seen in Figure 24-24 on page 241, Figure 24-27 on page 243, Figure 24-28 on
page 244 and Figure 24-29 on page 244.

• TXRDY: Transmit Holding Register Ready (automatically set / reset)
TXRDY used in Master mode:

0 = The transmit holding register has not been transferred into shift register. Set to 0 when writing into THR register.

1 = As soon as a data byte is transferred from THR to internal shifter or if a NACK error is detected, TXRDY is set at the
same time as TXCOMP and NACK. TXRDY is also set when MSEN is set (enable TWI).

TXRDY behavior in Master mode can be seen in Figure 24-8 on page 225.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
TXBUFE RXBUFF ENDTX ENDRX EOSACC SCLWS ARBLST NACK

7 6 5 4 3 2 1 0
– OVRE GACC SVACC SVREAD TXRDY RXRDY TXCOMP

32058K AVR32-01/12

253

AT32UC3A

TXRDY used in Slave mode:

0 = As soon as data is written in the THR, until this data has been transmitted and acknowledged (ACK or NACK).

1 = It indicates that the THR is empty and that data has been transmitted and acknowledged.

If TXRDY is high and if a NACK has been detected, the transmission will be stopped. Thus when TRDY = NACK = 1, the
programmer must not fill THR to avoid losing it.

TXRDY behavior in Slave mode can be seen in Figure 24-23 on page 240, Figure 24-26 on page 242, Figure 24-28 on
page 244 and Figure 24-29 on page 244.

• SVREAD: Slave Read (automatically set / reset)
This bit is only used in Slave mode. When SVACC is low (no Slave access has been detected) SVREAD is irrelevant.

0 = Indicates that a write access is performed by a Master.

1 = Indicates that a read access is performed by a Master.

SVREAD behavior can be seen in Figure 24-23 on page 240, Figure 24-24 on page 241, Figure 24-28 on page 244 and
Figure 24-29 on page 244.

• SVACC: Slave Access (automatically set / reset)
This bit is only used in Slave mode.

0 = TWI is not addressed. SVACC is automatically cleared after a NACK or a STOP condition is detected.

1 = Indicates that the address decoding sequence has matched (A Master has sent SADR). SVACC remains high until a
NACK or a STOP condition is detected.

SVACC behavior can be seen in Figure 24-23 on page 240, Figure 24-24 on page 241, Figure 24-28 on page 244 and Fig-
ure 24-29 on page 244.

• GACC: General Call Access (clear on read)
This bit is only used in Slave mode.

0 = No General Call has been detected.

1 = A General Call has been detected. After the detection of General Call, the programmer decoded the commands that fol-
low and the programming sequence.

GACC behavior can be seen in Figure 24-25 on page 241.

• OVRE: Overrun Error (clear on read)
This bit is only used in Master mode.

0 = RHR has not been loaded while RXRDY was set

1 = RHR has been loaded while RXRDY was set. Reset by read in SR when TXCOMP is set.

• NACK: Not Acknowledged (clear on read)
NACK used in Master mode:

0 = Each data byte has been correctly received by the far-end side TWI slave component.

1 = A data byte has not been acknowledged by the slave component. Set at the same time as TXCOMP.

32058K AVR32-01/12

254

AT32UC3A

NACK used in Slave Read mode:

0 = Each data byte has been correctly received by the Master.

1 = In read mode, a data byte has not been acknowledged by the Master. When NACK is set the programmer must not fill
THR even if TXRDY is set, because it means that the Master will stop the data transfer or re initiate it.

Note that in Slave Write mode all data are acknowledged by the TWI.

• ARBLST: Arbitration Lost (clear on read)
This bit is only used in Master mode.

0 = Arbitration won.

1 = Arbitration lost. Another master of the TWI bus has won the multi-master arbitration. TXCOMP is set at the same time.

• SCLWS: Clock Wait State (automatically set / reset)
This bit is only used in Slave mode.

0 = The clock is not stretched.

1 = The clock is stretched. THR / RHR buffer is not filled / emptied before the emission / reception of a new character.

SCLWS behavior can be seen in Figure 24-26 on page 242 and Figure 24-27 on page 243.

• EOSACC: End Of Slave Access (clear on read)
This bit is only used in Slave mode.

0 = A slave access is being performing.

1 = The Slave Access is finished. End Of Slave Access is automatically set as soon as SVACC is reset.

EOSACC behavior can be seen in Figure 24-28 on page 244 and Figure 24-29 on page 244

• ENDRX: End of RX buffer
This bit is only used in Master mode.

0 = The Receive Counter Register has not reached 0 since the last write in RCR or RNCR.

1 = The Receive Counter Register has reached 0 since the last write in RCR or RNCR.

• ENDTX: End of TX buffer
This bit is only used in Master mode.

0 = The Transmit Counter Register has not reached 0 since the last write in TCR or TNCR.

1 = The Transmit Counter Register has reached 0 since the last write in TCR or TNCR.

• RXBUFF: RX Buffer Full
This bit is only used in Master mode.

0 = RCR or RNCR have a value other than 0.

1 = Both RCR and RNCR have a value of 0.

• TXBUFE: TX Buffer Empty
This bit is only used in Master mode.

0 = TCR or TNCR have a value other than 0.

32058K AVR32-01/12

255

AT32UC3A

1 = Both TCR and TNCR have a value of 0.

24.14.8 TWI Interrupt Enable Register

Name: IER

Access: Write-only

Reset Value: 0x00000000

• TXCOMP: Transmission Completed Interrupt Enable

• RXRDY: Receive Holding Register Ready Interrupt Enable

• TXRDY: Transmit Holding Register Ready Interrupt Enable

• SVACC: Slave Access Interrupt Enable

• GACC: General Call Access Interrupt Enable

• OVRE: Overrun Error Interrupt Enable

• NACK: Not Acknowledge Interrupt Enable

• ARBLST: Arbitration Lost Interrupt Enable

• SCL_WS: Clock Wait State Interrupt Enable

• EOSACC: End Of Slave Access Interrupt Enable

• ENDRX: End of Receive Buffer Interrupt Enable

• ENDTX: End of Transmit Buffer Interrupt Enable

• RXBUFF: Receive Buffer Full Interrupt Enable

• TXBUFE: Transmit Buffer Empty Interrupt Enable
0 = No effect.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
TXBUFE RXBUFF ENDTX ENDRX EOSACC SCL_WS ARBLST NACK

7 6 5 4 3 2 1 0
– OVRE GACC SVACC – TXRDY RXRDY TXCOMP

32058K AVR32-01/12

256

AT32UC3A

1 = Enables the corresponding interrupt.

24.14.9 TWI Interrupt Disable Register

Name: IDR

Access: Write-only

Reset Value: 0x00000000

• TXCOMP: Transmission Completed Interrupt Disable

• RXRDY: Receive Holding Register Ready Interrupt Disable

• TXRDY: Transmit Holding Register Ready Interrupt Disable

• SVACC: Slave Access Interrupt Disable

• GACC: General Call Access Interrupt Disable

• OVRE: Overrun Error Interrupt Disable

• NACK: Not Acknowledge Interrupt Disable

• ARBLST: Arbitration Lost Interrupt Disable

• SCL_WS: Clock Wait State Interrupt Disable

• EOSACC: End Of Slave Access Interrupt Disable

• ENDRX: End of Receive Buffer Interrupt Disable

• ENDTX: End of Transmit Buffer Interrupt Disable

• RXBUFF: Receive Buffer Full Interrupt Disable

• TXBUFE: Transmit Buffer Empty Interrupt Disable
0 = No effect.

1 = Disables the corresponding interrupt.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
TXBUFE RXBUFF ENDTX ENDRX EOSACC SCL_WS ARBLST NACK

7 6 5 4 3 2 1 0
– OVRE GACC SVACC – TXRDY RXRDY TXCOMP

32058K AVR32-01/12

257

AT32UC3A

24.14.10 TWI Interrupt Mask Register

Name: IMR

Access: Read-only

Reset Value: 0x00000000

• TXCOMP: Transmission Completed Interrupt Mask

• RXRDY: Receive Holding Register Ready Interrupt Mask

• TXRDY: Transmit Holding Register Ready Interrupt Mask

• SVACC: Slave Access Interrupt Mask

• GACC: General Call Access Interrupt Mask

• OVRE: Overrun Error Interrupt Mask

• NACK: Not Acknowledge Interrupt Mask

• ARBLST: Arbitration Lost Interrupt Mask

• SCL_WS: Clock Wait State Interrupt Mask

• EOSACC: End Of Slave Access Interrupt Mask

• ENDRX: End of Receive Buffer Interrupt Mask

• ENDTX: End of Transmit Buffer Interrupt Mask

• RXBUFF: Receive Buffer Full Interrupt Mask

• TXBUFE: Transmit Buffer Empty Interrupt Mask
0 = The corresponding interrupt is disabled.

1 = The corresponding interrupt is enabled.

24.14.11 TWI Receive Holding Register

Name: RHR

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
TXBUFE RXBUFF ENDTX ENDRX EOSACC SCL_WS ARBLST NACK

7 6 5 4 3 2 1 0
– OVRE GACC SVACC – TXRDY RXRDY TXCOMP

32058K AVR32-01/12

258

AT32UC3A

Access: Read-only

Reset Value: 0x00000000

• RXDATA: Master or Slave Receive Holding Data

24.14.12 TWI Transmit Holding Register

Name: THR

Access: Read-write

Reset Value: 0x00000000

• TXDATA: Master or Slave Transmit Holding Data

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
RXDATA

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
TXDATA

32058K AVR32-01/12

259

AT32UC3A

25. Synchronous Serial Controller (SSC)

Rev: 3.0.0.2

25.1 Features
• Provides Serial Synchronous Communication Links Used in Audio and Telecom Applications
• Contains an Independent Receiver and Transmitter and a Common Clock Divider
• Interfaced with Two PDCA Channels (DMA Access) to Reduce Processor Overhead
• Offers a Configurable Frame Sync and Data Length
• Receiver and Transmitter Can be Programmed to Start Automatically or on Detection of Different

Events on the Frame Sync Signal
• Receiver and Transmitter Include a Data Signal, a Clock Signal and a Frame Synchronization

Signal

25.2 Overview
The Atmel Synchronous Serial Controller (SSC) provides a synchronous communication link
with external devices. It supports many serial synchronous communication protocols generally
used in audio and telecom applications such as I2S, Short Frame Sync, Long Frame Sync, etc.

The SSC contains an independent receiver and transmitter and a common clock divider. The
receiver and the transmitter each interface with three signals: the TX_DATA/RX_DATA signal
fo r da ta , the TX_CLOCK/RX_CLOCK s igna l fo r the c lock and the
TX_FRAME_SYNC/RX_FRAME_SYNC signal for the Frame Sync. The transfers can be pro-
grammed to start automatically or on different events detected on the Frame Sync signal.

The SSC’s high-level of programmability and its two dedicated PDCA channels of up to 32 bits
permit a continuous high bit rate data transfer without processor intervention.

Featuring connection to two PDCA channels, the SSC permits interfacing with low processor
overhead to the following:

• CODEC’s in master or slave mode
• DAC through dedicated serial interface, particularly I2S
• Magnetic card reader

32058K AVR32-01/12

260

AT32UC3A

25.3 Block Diagram

Figure 25-1. Block Diagram

25.4 Application Block Diagram

Figure 25-2. Application Block Diagram

SSC Interface

PDCA

Peripheral Bus
Bridge

High
Speed
Bus

Peripheral
Bus

Power
Manager

CLK_SSC

PIO

Interrupt Control

SSC Interrupt

TX_FRAME_SYNC

RX_FRAME_SYNC

TX_CLOCK

RX_CLOCK

RX_DATA

TX_DATA

Test
Management

Line InterfaceManagement

Interrupt
Management

FrameTime Slot
Management

SSC

Power
Management

CodecSerial AUDIO

OS or RTOS Driver

32058K AVR32-01/12

261

AT32UC3A

25.5 I/O Lines Description

25.6 Product Dependencies

25.6.1 I/O Lines
The pins used for interfacing the compliant external devices may be multiplexed with PIO lines.

Before using the SSC receiver, the PIO controller must be configured to dedicate the SSC
receiver I/O lines to the SSC peripheral mode.

Before using the SSC transmitter, the PIO controller must be configured to dedicate the SSC
transmitter I/O lines to the SSC peripheral mode.

25.6.2 Power Management
The SSC clock is generated by the power manager. Before using the SSC, the programmer
must ensure that the SSC clock is enabled in the power manager.

In the SSC description, Master Clock (CLK_SSC) is the bus clock of the peripheral bus to which
the SSC is connected.

25.6.3 Interrupt
The SSC interface has an interrupt line connected to the interrupt controller. Handling interrupts
requires programming the interrupt controller before configuring the SSC.

All SSC interrupts can be enabled/disabled configuring the SSC Interrupt mask register. Each
pending and unmasked SSC interrupt will assert the SSC interrupt line. The SSC interrupt ser-
vice routine can get the interrupt origin by reading the SSC interrupt status register.

25.7 Functional Description
This chapter contains the functional description of the following: SSC Functional Block, Clock
Management, Data format, Start, Transmitter, Receiver and Frame Sync.

The receiver and transmitter operate separately. However, they can work synchronously by pro-
gramming the receiver to use the transmit clock and/or to start a data transfer when transmission
starts. Alternatively, this can be done by programming the transmitter to use the receive clock
and/or to start a data transfer when reception starts. The transmitter and the receiver can be pro-
grammed to operate with the clock signals provided on either the TX_CLOCK or RX_CLOCK
pins. This allows the SSC to support many slave-mode data transfers. The maximum clock
speed allowed on the TX_CLOCK and RX_CLOCK pins is the master clock divided by 2.

Table 25-1. I/O Lines Description

Pin Name Pin Description Type

RX_FRAME_SYNC Receiver Frame Synchro Input/Output

RX_CLOCK Receiver Clock Input/Output

RX_DATA Receiver Data Input

TX_FRAME_SYNC Transmitter Frame Synchro Input/Output

TX_CLOCK Transmitter Clock Input/Output

TX_DATA Transmitter Data Output

32058K AVR32-01/12

262

AT32UC3A

Figure 25-3. SSC Functional Block Diagram

25.7.1 Clock Management
The transmitter clock can be generated by:

• an external clock received on the TX_CLOCK I/O pad
• the receiver clock
• the internal clock divider

The receiver clock can be generated by:

• an external clock received on the RX_CLOCK I/O pad
• the transmitter clock
• the internal clock divider

Furthermore, the transmitter block can generate an external clock on the TX_CLOCK I/O pad,
and the receiver block can generate an external clock on the RX_CLOCK I/O pad.

This allows the SSC to support many Master and Slave Mode data transfers.

Clock
Divider

User
Interface

Peripheral
Bus

CLK_SSC

Interrupt Control

Start
Selector Receive Shift Register

Receive Holding
Register

Receive Sync
Holding Register

PDCA

Interrupt Controller

RX_FRAME_SYNC

RX_DATA

RX_CLOCK

Frame Sync
Controller

Clock Output
Controller

Receive Clock
Controller

Transmit Holding
Register

Transmit Sync
Holding Register

Transmit Shift Register

Frame Sync
Controller

Clock Output
Controller

Transmit Clock
Controller

Start
Selector

TX_FRAME_SYNC

RX_FRAME_SYNC

TX_CLOCK Input

Transmitter

TX_PDCA

Load Shift

RX clock

TX clock

TX_CLOCK

TX_FRAME_SYNC

TX_DATA

Receiver

RX clock
RX_CLOCK

Input

TX clock

TX_FRAME_SYNC

RX_FRAME_SYNC

RX_PDCA

Load Shift

32058K AVR32-01/12

263

AT32UC3A

25.7.1.1 Clock Divider

Figure 25-4. Divided Clock Block Diagram

The Master Clock divider is determined by the 12-bit field DIV counter and comparator (so its
maximal value is 4095) in the Clock Mode Register CMR, allowing a Master Clock division by up
to 8190. The Divided Clock is provided to both the Receiver and Transmitter. When this field is
programmed to 0, the Clock Divider is not used and remains inactive.

When DIV is set to a value equal to or greater than 1, the Divided Clock has a frequency of Mas-
ter Clock divided by 2 times DIV. Each level of the Divided Clock has a duration of the Master
Clock multiplied by DIV. This ensures a 50% duty cycle for the Divided Clock regardless of
whether the DIV value is even or odd.

Figure 25-5. Divided Clock Generation

25.7.1.2 Transmitter Clock Management
The transmitter clock is generated from the receiver clock or the divider clock or an external
clock scanned on the TX_CLOCK I/O pad. The transmitter clock is selected by the CKS field in
TCMR (Transmit Clock Mode Register). Transmit Clock can be inverted independently by the
CKI bits in TCMR.

Table 25-2.

Maximum Minimum

CLK_SSC / 2 CLK_SSC / 8190

CMR

/ 2
CLK_SSC Divided Clock12-bit Counter

Clock Divider

Master Clock

Divided Clock
DIV = 1

Master Clock

Divided Clock
DIV = 3

Divided Clock Frequency = CLK_SSC/2

Divided Clock Frequency = CLK_SSC/6

32058K AVR32-01/12

264

AT32UC3A

The transmitter can also drive the TX_CLOCK I/O pad continuously or be limited to the actual
data transfer. The clock output is configured by the TCMR register. The Transmit Clock Inver-
sion (CKI) bits have no effect on the clock outputs. Programming the TCMR register to select
TX_CLOCK pin (CKS field) and at the same time Continuous Transmit Clock (CKO field) might
lead to unpredictable results.

Figure 25-6. Transmitter Clock Management

25.7.1.3 Receiver Clock Management
The receiver clock is generated from the transmitter clock or the divider clock or an external
clock scanned on the RX_CLOCK I/O pad. The Receive Clock is selected by the CKS field in
RCMR (Receive Clock Mode Register). Receive Clocks can be inverted independently by the
CKI bits in RCMR.

The receiver can also drive the RX_CLOCK I/O pad continuously or be limited to the actual data
transfer. The clock output is configured by the RCMR register. The Receive Clock Inversion
(CKI) bits have no effect on the clock outputs. Programming the RCMR register to select
RX_CLOCK pin (CKS field) and at the same time Continuous Receive Clock (CKO field) can
lead to unpredictable results.

TX_CLOCK(pin)

Receiver
Clock

Divider
Clock

CKO Data Transfer

Tri-state
Controller

INV
MUX

CKS

MUX

Tri-state
Controller

CKI CKG

Transmitter
Clock

Clock
Output

32058K AVR32-01/12

265

AT32UC3A

Figure 25-7. Receiver Clock Management

25.7.1.4 Serial Clock Ratio Considerations
The Transmitter and the Receiver can be programmed to operate with the clock signals provided
on either the TX_CLOCK or RX_CLOCK pins. This allows the SSC to support many slave-mode
data transfers. In this case, the maximum clock speed allowed on the RX_CLOCK pin is:

– Master Clock divided by 2 if Receiver Frame Synchro is input
– Master Clock divided by 3 if Receiver Frame Synchro is output

In addition, the maximum clock speed allowed on the TX_CLOCK pin is:

– Master Clock divided by 6 if Transmit Frame Synchro is input
– Master Clock divided by 2 if Transmit Frame Synchro is output

25.7.2 Transmitter Operations
A transmitted frame is triggered by a start event and can be followed by synchronization data
before data transmission.

The start event is configured by setting the Transmit Clock Mode Register (TCMR). See Section
“25.7.4” on page 267.

The frame synchronization is configured setting the Transmit Frame Mode Register (TFMR).
See Section “25.7.5” on page 269.

To transmit data, the transmitter uses a shift register clocked by the transmitter clock signal and
the start mode selected in the TCMR. Data is written by the application to the THR register then
transferred to the shift register according to the data format selected.

When both the THR and the transmit shift register are empty, the status flag TXEMPTY is set in
SR. When the Transmit Holding register is transferred in the Transmit shift register, the status
flag TXRDY is set in SR and additional data can be loaded in the holding register.

Divider
Clock

RX_CLOCK (pin)

Transmitter
Clock

MUX Tri-state
Controller

CKO Data Transfer

INV
MUX

CKI

Tri-state
Controller

CKG

Receiver
Clock

Clock
Output

CKS

32058K AVR32-01/12

266

AT32UC3A

Figure 25-8. Transmitter Block Diagram

25.7.3 Receiver Operations
A received frame is triggered by a start event and can be followed by synchronization data
before data transmission.

The start event is configured setting the Receive Clock Mode Register (RCMR). See Section
“25.7.4” on page 267.

The frame synchronization is configured setting the Receive Frame Mode Register (RFMR). See
Section “25.7.5” on page 269.

The receiver uses a shift register clocked by the receiver clock signal and the start mode
selected in the RCMR. The data is transferred from the shift register depending on the data for-
mat selected.

When the receiver shift register is full, the SSC transfers this data in the holding register, the sta-
tus flag RXRDY is set in SR and the data can be read in the receiver holding register. If another
transfer occurs before read of the RHR register, the status flag OVERUN is set in SR and the
receiver shift register is transferred in the RHR register.

TFMR.DATDEF

TFMR.MSBF 0

1

Transmit Shift Register

0 1

THR TSHR TFMR.FSLEN

TCMR.STTDLY
TFMR.FSDEN
TFMR.DATNB

CR.TXEN

CR.TXDIS

SR.TXEN

TX_DATA

TFMR.DATLEN

TCMR.STTDLY
TFMR.FSDEN

Start
Selector

RX_FRAME_SYNC
TX_FRAME_SYNC

Transmitter Clock

32058K AVR32-01/12

267

AT32UC3A

Figure 25-9. Receiver Block Diagram

25.7.4 Start
The transmitter and receiver can both be programmed to start their operations when an event
occurs, respectively in the Transmit Start Selection (START) field of TCMR and in the Receive
Start Selection (START) field of RCMR.

Under the following conditions the start event is independently programmable:

• Continuous. In this case, the transmission starts as soon as a word is written in THR and the
reception starts as soon as the Receiver is enabled.

• Synchronously with the transmitter/receiver
• On detection of a falling/rising edge on TX_FRAME_SYNC/RX_FRAME_SYNC
• On detection of a low level/high level on TX_FRAME_SYNC/RX_FRAME_SYNC
• On detection of a level change or an edge on TX_FRAME_SYNC/RX_FRAME_SYNC

A start can be programmed in the same manner on either side of the Transmit/Receive Clock
Register (RCMR/TCMR). Thus, the start could be on TX_FRAME_SYNC (Transmit) or
RX_FRAME_SYNC (Receive).

Moreover, the Receiver can start when data is detected in the bit stream with the Compare
Functions.

Detection on TX_FRAME_SYNC/RX_FRAME_SYNC input/output is done by the field FSOS of
the Transmit/Receive Frame Mode Register (TFMR/RFMR).

Divider
C lock

RX_CLO CK (pin)

Transm itter
C lock

M UX Tri-state
Controller

CKO Data Transfer

INV
M UX

CKI

Tri-state
Controller

CKG

Receiver
C lock

Clock
O utput

CKS

32058K AVR32-01/12

268

AT32UC3A

Figure 25-10. Transmit Start Mode

Figure 25-11. Receive Pulse/Edge Start Modes

X B0 B1

B1B0

B0 B1

B1B0

B0 B1 B0 B1

B0 B1B1B0

X

X

X

X

TX_DATA (Output) X Start= Any Edge on TX_FRAME_SYNC

TX_DATA (Output)
Start= Level Change on TX_FRAME_SYNC

TX_DATA (Output)
Start= Rising Edge on TX_FRAME_SYNC

TX_DATA (Output)
Start= Falling Edge on TX_FRAME_SYNC

TX_DATA (Output)
Start= High Level on TX_FRAME_SYNC

TX_DATA (Output)
Start= Low Level on TX_FRAME_SYNC

TX_FRAME_SYNC (Input)

TX_CLOCK (Input)

STTDLY

STTDLY

STTDLY

STTDLY

STTDLY

STTDLY

RX_CLOCK

RX_FRAME_SYNC (Input)

RX_DATA (Input)
Start = High Level on RX_FRAME_SYNC

RX_DATA (Input)
Start = Falling Edge on RX_FRAME_SYNC

RX_DATA (Input)
Start = Rising Edge on RX_FRAME_SYNC

RX_DATA (Input)
Start = Level Change on RX_FRAME_SYNC

RX_DATA (Input)
Start = Any Edge on RX_FRAME_SYNC

RX_DATA (Input)
Start = Low Level on RX_FRAME_SYNC

X

X

X

X

X

X B0

B0

B0

B0

B0

B0

B0

B1 B1

B1

B1

B1

B1

B1

STTDLY

STTDLY

STTDLY

STTDLY

STTDLY

STTDLY

32058K AVR32-01/12

269

AT32UC3A

25.7.5 Frame Sync
The Transmitter and Receiver Frame Sync pins, TX_FRAME_SYNC and RX_FRAME_SYNC,
can be programmed to generate different kinds of frame synchronization signals. The Frame
Sync Output Selection (FSOS) field in the Receive Frame Mode Register (RFMR) and in the
Transmit Frame Mode Register (TFMR) are used to select the required waveform.

• Programmable low or high levels during data transfer are supported.
• Programmable high levels before the start of data transfers or toggling are also supported.

If a pulse waveform is selected, the Frame Sync Length (FSLEN) field in RFMR and TFMR pro-
grams the length of the pulse, from 1 bit time up to 16 bit time.

The periodicity of the Receive and Transmit Frame Sync pulse output can be programmed
through the Period Divider Selection (PERIOD) field in RCMR and TCMR.

25.7.5.1 Frame Sync Data
Frame Sync Data transmits or receives a specific tag during the Frame Sync signal.

During the Frame Sync signal, the Receiver can sample the RX_DATA line and store the data in
the Receive Sync Holding Register and the transmitter can transfer Transmit Sync Holding Reg-
ister in the Shifter Register. The data length to be sampled/shifted out during the Frame Sync
signal is programmed by the FSLEN field in RFMR/TFMR.

Concerning the Receive Frame Sync Data operation, if the Frame Sync Length is equal to or
lower than the delay between the start event and the actual data reception, the data sampling
operation is performed in the Receive Sync Holding Register through the Receive Shift Register.

The Transmit Frame Sync Operation is performed by the transmitter only if the bit Frame Sync
Data Enable (FSDEN) in TFMR is set. If the Frame Sync length is equal to or lower than the
delay between the start event and the actual data transmission, the normal transmission has pri-
ority and the data contained in the Transmit Sync Holding Register is transferred in the Transmit
Register, then shifted out.

25.7.5.2 Frame Sync Edge Detection
The Frame Sync Edge detection is programmed by the FSEDGE field in RFMR/TFMR. This sets
the corresponding flags RXSYN/TXSYN in the SSC Status Register (SR) on frame synchro
edge detection (signals RX_FRAME_SYNC/TX_FRAME_SYNC).

32058K AVR32-01/12

270

AT32UC3A

25.7.6 Receive Compare Modes

Figure 25-12. Receive Compare Modes

25.7.6.1 Compare Functions
Compare 0 can be one start event of the Receiver. In this case, the receiver compares at each
new sample the last FSLEN bits received at the FSLEN lower bit of the data contained in the
Compare 0 Register (RC0R). When this start event is selected, the user can program the
Receiver to start a new data transfer either by writing a new Compare 0, or by receiving continu-
ously until Compare 1 occurs. This selection is done with the bit (STOP) in RCMR.

25.7.7 Data Format
The data framing format of both the transmitter and the receiver are programmable through the
Transmitter Frame Mode Register (TFMR) and the Receiver Frame Mode Register (RFMR). In
either case, the user can independently select:

• the event that starts the data transfer (START)
• the delay in number of bit periods between the start event and the first data bit (STTDLY)
• the length of the data (DATLEN)
• the number of data to be transferred for each start event (DATNB).
• the length of synchronization transferred for each start event (FSLEN)
• the bit sense: most or lowest significant bit first (MSBF).

Additionally, the transmitter can be used to transfer synchronization and select the level driven
on the TX_DATA pin while not in data transfer operation. This is done respectively by the Frame
Sync Data Enable (FSDEN) and by the Data Default Value (DATDEF) bits in TFMR.

RX_DATA
(Input)

RX_CLOCK

CMP0 CMP1 CMP2 CMP3

Start

FSLEN
Up to 16 Bits

(4 in This Example)

STTDLY

Ignored

DATLEN

B2B0 B1

32058K AVR32-01/12

271

AT32UC3A

Figure 25-13. Transmit and Receive Frame Format in Edge/Pulse Start Modes

Note: 1. Example of input on falling edge of TX_FRAME_SYNC/RX_FRAME_SYNC.

Table 25-3. Data Frame Registers

Transmitter Receiver Field Length Comment

TFMR RFMR DATLEN Up to 32 Size of word

TFMR RFMR DATNB Up to 16 Number of words transmitted in frame

TFMR RFMR MSBF Most significant bit first

TFMR RFMR FSLEN Up to 16 Size of Synchro data register

TFMR DATDEF 0 or 1 Data default value ended

TFMR FSDEN Enable send TSHR

TCMR RCMR PERIOD Up to 512 Frame size

TCMR RCMR STTDLY Up to 255 Size of transmit start delay

DATNB

DATLEN

Data

DataData

Data

Data Data Default

Default

Sync Data

Sync DataIgnored

From DATDEF

Start

From DATDEF

DATLEN

To RHRTo RHR

From THR

From THRFrom THR

From THR

From DATDEF

From DATDEF

Ignored

Default

Default

Sync Data

To RSHR

From TSHR

FSLEN

Start

TX_FRAME_SYNC
/

RX_FRAME_SYNC

TX_DATA
(If FSDEN = 1)

TX_DATA
(If FSDEN = 0)

RX_DATA

STTDLY

Sync Data

PERIOD

(1)

32058K AVR32-01/12

272

AT32UC3A

Figure 25-14. Transmit Frame Format in Continuous Mode

Note: 1. STTDLY is set to 0. In this example, THR is loaded twice. FSDEN value has no effect on the
transmission. SyncData cannot be output in continuous mode.

Figure 25-15. Receive Frame Format in Continuous Mode

Note: 1. STTDLY is set to 0.

25.7.8 Loop Mode
The receiver can be programmed to receive transmissions from the transmitter. This is done by
setting the Loop Mode (LOOP) bit in RFMR. In this case, RX_DATA is connected to TX_DATA,
RX_FRAME_SYNC is connected to TX_FRAME_SYNC and RX_CLOCK is connected to
TX_CLOCK.

25.7.9 Interrupt
Most bits in SR have a corresponding bit in interrupt management registers.

The SSC can be programmed to generate an interrupt when it detects an event. The interrupt is
controlled by writing IER (Interrupt Enable Register) and IDR (Interrupt Disable Register) These
registers enable and disable, respectively, the corresponding interrupt by setting and clearing
the corresponding bit in IMR (Interrupt Mask Register), which controls the generation of inter-
rupts by asserting the SSC interrupt line connected to the interrupt controller.

Start

Data Data

DATLEN

From THR

DATLEN

TX_DATA

Start: 1. TXEMPTY set to 1
2. Write into the THR

From THR

Default

Data Data

To RHRTo RHR

DATLENDATLEN

RX_DATA

Start = Enable Receiver

32058K AVR32-01/12

273

AT32UC3A

Figure 25-16. Interrupt Block Diagram

25.8 SSC Application Examples
The SSC can support several serial communication modes used in audio or high speed serial
links. Some standard applications are shown in the following figures. All serial link applications
supported by the SSC are not listed here.

Figure 25-17. Audio Application Block Diagram

IMR

IER IDR

ClearSet

Interrupt
Control

SSC Interrupt

TXRDY
TXEMPTY
TXSYNC

Transmitter

ENDTX
TXBUFE

PDCA

RXBUFF
ENDRX

Receiver

RXRDY
OVRUN
RXSYNC

Clock SCK

Word Select WS

Data SD MSB

Left Channel

LSB MSB

Right Channel

Data SD

Word Select WS

Clock SCK

SSC

TX_CLOCK

TX_FRAME_SYNC

TX_DATA

RX_DATA

RX_FRAME_SYNC

RX_CLOCK

I2S
RECEIVER

32058K AVR32-01/12

274

AT32UC3A

Figure 25-18. Codec Application Block Diagram

Figure 25-19. Time Slot Application Block Diagram

SSC

Serial Data Clock (SCLK)

Frame sync (FSYNC)

Serial Data Out

Serial Data In

Serial Data Clock (SCLK)

Frame sync (FSYNC)

Serial Data Out

Serial Data In

Dstart Dend

First Time Slot

CODEC

TX_CLOCK

TX_FRAME_SYNC

TX_DATA

RX_DATA

RX_FRAME_SYNC

RX_CLOCK

CODEC
First

Time Slot

CODEC
Second

Time Slot

Data in

Data Out

FSYNC

SCLK

Serial Data Clock (SCLK)

Frame sync (FSYNC)

Serial Data Out

Serial Data In

Dstart

First Time Slot Second Time Slot

Dend

SSC

TX_CLOCK

TX_FRAME_SYNC

TX_DATA

RX_DATA

RX_FRAME_SYNC

RX_CLOCK

32058K AVR32-01/12

275

AT32UC3A

25.9 User Interface

Table 25-4. Register Mapping

Offset Register Register Name Access Reset

0x0 Control Register CR Write –

0x4 Clock Mode Register CMR Read/Write 0x0

0x8 Reserved – – –

0xC Reserved – – –

0x10 Receive Clock Mode Register RCMR Read/Write 0x0

0x14 Receive Frame Mode Register RFMR Read/Write 0x0

0x18 Transmit Clock Mode Register TCMR Read/Write 0x0

0x1C Transmit Frame Mode Register TFMR Read/Write 0x0

0x20 Receive Holding Register RHR Read 0x0

0x24 Transmit Holding Register THR Write –

0x28 Reserved – – –

0x2C Reserved – – –

0x30 Receive Sync. Holding Register RSHR Read 0x0

0x34 Transmit Sync. Holding Register TSHR Read/Write 0x0

0x38 Receive Compare 0 Register RC0R Read/Write 0x0

0x3C Receive Compare 1 Register RC1R Read/Write 0x0

0x40 Status Register SR Read 0x000000CC

0x44 Interrupt Enable Register IER Write –

0x48 Interrupt Disable Register IDR Write –

0x4C Interrupt Mask Register IMR Read 0x0

0x50-0xFC Reserved – – –

32058K AVR32-01/12

276

AT32UC3A

25.9.1 Control Register
Name: CR

Access Type: Write-only

Offset: 0x00

Reset value: -

• SWRST: Software Reset

0: No effect.

1: Performs a software reset. Has priority on any other bit in CR.

• TXDIS: Transmit Disable

0: No effect.

1: Disables Transmit. If a character is currently being transmitted, disables at end of current character transmission.

• TXEN: Transmit Enable

0: No effect.

1: Enables Transmit if TXDIS is not set.

• RXDIS: Receive Disable

0: No effect.

1: Disables Receive. If a character is currently being received, disables at end of current character reception.

• RXEN: Receive Enable

0: No effect.

1: Enables Receive if RXDIS is not set.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
SWRST – – – – – TXDIS TXEN

7 6 5 4 3 2 1 0
– – – – – – RXDIS RXEN

32058K AVR32-01/12

277

AT32UC3A

25.9.2 Clock Mode Register
Name: CMR

Access Type: Read/Write

Offset: 0x04

Reset value: 0x00000000

• DIV: Clock Divider

0: The Clock Divider is not active.

Any Other Value: The Divided Clock equals the Master Clock divided by 2 times DIV. The maximum bit rate is CLK_SSC/2.
The minimum bit rate is CLK_SSC/2 x 4095 = CLK_SSC/8190.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – DIV

7 6 5 4 3 2 1 0
DIV

32058K AVR32-01/12

278

AT32UC3A

25.9.3 Receive Clock Mode Register
Name: RCMR

Access Type: Read/Write

Offset: 0x10

Reset value: 0x00000000

• PERIOD: Receive Period Divider Selection

This field selects the divider to apply to the selected Receive Clock in order to generate a new Frame Sync Signal. If 0, no
PERIOD signal is generated. If not 0, a PERIOD signal is generated each 2 x (PERIOD+1) Receive Clock.

• STTDLY: Receive Start Delay

If STTDLY is not 0, a delay of STTDLY clock cycles is inserted between the start event and the actual start of reception.
When the Receiver is programmed to start synchronously with the Transmitter, the delay is also applied.

Note: It is very important that STTDLY be set carefully. If STTDLY must be set, it should be done in relation to TAG
(Receive Sync Data) reception.

• STOP: Receive Stop Selection

0: After completion of a data transfer when starting with a Compare 0, the receiver stops the data transfer and waits for a
new compare 0.

1: After starting a receive with a Compare 0, the receiver operates in a continuous mode until a Compare 1 is detected.

• START: Receive Start Selection

31 30 29 28 27 26 25 24
PERIOD

23 22 21 20 19 18 17 16
STTDLY

15 14 13 12 11 10 9 8
– – – STOP START

7 6 5 4 3 2 1 0
CKG CKI CKO CKS

START Receive Start

0x0 Continuous, as soon as the receiver is enabled, and immediately after the end of
transfer of the previous data.

0x1 Transmit start

0x2 Detection of a low level on RX_FRAME_SYNC signal

0x3 Detection of a high level on RX_FRAME_SYNC signal

0x4 Detection of a falling edge on RX_FRAME_SYNC signal

0x5 Detection of a rising edge on RX_FRAME_SYNC signal

0x6 Detection of any level change on RX_FRAME_SYNC signal

0x7 Detection of any edge on RX_FRAME_SYNC signal

0x8 Compare 0

0x9-0xF Reserved

32058K AVR32-01/12

279

AT32UC3A

• CKG: Receive Clock Gating Selection

• CKI: Receive Clock Inversion

0: The data inputs (Data and Frame Sync signals) are sampled on Receive Clock falling edge. The Frame Sync signal out-
put is shifted out on Receive Clock rising edge.

1: The data inputs (Data and Frame Sync signals) are sampled on Receive Clock rising edge. The Frame Sync signal out-
put is shifted out on Receive Clock falling edge.

CKI affects only the Receive Clock and not the output clock signal.

• CKO: Receive Clock Output Mode Selection

• CKS: Receive Clock Selection

CKG Receive Clock Gating

0x0 None, continuous clock

0x1 Receive Clock enabled only if RX_FRAME_SYNC Low

0x2 Receive Clock enabled only if RX_FRAME_SYNC High

0x3 Reserved

CKO Receive Clock Output Mode RX_CLOCK pin

0x0 None Input-only

0x1 Continuous Receive Clock Output

0x2 Receive Clock only during data transfers Output

0x3-0x7 Reserved

CKS Selected Receive Clock

0x0 Divided Clock

0x1 TX_CLOCK Clock signal

0x2 RX_CLOCK pin

0x3 Reserved

32058K AVR32-01/12

280

AT32UC3A

25.9.4 Receive Frame Mode Register
Name: RFMR

Access Type: Read/Write

Offset: 0x14

Reset value: 0x00000000

• FSLENHI: Receive Frame Sync Length High part

The four MSB of the FSLEN bitfield.

• FSEDGE: Frame Sync Edge Detection

Determines which edge on Frame Sync will generate the interrupt RXSYN in the SSC Status Register.

• FSOS: Receive Frame Sync Output Selection

• FSLEN: Receive Frame Sync Length

This field defines the length of the Receive Frame Sync Signal and the number of bits sampled and stored in the Receive
Sync Data Register. When this mode is selected by the START field in the Receive Clock Mode Register, it also deter-
mines the length of the sampled data to be compared to the Compare 0 or Compare 1 register. Note: The four most
significant bits fo this bitfield are in the FSLENHI bitfield.

Pulse length is equal to ({FSLENHI,FSLEN} + 1) Receive Clock periods. Thus, if {FSLENHI,FSLEN} is 0, the Receive
Frame Sync signal is generated during one Receive Clock period.

• DATNB: Data Number per Frame

31 30 29 28 27 26 25 24
FSLENHI – – – FSEDGE

23 22 21 20 19 18 17 16
– FSOS FSLEN

15 14 13 12 11 10 9 8
– – – – DATNB

7 6 5 4 3 2 1 0
MSBF – LOOP DATLEN

FSEDGE Frame Sync Edge Detection

0x0 Positive Edge Detection

0x1 Negative Edge Detection

FSOS Selected Receive Frame Sync Signal RX_FRAME_SYNC Pin

0x0 None Input-only

0x1 Negative Pulse Output

0x2 Positive Pulse Output

0x3 Driven Low during data transfer Output

0x4 Driven High during data transfer Output

0x5 Toggling at each start of data transfer Output

0x6-0x7 Reserved Undefined

32058K AVR32-01/12

281

AT32UC3A

This field defines the number of data words to be received after each transfer start, which is equal to (DATNB + 1).

• MSBF: Most Significant Bit First

0: The lowest significant bit of the data register is sampled first in the bit stream.

1: The most significant bit of the data register is sampled first in the bit stream.

• LOOP: Loop Mode

0: Normal operating mode.

1: RX_DATA is driven by TX_DATA, RX_FRAME_SYNC is driven by TX_FRAME_SYNC and TX_CLOCK drives
RX_CLOCK.

• DATLEN: Data Length

0: Forbidden value (1-bit data length not supported).
Any other value: The bit stream contains DATLEN + 1 data bits. Moreover, it defines the transfer size performed by the
PDCA assigned to the Receiver. If DATLEN is lower or equal to 7, data transfers are in bytes. If DATLEN is between 8 and
15 (included), half-words are transferred, and for any other value, 32-bit words are transferred.

32058K AVR32-01/12

282

AT32UC3A

25.9.5 Transmit Clock Mode Register
Name: TCMR

Access Type: Read/Write

Offset: 0x18

Reset value: 0x00000000

• PERIOD: Transmit Period Divider Selection

This field selects the divider to apply to the selected Transmit Clock to generate a new Frame Sync Signal. If 0, no period
signal is generated. If not 0, a period signal is generated at each 2 x (PERIOD+1) Transmit Clock.

• STTDLY: Transmit Start Delay

If STTDLY is not 0, a delay of STTDLY clock cycles is inserted between the start event and the actual start of transmission
of data. When the Transmitter is programmed to start synchronously with the Receiver, the delay is also applied.

Note: STTDLY must be set carefully. If STTDLY is too short in respect to TAG (Transmit Sync Data) emission, data is emit-
ted instead of the end of TAG.

• START: Transmit Start Selection

31 30 29 28 27 26 25 24
PERIOD

23 22 21 20 19 18 17 16
STTDLY

15 14 13 12 11 10 9 8
– – – – START

7 6 5 4 3 2 1 0
CKG CKI CKO CKS

START Transmit Start

0x0 Continuous, as soon as a word is written in the THR Register (if Transmit is enabled), and immediately
after the end of transfer of the previous data.

0x1 Receive start

0x2 Detection of a low level on TX_FRAME_SYNC signal

0x3 Detection of a high level on TX_FRAME_SYNC signal

0x4 Detection of a falling edge on TX_FRAME_SYNC signal

0x5 Detection of a rising edge on TX_FRAME_SYNC signal

0x6 Detection of any level change on TX_FRAME_SYNC signal

0x7 Detection of any edge on TX_FRAME_SYNC signal

0x8 - 0xF Reserved

32058K AVR32-01/12

283

AT32UC3A

• CKG: Transmit Clock Gating Selection

• CKI: Transmit Clock Inversion

0: The data outputs (Data and Frame Sync signals) are shifted out on Transmit Clock falling edge. The Frame sync signal
input is sampled on Transmit clock rising edge.

1: The data outputs (Data and Frame Sync signals) are shifted out on Transmit Clock rising edge. The Frame sync signal
input is sampled on Transmit clock falling edge.

CKI affects only the Transmit Clock and not the output clock signal.

• CKO: Transmit Clock Output Mode Selection

• CKS: Transmit Clock Selection

CKG Transmit Clock Gating

0x0 None, continuous clock

0x1 Transmit Clock enabled only if TX_FRAME_SYNC Low

0x2 Transmit Clock enabled only if TX_FRAME_SYNC High

0x3 Reserved

CKO Transmit Clock Output Mode TX_CLOCK pin

0x0 None Input-only

0x1 Continuous Transmit Clock Output

0x2 Transmit Clock only during data transfers Output

0x3-0x7 Reserved

CKS Selected Transmit Clock

0x0 Divided Clock

0x1 RX_CLOCK Clock signal

0x2 TX_CLOCK Pin

0x3 Reserved

32058K AVR32-01/12

284

AT32UC3A

25.9.6 Transmit Frame Mode Register
Name: TFMR

Access Type: Read/Write

Offset: 0x1C

Reset value: 0x00000000

• FSLENHI: Transmit Frame Sync Length High part

The four MSB of the FSLEN bitfield.

• FSEDGE: Frame Sync Edge Detection

Determines which edge on frame sync will generate the interrupt TXSYN (Status Register).

• FSDEN: Frame Sync Data Enable

0: The TX_DATA line is driven with the default value during the Transmit Frame Sync signal.

1: TSHR value is shifted out during the transmission of the Transmit Frame Sync signal.

• FSOS: Transmit Frame Sync Output Selection

• FSLEN: Transmit Frame Sync Length

This field defines the length of the Transmit Frame Sync signal and the number of bits shifted out from the Transmit Sync
Data Register if FSDEN is 1. Note: The four most significant bits fo this bitfield are in the FSLENHI bitfield.

31 30 29 28 27 26 25 24
FSLENHI – – – FSEDGE

23 22 21 20 19 18 17 16
FSDEN FSOS FSLEN

15 14 13 12 11 10 9 8
– – – – DATNB

7 6 5 4 3 2 1 0
MSBF – DATDEF DATLEN

FSEDGE Frame Sync Edge Detection

0x0 Positive Edge Detection

0x1 Negative Edge Detection

FSOS Selected Transmit Frame Sync Signal TX_FRAME_SYNC Pin

0x0 None Input-only

0x1 Negative Pulse Output

0x2 Positive Pulse Output

0x3 Driven Low during data transfer Output

0x4 Driven High during data transfer Output

0x5 Toggling at each start of data transfer Output

0x6-0x7 Reserved Undefined

32058K AVR32-01/12

285

AT32UC3A

Pulse length is equal to ({FSLENHI,FSLEN} + 1) Transmit Clock periods, i.e., the pulse length can range from 1 to 16
Transmit Clock periods. If {FSLENHI,FSLEN} is 0, the Transmit Frame Sync signal is generated during one Transmit Clock
period.

• DATNB: Data Number per frame

This field defines the number of data words to be transferred after each transfer start, which is equal to (DATNB +1).

• MSBF: Most Significant Bit First

0: The lowest significant bit of the data register is shifted out first in the bit stream.

1: The most significant bit of the data register is shifted out first in the bit stream.

• DATDEF: Data Default Value

This bit defines the level driven on the TX_DATA pin while out of transmission. Note that if the pin is defined as multi-drive
by the PIO Controller, the pin is enabled only if the SCC TX_DATA output is 1.

• DATLEN: Data Length

0: Forbidden value (1-bit data length not supported).

Any other value: The bit stream contains DATLEN + 1 data bits. Moreover, it defines the transfer size performed by the
PDCA assigned to the Transmit. If DATLEN is lower or equal to 7, data transfers are bytes, if DATLEN is between 8 and 15
(included), half-words are transferred, and for any other value, 32-bit words are transferred.

32058K AVR32-01/12

286

AT32UC3A

25.9.7 SSC Receive Holding Register
Name: RHR

Access Type: Read-only

Offset: 0x20

Reset value: 0x00000000

• RDAT: Receive Data

Right aligned regardless of the number of data bits defined by DATLEN in RFMR.

31 30 29 28 27 26 25 24
RDAT

23 22 21 20 19 18 17 16
RDAT

15 14 13 12 11 10 9 8
RDAT

7 6 5 4 3 2 1 0
RDAT

32058K AVR32-01/12

287

AT32UC3A

25.9.8 Transmit Holding Register
Name: THR

Access Type: Write-only

Offset: 0x24

Reset value: -

• TDAT: Transmit Data

Right aligned regardless of the number of data bits defined by DATLEN in TFMR.

31 30 29 28 27 26 25 24
TDAT

23 22 21 20 19 18 17 16
TDAT

15 14 13 12 11 10 9 8
TDAT

7 6 5 4 3 2 1 0
TDAT

32058K AVR32-01/12

288

AT32UC3A

25.9.9 Receive Synchronization Holding Register
Name: RSHR

Access Type: Read-only

Offset: 0x30

Reset value: 0x00000000

• RSDAT: Receive Synchronization Data

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
RSDAT

7 6 5 4 3 2 1 0
RSDAT

32058K AVR32-01/12

289

AT32UC3A

25.9.10 Transmit Synchronization Holding Register
Name: TSHR

Access Type: Read/Write

Offset: 0x34

Reset value: 0x00000000

• TSDAT: Transmit Synchronization Data

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
TSDAT

7 6 5 4 3 2 1 0
TSDAT

32058K AVR32-01/12

290

AT32UC3A

25.9.11 Receive Compare 0 Register
Name: RC0R

Access Type: Read/Write

Offset: 0x38

Reset value: 0x00000000

• CP0: Receive Compare Data 0

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
CP0

7 6 5 4 3 2 1 0
CP0

32058K AVR32-01/12

291

AT32UC3A

25.9.12 Receive Compare 1 Register
Name: RC1R

Access Type: Read/Write

Offset: 0x3C

Reset value: 0x00000000

• CP1: Receive Compare Data 1

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
CP1

7 6 5 4 3 2 1 0
CP1

32058K AVR32-01/12

292

AT32UC3A

25.9.13 Status Register
Name: SR

Access Type: Read-only

Offset: 0x40

Reset value: 0x000000CC

• RXEN: Receive Enable

0: Receive is disabled.

1: Receive is enabled.

• TXEN: Transmit Enable

0: Transmit is disabled.

1: Transmit is enabled.

• RXSYN: Receive Sync

0: An Rx Sync has not occurred since the last read of the Status Register.

1: An Rx Sync has occurred since the last read of the Status Register.

• TXSYN: Transmit Sync

0: A Tx Sync has not occurred since the last read of the Status Register.

1: A Tx Sync has occurred since the last read of the Status Register.

• CP1: Compare 1

0: A compare 1 has not occurred since the last read of the Status Register.

1: A compare 1 has occurred since the last read of the Status Register.

• CP0: Compare 0

0: A compare 0 has not occurred since the last read of the Status Register.

1: A compare 0 has occurred since the last read of the Status Register.

• RXBUFF: Receive Buffer Full

0: RCR or RNCR have a value other than 0.

1: Both RCR and RNCR have a value of 0.

• ENDRX: End of Reception

0: Data is written on the Receive Counter Register or Receive Next Counter Register.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – RXEN TXEN

15 14 13 12 11 10 9 8
– – – – RXSYN TXSYN CP1 CP0

7 6 5 4 3 2 1 0
RXBUFF ENDRX OVRUN RXRDY TXBUFE ENDTX TXEMPTY TXRDY

32058K AVR32-01/12

293

AT32UC3A

1: End of PDCA transfer when Receive Counter Register has arrived at zero.

• OVRUN: Receive Overrun

0: No data has been loaded in RHR while previous data has not been read since the last read of the Status Register.

1: Data has been loaded in RHR while previous data has not yet been read since the last read of the Status Register.

• RXRDY: Receive Ready

0: RHR is empty.

1: Data has been received and loaded in RHR.

• TXBUFE: Transmit Buffer Empty

0: TCR or TNCR have a value other than 0.

1: Both TCR and TNCR have a value of 0.

• ENDTX: End of Transmission

0: The register TCR has not reached 0 since the last write in TCR or TNCR.

1: The register TCR has reached 0 since the last write in TCR or TNCR.

• TXEMPTY: Transmit Empty

0: Data remains in THR or is currently transmitted from TSR.

1: Last data written in THR has been loaded in TSR and last data loaded in TSR has been transmitted.

• TXRDY: Transmit Ready

0: Data has been loaded in THR and is waiting to be loaded in the Transmit Shift Register (TSR).

1: THR is empty.

32058K AVR32-01/12

294

AT32UC3A

25.9.14 Interrupt Enable Register
Name: IER

Access Type: Write-only

Offset: 0x44

Reset value: -

• RXSYN: Rx Sync Interrupt Enable

0: No effect.

1: Enables the Rx Sync Interrupt.

• TXSYN: Tx Sync Interrupt Enable

0: No effect.

1: Enables the Tx Sync Interrupt.

• CP1: Compare 1 Interrupt Enable

0: No effect.

1: Enables the Compare 1 Interrupt.

• CP0: Compare 0 Interrupt Enable

0: No effect.

1: Enables the Compare 0 Interrupt.

• RXBUFF: Receive Buffer Full Interrupt Enable

0: No effect.

1: Enables the Receive Buffer Full Interrupt.

• ENDRX: End of Reception Interrupt Enable

0: No effect.

1: Enables the End of Reception Interrupt.

• OVRUN: Receive Overrun Interrupt Enable

0: No effect.

1: Enables the Receive Overrun Interrupt.

• RXRDY: Receive Ready Interrupt Enable

0: No effect.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – RXSYN TXSYN CP1 CP0

7 6 5 4 3 2 1 0
RXBUFF ENDRX OVRUN RXRDY TXBUFE ENDTX TXEMPTY TXRDY

32058K AVR32-01/12

295

AT32UC3A

1: Enables the Receive Ready Interrupt.

• TXBUFE: Transmit Buffer Empty Interrupt Enable

0: No effect.

1: Enables the Transmit Buffer Empty Interrupt

• ENDTX: End of Transmission Interrupt Enable

0: No effect.

1: Enables the End of Transmission Interrupt.

• TXEMPTY: Transmit Empty Interrupt Enable

0: No effect.

1: Enables the Transmit Empty Interrupt.

• TXRDY: Transmit Ready Interrupt Enable

0: No effect.

1: Enables the Transmit Ready Interrupt.

32058K AVR32-01/12

296

AT32UC3A

25.9.15 Interrupt Disable Register
Name: IDR

Access Type: Write-only

Offset: 0x48

Reset value: -

• RXSYN: Rx Sync Interrupt Enable

0: No effect.

1: Disables the Rx Sync Interrupt.

• TXSYN: Tx Sync Interrupt Enable

0: No effect.

1: Disables the Tx Sync Interrupt.

• CP1: Compare 1 Interrupt Disable

0: No effect.

1: Disables the Compare 1 Interrupt.

• CP0: Compare 0 Interrupt Disable

0: No effect.

1: Disables the Compare 0 Interrupt.

• RXBUFF: Receive Buffer Full Interrupt Disable

0: No effect.

1: Disables the Receive Buffer Full Interrupt.

• ENDRX: End of Reception Interrupt Disable

0: No effect.

1: Disables the End of Reception Interrupt.

• OVRUN: Receive Overrun Interrupt Disable

0: No effect.

1: Disables the Receive Overrun Interrupt.

• RXRDY: Receive Ready Interrupt Disable

0: No effect.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – RXSYN TXSYN CP1 CP0

7 6 5 4 3 2 1 0
RXBUFF ENDRX OVRUN RXRDY TXBUFE ENDTX TXEMPTY TXRDY

32058K AVR32-01/12

297

AT32UC3A

1: Disables the Receive Ready Interrupt.

• TXBUFE: Transmit Buffer Empty Interrupt Disable

0: No effect.

1: Disables the Transmit Buffer Empty Interrupt.

• ENDTX: End of Transmission Interrupt Disable

0: No effect.

1: Disables the End of Transmission Interrupt.

• TXEMPTY: Transmit Empty Interrupt Disable

0: No effect.

1: Disables the Transmit Empty Interrupt.

• TXRDY: Transmit Ready Interrupt Disable

0: No effect.

1: Disables the Transmit Ready Interrupt.

32058K AVR32-01/12

298

AT32UC3A

25.9.16 Interrupt Mask Register
Name: IMR

Access Type: Read-only

Offset: 0x4C

Reset value: 0x00000000

• RXSYN: Rx Sync Interrupt Mask

0: The Rx Sync Interrupt is disabled.

1: The Rx Sync Interrupt is enabled.

• TXSYN: Tx Sync Interrupt Mask

0: The Tx Sync Interrupt is disabled.

1: The Tx Sync Interrupt is enabled.

• CP1: Compare 1 Interrupt Mask

0: The Compare 1 Interrupt is disabled.

1: The Compare 1 Interrupt is enabled.

• CP0: Compare 0 Interrupt Mask

0: The Compare 0 Interrupt is disabled.

1: The Compare 0 Interrupt is enabled.

• RXBUFF: Receive Buffer Full Interrupt Mask

0: The Receive Buffer Full Interrupt is disabled.

1: The Receive Buffer Full Interrupt is enabled.

• ENDRX: End of Reception Interrupt Mask

0: The End of Reception Interrupt is disabled.

1: The End of Reception Interrupt is enabled.

• OVRUN: Receive Overrun Interrupt Mask

0: The Receive Overrun Interrupt is disabled.

1: The Receive Overrun Interrupt is enabled.

• RXRDY: Receive Ready Interrupt Mask

0: The Receive Ready Interrupt is disabled.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – RXSYN TXSYN CP1 CP0

7 6 5 4 3 2 1 0
RXBUFF ENDRX OVRUN RXRDY TXBUFE ENDTX TXEMPTY TXRDY

32058K AVR32-01/12

299

AT32UC3A

26. Universal Synchronous/Asynchronous Receiver/Transmitter (USART)
Rev. 4.0.0.2

26.1 Features

• Programmable Baud Rate Generator
• 5- to 9-bit Full-duplex Synchronous or Asynchronous Serial Communications

– 1, 1.5 or 2 Stop Bits in Asynchronous Mode or 1 or 2 Stop Bits in Synchronous Mode
– Parity Generation and Error Detection
– Framing Error Detection, Overrun Error Detection
– MSB- or LSB-first
– Optional Break Generation and Detection
– By 8 or by 16 Over-sampling Receiver Frequency
– Optional Hardware Handshaking RTS-CTS
– Receiver Time-out and Transmitter Timeguard
– Optional Multidrop Mode with Address Generation and Detection

• RS485 with Driver Control Signal
• ISO7816, T = 0 or T = 1 Protocols for Interfacing with Smart Cards

– NACK Handling, Error Counter with Repetition and Iteration Limit
• IrDA Modulation and Demodulation

– Communication at up to 115.2 Kbps
• SPI Mode

– Master or Slave
– Serial Clock Programmable Phase and Polarity
– SPI Serial Clock (CLK) Frequency up to Internal Clock Frequency CLK_USART/4

• Test Modes
– Remote Loopback, Local Loopback, Automatic Echo

• Supports Connection of Two Peripheral DMA Controller Channels (PDC)
– Offers Buffer Transfer without Processor Intervention

26.2 Overview

The Universal Synchronous Asynchronous Receiver Transceiver (USART) provides one full
duplex universal synchronous asynchronous serial link. Data frame format is widely programma-
ble (data length, parity, number of stop bits) to support a maximum of standards. The receiver
implements parity error, framing error and overrun error detection. The receiver time-out enables
handling variable-length frames and the transmitter timeguard facilitates communications with
slow remote devices. Multidrop communications are also supported through address bit han-
dling in reception and transmission.

The USART features three test modes: remote loopback, local loopback and automatic echo.

The USART supports specific operating modes providing interfaces on RS485 and SPI buses,
with ISO7816 T = 0 or T = 1 smart card slots and infrared transceivers. The hardware handshak-
ing feature enables an out-of-band flow control by automatic management of the pins RTS and
CTS.

The USART supports the connection to the Peripheral DMA Controller, which enables data
transfers to the transmitter and from the receiver. The PDC provides chained buffer manage-
ment without any intervention of the processor.

32058K AVR32-01/12

300

AT32UC3A

26.3 Block Diagram

Figure 26-1. USART Block Diagram

Peripheral DMA
Controller

Channel Channel

INTC

Power
Manager

DIV

Receiver

Transmitter

User
Interface

PIO
Controller

RXD

RTS

TXD

CTS

CLKBaudRate
Generator

USART
Interrupt

CLK_USART

CLK_USART/DIV

USART

Peripheral bus

32058K AVR32-01/12

301

AT32UC3A

26.4 Application Block Diagram

Figure 26-2. Application Block Diagram

Smart
Card
Slot

USART

RS232
Drivers

Modem

RS485
Drivers

Differential
Bus

IrDA
Transceivers

Modem
Driver

Field Bus
Driver

EMV
Driver IrDA

Driver

IrLAP

RS232
Drivers

Serial
Port

Serial
Driver

PPP

PSTN

SPI
Driver

SPI
Transceiver

32058K AVR32-01/12

302

AT32UC3A

26.5 I/O Lines Description

Table 26-1. I/O Line Description

Name Description Type Active Level

CLK Serial Clock I/O

TXD
Transmit Serial Data
or Master Out Slave In (MOSI) in SPI Master Mode
or Master In Slave Out (MISO) in SPI Slave Mode

I/O

RXD
Receive Serial Data
or Master In Slave Out (MISO) in SPI Master Mode
or Master Out Slave In (MOSI) in SPI Slave Mode

Input

CTS
Clear to Send
or Slave Select (NSS) in SPI Slave Mode

Input Low

RTS
Request to Send
or Slave Select (NSS) in SPI Master Mode

Output Low

32058K AVR32-01/12

303

AT32UC3A

26.6 Product Dependencies

26.6.1 I/O Lines

The pins used for interfacing the USART may be multiplexed with the PIO lines. The program-
mer must first program the PIO controller to assign the desired USART pins to their peripheral
function. If I/O lines of the USART are not used by the application, they can be used for other
purposes by the PIO Controller.

To prevent the TXD line from falling when the USART is disabled, the use of an internal pull up
is mandatory. If the hardware handshaking feature or Modem mode is used, the internal pull up
on TXD must also be enabled.

26.6.2 Power Manager (PM)

The USART is not continuously clocked. The programmer must first enable the USART Clock in
the Power Manager (PM) before using the USART. However, if the application does not require
USART operations, the USART clock can be stopped when not needed and be restarted later.
In this case, the USART will resume its operations where it left off.

Configuring the USART does not require the USART clock to be enabled.

26.6.3 Interrupt

The USART interrupt line is connected on one of the internal sources of the Advanced Interrupt
Controller. Using the USART interrupt requires the INTC to be programmed first. Note that it is
not recommended to use the USART interrupt line in edge sensitive mode.

32058K AVR32-01/12

304

AT32UC3A

26.7 Functional Description

The USART is capable of managing several types of serial synchronous or asynchronous
communications.

It supports the following communication modes:

•5- to 9-bit full-duplex asynchronous serial communication
–MSB- or LSB-first
–1, 1.5 or 2 stop bits
–Parity even, odd, marked, space or none
–By 8 or by 16 over-sampling receiver frequency
–Optional hardware handshaking
–Optional break management
–Optional multidrop serial communication

•High-speed 5- to 9-bit full-duplex synchronous serial communication
–MSB- or LSB-first
–1 or 2 stop bits
–Parity even, odd, marked, space or none
–By 8 or by 16 over-sampling frequency
–Optional hardware handshaking
–Optional break management
–Optional multidrop serial communication

•RS485 with driver control signal
•ISO7816, T0 or T1 protocols for interfacing with smart cards

–NACK handling, error counter with repetition and iteration limit
•InfraRed IrDA Modulation and Demodulation

• SPI Mode
– Master or Slave
– Serial Clock Programmable Phase and Polarity
– SPI Serial Clock (CLK) Frequency up to Internal Clock Frequency CLK_USART/4

•Test modes
–Remote loopback, local loopback, automatic echo

32058K AVR32-01/12

305

AT32UC3A

26.7.1 Baud Rate Generator

The Baud Rate Generator provides the bit period clock named the Baud Rate Clock to both the
receiver and the transmitter.

The Baud Rate Generator clock source can be selected by setting the USCLKS field in the Mode
Register (MR) between:

•the CLK_USART
•a division of the CLK_USART, the divider being product dependent, but generally set to 8
•the external clock, available on the CLK pin

The Baud Rate Generator is based upon a 16-bit divider, which is programmed with the CD field
of the Baud Rate Generator Register (BRGR). If CD is programmed at 0, the Baud Rate Gener-
ator does not generate any clock. If CD is programmed at 1, the divider is bypassed and
becomes inactive.

If the external CLK clock is selected, the duration of the low and high levels of the signal pro-
vided on the CLK pin must be longer than a CLK_USART period. The frequency of the signal
provided on CLK must be at least 4.5 times lower than CLK_USART.

Figure 26-3. Baud Rate Generator

26.7.1.1 Baud Rate in Asynchronous Mode

If the USART is programmed to operate in asynchronous mode, the selected clock is first
divided by CD, which is field programmed in the Baud Rate Generator Register (BRGR). The
resulting clock is provided to the receiver as a sampling clock and then divided by 16 or 8,
depending on the programming of the OVER bit in MR.

If OVER is set to 1, the receiver sampling is 8 times higher than the baud rate clock. If OVER is
cleared, the sampling is performed at 16 times the baud rate clock.

The following formula performs the calculation of the Baud Rate.

16-bit Counter

CDUSCLKS

CDCLK_USART

CLK_USART/DIV

Reserved
CLK

SYNC

SYNC

USCLKS= 3

FIDI
OVER

Sampling
Divider

BaudRate
Clock

Sampling
Clock

1

00

CLK0
1

2

3
>1

1

1

0

0

Baudrate SelectedClock
8 2 Over–()CD()

--=

32058K AVR32-01/12

306

AT32UC3A

This gives a maximum baud rate of CLK_USART divided by 8, assuming that CLK_USART is
the highest possible clock and that OVER is programmed at 1.

26.7.1.2 Baud Rate Calculation Example
Table 26-2 on page 306 shows calculations of CD to obtain a baud rate at 38400 bauds for dif-
ferent source clock frequencies. This table also shows the actual resulting baud rate and the
error.

The baud rate is calculated with the following formula:

The baud rate error is calculated with the following formula. It is not recommended to work with
an error higher than 5%.

Table 26-2. Baud Rate Example (OVER = 0)

Source Clock
Expected Baud

Rate Calculation Result CD Actual Baud Rate Error

MHz Bit/s Bit/s

3 686 400 38 400 6.00 6 38 400.00 0.00%

4 915 200 38 400 8.00 8 38 400.00 0.00%

5 000 000 38 400 8.14 8 39 062.50 1.70%

7 372 800 38 400 12.00 12 38 400.00 0.00%

8 000 000 38 400 13.02 13 38 461.54 0.16%

12 000 000 38 400 19.53 20 37 500.00 2.40%

12 288 000 38 400 20.00 20 38 400.00 0.00%

14 318 180 38 400 23.30 23 38 908.10 1.31%

14 745 600 38 400 24.00 24 38 400.00 0.00%

18 432 000 38 400 30.00 30 38 400.00 0.00%

24 000 000 38 400 39.06 39 38 461.54 0.16%

24 576 000 38 400 40.00 40 38 400.00 0.00%

25 000 000 38 400 40.69 40 38 109.76 0.76%

32 000 000 38 400 52.08 52 38 461.54 0.16%

32 768 000 38 400 53.33 53 38 641.51 0.63%

33 000 000 38 400 53.71 54 38 194.44 0.54%

40 000 000 38 400 65.10 65 38 461.54 0.16%

50 000 000 38 400 81.38 81 38 580.25 0.47%

60 000 000 38 400 97.66 98 38 265.31 0.35%

70 000 000 38 400 113.93 114 38 377.19 0.06%

BaudRate CLKUSART() CD 16×⁄=

Error 1 ExpectedBaudRate
ActualBaudRate

--⎝ ⎠
⎛ ⎞–=

32058K AVR32-01/12

307

AT32UC3A

26.7.1.3 Fractional Baud Rate in Asynchronous Mode

The Baud Rate generator previously defined is subject to the following limitation: the output fre-
quency changes by only integer multiples of the reference frequency. An approach to this
problem is to integrate a fractional N clock generator that has a high resolution. The generator
architecture is modified to obtain Baud Rate changes by a fraction of the reference source clock.
This fractional part is programmed with the FP field in the Baud Rate Generator Register
(BRGR). If FP is not 0, the fractional part is activated. The resolution is one eighth of the clock
divider. This feature is only available when using USART normal mode. The fractional Baud
Rate is calculated using the following formula:

The modified architecture is presented below:

Figure 26-4. Fractional Baud Rate Generator

26.7.1.4 Baud Rate in Synchronous Mode or SPI Mode

If the USART is programmed to operate in synchronous mode, the selected clock is simply
divided by the field CD in BRGR.

In synchronous mode, if the external clock is selected (USCLKS = 3), the clock is provided
directly by the signal on the USART CLK pin. No division is active. The value written in BRGR

Baudrate SelectedClock

8 2 Over–() CD FP
8

-------+⎝ ⎠
⎛ ⎞

⎝ ⎠
⎛ ⎞
--=

USCLKS CD
Modulus
Control

FP

FP
CD

glitch-free
logic

16-bit Counter

OVER

FIDI
SYNC

Sampling
Divider

CLK_USART

CLK_USART/DIV

ReservedCLK

CLK

BaudRate
Clock

Sampling
Clock

SYNC

USCLKS = 3

>1

1

2

3
0

0

1

0

1

1

0

0

BaudRate SelectedClock
CD

---------------------------------------=

32058K AVR32-01/12

308

AT32UC3A

has no effect. The external clock frequency must be at least 4.5 times lower than the system
clock.

When either the external clock CLK or the internal clock divided (CLK_USART/DIV) is selected,
the value programmed in CD must be even if the user has to ensure a 50:50 mark/space ratio on
the CLK pin. If the internal clock CLK_USART is selected, the Baud Rate Generator ensures a
50:50 duty cycle on the CLK pin, even if the value programmed in CD is odd.

26.7.1.5 Baud Rate in ISO 7816 Mode

The ISO7816 specification defines the bit rate with the following formula:

where:

•B is the bit rate
•Di is the bit-rate adjustment factor
•Fi is the clock frequency division factor
•f is the ISO7816 clock frequency (Hz)

Di is a binary value encoded on a 4-bit field, named DI, as represented in Table 26-3 on page
308.

Fi is a binary value encoded on a 4-bit field, named FI, as represented in Table 26-4 on page
308.

Table 26-5 on page 308 shows the resulting Fi/Di Ratio, which is the ratio between the ISO7816
clock and the baud rate clock.

If the USART is configured in ISO7816 Mode, the clock selected by the USCLKS field in the
Mode Register (MR) is first divided by the value programmed in the field CD in the Baud Rate

B Di
Fi
------- f×=

Table 26-3. Binary and Decimal Values for Di

DI field 0001 0010 0011 0100 0101 0110 1000 1001

Di (decimal) 1 2 4 8 16 32 12 20

Table 26-4. Binary and Decimal Values for Fi

FI field 0000 0001 0010 0011 0100 0101 0110 1001 1010 1011 1100 1101

Fi (decimal 372 372 558 744 1116 1488 1860 512 768 1024 1536 2048

Table 26-5. Possible Values for the Fi/Di Ratio

Fi/Di 372 558 774 1116 1488 1806 512 768 1024 1536 2048

1 372 558 744 1116 1488 1860 512 768 1024 1536 2048

2 186 279 372 558 744 930 256 384 512 768 1024

4 93 139.5 186 279 372 465 128 192 256 384 512

8 46.5 69.75 93 139.5 186 232.5 64 96 128 192 256

16 23.25 34.87 46.5 69.75 93 116.2 32 48 64 96 128

32 11.62 17.43 23.25 34.87 46.5 58.13 16 24 32 48 64

12 31 46.5 62 93 124 155 42.66 64 85.33 128 170.6

20 18.6 27.9 37.2 55.8 74.4 93 25.6 38.4 51.2 76.8 102.4

32058K AVR32-01/12

309

AT32UC3A

Generator Register (BRGR). The resulting clock can be provided to the CLK pin to feed the
smart card clock inputs. This means that the CLKO bit can be set in MR.

This clock is then divided by the value programmed in the FI_DI_RATIO field in the FI_DI_Ratio
register (FIDI). This is performed by the Sampling Divider, which performs a division by up to
2047 in ISO7816 Mode. The non-integer values of the Fi/Di Ratio are not supported and the user
must program the FI_DI_RATIO field to a value as close as possible to the expected value.

The FI_DI_RATIO field resets to the value 0x174 (372 in decimal) and is the most common
divider between the ISO7816 clock and the bit rate (Fi = 372, Di = 1).

Figure 26-5 on page 309 shows the relation between the Elementary Time Unit, corresponding
to a bit time, and the ISO 7816 clock.

Figure 26-5. Elementary Time Unit (ETU)

26.7.2 Receiver and Transmitter Control

After reset, the receiver is disabled. The user must enable the receiver by setting the RXEN bit
in the Control Register (CR). However, the receiver registers can be programmed before the
receiver clock is enabled.

After reset, the transmitter is disabled. The user must enable it by setting the TXEN bit in the
Control Register (CR). However, the transmitter registers can be programmed before being
enabled.

The Receiver and the Transmitter can be enabled together or independently.

At any time, the software can perform a reset on the receiver or the transmitter of the USART by
setting the corresponding bit, RSTRX and RSTTX respectively, in the Control Register (CR).
The software resets clear the status flag and reset internal state machines but the user interface
configuration registers hold the value configured prior to software reset. Regardless of what the
receiver or the transmitter is performing, the communication is immediately stopped.

The user can also independently disable the receiver or the transmitter by setting RXDIS and
TXDIS respectively in CR. If the receiver is disabled during a character reception, the USART
waits until the end of reception of the current character, then the reception is stopped. If the
transmitter is disabled while it is operating, the USART waits the end of transmission of both the
current character and character being stored in the Transmit Holding Register (THR). If a time-
guard is programmed, it is handled normally.

1 ETU

FI_DI_RATIO
ISO7816 Clock Cycles

ISO7816 Clock
on CLK

ISO7816 I/O Line
on TXD

32058K AVR32-01/12

310

AT32UC3A

26.7.3 Synchronous and Asynchronous Modes

26.7.3.1 Transmitter Operations

The transmitter performs the same in both synchronous and asynchronous operating modes
(SYNC = 0 or SYNC = 1). One start bit, up to 9 data bits, one optional parity bit and up to two
stop bits are successively shifted out on the TXD pin at each falling edge of the programmed
serial clock.

The number of data bits is selected by the CHRL field and the MODE 9 bit in the Mode Register
(MR). Nine bits are selected by setting the MODE 9 bit regardless of the CHRL field. The parity
bit is set according to the PAR field in MR. The even, odd, space, marked or none parity bit can
be configured. The MSBF field in MR configures which data bit is sent first. If written at 1, the
most significant bit is sent first. At 0, the less significant bit is sent first. The number of stop bits is
selected by the NBSTOP field in MR. The 1.5 stop bit is supported in asynchronous mode only.

Figure 26-6. Character Transmit

The characters are sent by writing in the Transmit Holding Register (THR). The transmitter
reports two status bits in the Channel Status Register (CSR): TXRDY (Transmitter Ready),
which indicates that THR is empty and TXEMPTY, which indicates that all the characters written
in THR have been processed. When the current character processing is completed, the last
character written in THR is transferred into the Shift Register of the transmitter and THR
becomes empty, thus TXRDY rises.

Both TXRDY and TXEMPTY bits are low when the transmitter is disabled. Writing a character in
THR while TXRDY is low has no effect and the written character is lost.

Figure 26-7. Transmitter Status

D0 D1 D2 D3 D4 D5 D6 D7

TXD

Start
Bit

Parity
Bit

Stop
Bit

Example: 8-bit, Parity Enabled One Stop

Baud Rate
 Clock

D0 D1 D2 D3 D4 D5 D6 D7

TXD

Start
Bit

Parity
Bit

Stop
Bit

Baud Rate
 Clock

Start
Bit

Write
US_THR

D0 D1 D2 D3 D4 D5 D6 D7 Parity
Bit

Stop
Bit

TXRDY

TXEMPTY

32058K AVR32-01/12

311

AT32UC3A

26.7.3.2 Manchester Encoder

When the Manchester encoder is in use, characters transmitted through the USART are
encoded based on biphase Manchester II format. To enable this mode, set the MAN field in the
MR register to 1. Depending on polarity configuration, a logic level (zero or one), is transmitted
as a coded signal one-to-zero or zero-to-one. Thus, a transition always occurs at the midpoint of
each bit time. It consumes more bandwidth than the original NRZ signal (2x) but the receiver has
more error control since the expected input must show a change at the center of a bit cell. An
example of Manchester encoded sequence is: the byte 0xB1 or 10110001 encodes to 10 01 10
10 01 01 01 10, assuming the default polarity of the encoder. Figure 26-8 on page 311 illustrates
this coding scheme.

Figure 26-8. NRZ to Manchester Encoding

The Manchester encoded character can also be encapsulated by adding both a configurable
preamble and a start frame delimiter pattern. Depending on the configuration, the preamble is a
training sequence, composed of a pre-defined pattern with a programmable length from 1 to 15
bit times. If the preamble length is set to 0, the preamble waveform is not generated prior to any
character. The preamble pattern is chosen among the following sequences: ALL_ONE,
ALL_ZERO, ONE_ZERO or ZERO_ONE, writing the field TX_PP in the MAN register, the field
TX_PL is used to configure the preamble length. Figure 26-9 on page 312 illustrates and defines
the valid patterns. To improve flexibility, the encoding scheme can be configured using the
TX_MPOL field in the MAN register. If the TX_MPOL field is set to zero (default), a logic zero is
encoded with a zero-to-one transition and a logic one is encoded with a one-to-zero transition. If
the TX_MPOL field is set to one, a logic one is encoded with a one-to-zero transition and a logic
zero is encoded with a zero-to-one transition.

NRZ
encoded

data

Manchester
encoded

data

1 0 1 1 0 0 0 1

Txd

32058K AVR32-01/12

312

AT32UC3A

Figure 26-9. Preamble Patterns, Default Polarity Assumed

A start frame delimiter is to be configured using the ONEBIT field in the MR register. It consists
of a user-defined pattern that indicates the beginning of a valid data. Figure 26-10 on page 313
illustrates these patterns. If the start frame delimiter, also known as start bit, is one bit, (ONEBIT
at 1), a logic zero is Manchester encoded and indicates that a new character is being sent seri-
ally on the line. If the start frame delimiter is a synchronization pattern also referred to as sync
(ONEBIT at 0), a sequence of 3 bit times is sent serially on the line to indicate the start of a new
character. The sync waveform is in itself an invalid Manchester waveform as the transition
occurs at the middle of the second bit time. Two distinct sync patterns are used: the command
sync and the data sync. The command sync has a logic one level for one and a half bit times,
then a transition to logic zero for the second one and a half bit times. If the MODSYNC field in
the MR register is set to 1, the next character is a command. If it is set to 0, the next character is
a data. When direct memory access is used, the MODSYNC field can be immediately updated
with a modified character located in memory. To enable this mode, VAR_SYNC field in MR reg-
ister must be set to 1. In this case, the MODSYNC field in MR is bypassed and the sync
configuration is held in the TXSYNH in the THR register. The USART character format is modi-
fied and includes sync information.

Manchester
encoded

data Txd SFD DATA

8 bit width "ALL_ONE" Preamble

Manchester
encoded

data Txd SFD DATA

8 bit width "ALL_ZERO" Preamble

Manchester
encoded

data Txd SFD DATA

8 bit width "ZERO_ONE" Preamble

Manchester
encoded

data Txd SFD DATA

8 bit width "ONE_ZERO" Preamble

32058K AVR32-01/12

313

AT32UC3A

Figure 26-10. Start Frame Delimiter

26.7.3.3 Drift Compensation
Drift compensation is available only in 16X oversampling mode. An hardware recovery system
allows a larger clock drift. To enable the hardware system, the bit in the MAN register must be
set. If the RXD edge is one 16X clock cycle from the expected edge, this is considered as nor-
mal jitter and no corrective actions is taken. If the RXD event is between 4 and 2 clock cycles
before the expected edge, then the current period is shortened by one clock cycle. If the RXD
event is between 2 and 3 clock cycles after the expected edge, then the current period is length-
ened by one clock cycle. These intervals are considered to be drift and so corrective actions are
automatically taken.

Figure 26-11. Bit Resynchronization

26.7.3.4 Asynchronous Receiver

If the USART is programmed in asynchronous operating mode (SYNC = 0), the receiver over-
samples the RXD input line. The oversampling is either 16 or 8 times the Baud Rate clock,
depending on the OVER bit in the Mode Register (MR).

Manchester
encoded

data Txd

SFD

DATA

One bit start frame delimiter

Preamble Length
is set to 0

Manchester
encoded

data Txd

SFD

DATA

Command Sync
start frame delimiter

Manchester
encoded

data Txd

SFD

DATA

Data Sync
start frame delimiter

RXD

Oversampling
 16x Clock

Sampling
point

Expected edge

ToleranceSynchro.
Jump

Sync
JumpSynchro.

Error

Synchro.
Error

32058K AVR32-01/12

314

AT32UC3A

The receiver samples the RXD line. If the line is sampled during one half of a bit time at 0, a start
bit is detected and data, parity and stop bits are successively sampled on the bit rate clock.

If the oversampling is 16, (OVER at 0), a start is detected at the eighth sample at 0. Then, data
bits, parity bit and stop bit are sampled on each 16 sampling clock cycle. If the oversampling is 8
(OVER at 1), a start bit is detected at the fourth sample at 0. Then, data bits, parity bit and stop
bit are sampled on each 8 sampling clock cycle.

The number of data bits, first bit sent and parity mode are selected by the same fields and bits
as the transmitter, i.e. respectively CHRL, MODE9, MSBF and PAR. For the synchronization
mechanism only, the number of stop bits has no effect on the receiver as it considers only one
stop bit, regardless of the field NBSTOP, so that resynchronization between the receiver and the
transmitter can occur. Moreover, as soon as the stop bit is sampled, the receiver starts looking
for a new start bit so that resynchronization can also be accomplished when the transmitter is
operating with one stop bit.

Figure 26-12 on page 314 and Figure 26-13 on page 314 illustrate start detection and character
reception when USART operates in asynchronous mode.

Figure 26-12. Asynchronous Start Detection

Figure 26-13. Asynchronous Character Reception

Sampling
Clock (x16)

RXD

Start
Detection

Sampling

Baud Rate
Clock

RXD

Start
Rejection

Sampling

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 0 1 2 3 4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
D0

Sampling

D0 D1 D2 D3 D4 D5 D6 D7

RXD

Parity
Bit

Stop
Bit

Example: 8-bit, Parity Enabled

Baud Rate
Clock

Start
Detection

16
samples

16
samples

16
samples

16
samples

16
samples

16
samples

16
samples

16
samples

16
samples

16
samples

32058K AVR32-01/12

315

AT32UC3A

26.7.3.5 Manchester Decoder

When the MAN field in MR register is set to 1, the Manchester decoder is enabled. The decoder
performs both preamble and start frame delimiter detection. One input line is dedicated to Man-
chester encoded input data.

An optional preamble sequence can be defined, its length is user-defined and totally indepen-
dent of the emitter side. Use RX_PL in MAN register to configure the length of the preamble
sequence. If the length is set to 0, no preamble is detected and the function is disabled. In addi-
tion, the polarity of the input stream is programmable with RX_MPOL field in MAN register.
Depending on the desired application the preamble pattern matching is to be defined via the
RX_PP field in MAN. See Figure 26-9 on page 312 for available preamble patterns.

Unlike preamble, the start frame delimiter is shared between Manchester Encoder and Decoder.
So, if ONEBIT field is set to 1, only a zero encoded Manchester can be detected as a valid start
frame delimiter. If ONEBIT is set to 0, only a sync pattern is detected as a valid start frame
delimiter. Decoder operates by detecting transition on incoming stream. If RXD is sampled dur-
ing one quarter of a bit time at zero, a start bit is detected. See Figure 26-14 on page 315.. The
sample pulse rejection mechanism applies.

Figure 26-14. Asynchronous Start Bit Detection

The receiver is activated and starts Preamble and Frame Delimiter detection, sampling the data
at one quarter and then three quarters. If a valid preamble pattern or start frame delimiter is
detected, the receiver continues decoding with the same synchronization. If the stream does not
match a valid pattern or a valid start frame delimiter, the receiver re-synchronizes on the next
valid edge.The minimum time threshold to estimate the bit value is three quarters of a bit time.

If a valid preamble (if used) followed with a valid start frame delimiter is detected, the incoming
stream is decoded into NRZ data and passed to USART for processing. Figure 26-15 on page
316 illustrates Manchester pattern mismatch. When incoming data stream is passed to the
USART, the receiver is also able to detect Manchester code violation. A code violation is a lack
of transition in the middle of a bit cell. In this case, MANE flag in CSR register is raised. It is
cleared by writing the Control Register (CR) with the RSTSTA bit at 1. See Figure 26-16 on page
316 for an example of Manchester error detection during data phase.

Manchester
encoded

data Txd

1 2 3 4

Sampling
Clock
(16 x)

Start
Detection

32058K AVR32-01/12

316

AT32UC3A

Figure 26-15. Preamble Pattern Mismatch

Figure 26-16. Manchester Error Flag

When the start frame delimiter is a sync pattern (ONEBIT field at 0), both command and data
delimiter are supported. If a valid sync is detected, the received character is written as RXCHR
field in the RHR register and the RXSYNH is updated. RXCHR is set to 1 when the received
character is a command, and it is set to 0 if the received character is a data. This mechanism
alleviates and simplifies the direct memory access as the character contains its own sync field in
the same register.

As the decoder is setup to be used in unipolar mode, the first bit of the frame has to be a zero-to-
one transition.

26.7.3.6 Radio Interface: Manchester Encoded USART Application

This section describes low data rate RF transmission systems and their integration with a Man-
chester encoded USART. These systems are based on transmitter and receiver ICs that support
ASK and FSK modulation schemes.

The goal is to perform full duplex radio transmission of characters using two different frequency
carriers. See the configuration in Figure 26-17 on page 317.

Manchester
encoded

data Txd SFD DATA

Preamble Length is set to 8

Preamble Mismatch
invalid pattern

Preamble Mismatch
Manchester coding error

Manchester
encoded

data Txd

SFD

Preamble Length
is set to 4

Elementary character bit time

Manchester
Coding Error

detected

sampling points

Preamble subpacket
and Start Frame Delimiter

were successfully
decoded

Entering USART character area

32058K AVR32-01/12

317

AT32UC3A

Figure 26-17. Manchester Encoded Characters RF Transmission

The USART module is configured as a Manchester encoder/decoder. Looking at the down-
stream communication channel, Manchester encoded characters are serially sent to the RF
emitter. This may also include a user defined preamble and a start frame delimiter. Mostly, pre-
amble is used in the RF receiver to distinguish between a valid data from a transmitter and
signals due to noise. The Manchester stream is then modulated. See Figure 26-18 on page 317
for an example of ASK modulation scheme. When a logic one is sent to the ASK modulator, the
power amplifier, referred to as PA, is enabled and transmits an RF signal at downstream fre-
quency. When a logic zero is transmitted, the RF signal is turned off. If the FSK modulator is
activated, two different frequencies are used to transmit data. When a logic 1 is sent, the modu-
lator outputs an RF signal at frequency F0 and switches to F1 if the data sent is a 0. See Figure
26-19 on page 318.

From the receiver side, another carrier frequency is used. The RF receiver performs a bit check
operation examining demodulated data stream. If a valid pattern is detected, the receiver
switches to receiving mode. The demodulated stream is sent to the Manchester decoder.
Because of bit checking inside RF IC, the data transferred to the microcontroller is reduced by a
user-defined number of bits. The Manchester preamble length is to be defined in accordance
with the RF IC configuration.

Figure 26-18. ASK Modulator Output

LNA
VCO

RF filter
Demod

control
bi-dir

line

PA
RF filter

Mod
VCO

control

Manchester
decoder

Manchester
encoder

USART
Receiver

USART
Emitter

ASK/FSK
Upstream Receiver

ASK/FSK
downstream transmitter

Upstream
Emitter

Downstream
Receiver

Serial
Configuration

Interface

Fup frequency Carrier

Fdown frequency Carrier

Manchester
encoded

data
default polarity
unipolar output

Txd

ASK Modulator
Output

Uptstream Frequency F0

NRZ stream
1 0 0 1

32058K AVR32-01/12

318

AT32UC3A

Figure 26-19. FSK Modulator Output

26.7.4 Synchronous Receiver
In synchronous mode (SYNC = 1), the receiver samples the RXD signal on each rising edge of
the Baud Rate Clock. If a low level is detected, it is considered as a start. All data bits, the parity
bit and the stop bits are sampled and the receiver waits for the next start bit. Synchronous mode
operations provide a high speed transfer capability.

Configuration fields and bits are the same as in asynchronous mode.

Figure 26-20 on page 318 illustrates a character reception in synchronous mode.

Figure 26-20. Synchronous Mode Character Reception

26.7.4.1 Receiver Operations

When a character reception is completed, it is transferred to the Receive Holding Register
(RHR) and the RXRDY bit in the Status Register (CSR) rises. If a character is completed while
the RXRDY is set, the OVRE (Overrun Error) bit is set. The last character is transferred into
RHR and overwrites the previous one. The OVRE bit is cleared by writing the Control Register
(CR) with the RSTSTA (Reset Status) bit at 1.

Manchester
encoded

data
default polarity
unipolar output

Txd

FSK Modulator
Output

Uptstream Frequencies
[F0, F0+offset]

NRZ stream
1 0 0 1

D0 D1 D2 D3 D4 D5 D6 D7

RXD

Start
Sampling

Parity Bit
Stop Bit

Example: 8-bit, Parity Enabled 1 Stop

Baud Rate
Clock

32058K AVR32-01/12

319

AT32UC3A

Figure 26-21. Receiver Status

D0 D1 D2 D3 D4 D5 D6 D7

RXD
Start

Bit
Parity

Bit
Stop
Bit

Baud Rate
 Clock

Write
US_CR

RXRDY

OVRE

Start D0 D1 D2 D3 D4 D5 D6 D7Bit
Parity

Bit
Stop
Bit

RSTSTA = 1

Read
US_RHR

32058K AVR32-01/12

320

AT32UC3A

26.7.4.2 Parity

The USART supports five parity modes selected by programming the PAR field in the Mode
Register (MR). The PAR field also enables the Multidrop mode, see ”Multidrop Mode” on page
321. Even and odd parity bit generation and error detection are supported.

If even parity is selected, the parity generator of the transmitter drives the parity bit at 0 if a num-
ber of 1s in the character data bit is even, and at 1 if the number of 1s is odd. Accordingly, the
receiver parity checker counts the number of received 1s and reports a parity error if the sam-
pled parity bit does not correspond. If odd parity is selected, the parity generator of the
transmitter drives the parity bit at 1 if a number of 1s in the character data bit is even, and at 0 if
the number of 1s is odd. Accordingly, the receiver parity checker counts the number of received
1s and reports a parity error if the sampled parity bit does not correspond. If the mark parity is
used, the parity generator of the transmitter drives the parity bit at 1 for all characters. The
receiver parity checker reports an error if the parity bit is sampled at 0. If the space parity is
used, the parity generator of the transmitter drives the parity bit at 0 for all characters. The
receiver parity checker reports an error if the parity bit is sampled at 1. If parity is disabled, the
transmitter does not generate any parity bit and the receiver does not report any parity error.

Table 26-6 on page 320 shows an example of the parity bit for the character 0x41 (character
ASCII “A”) depending on the configuration of the USART. Because there are two bits at 1, 1 bit is
added when a parity is odd, or 0 is added when a parity is even.

When the receiver detects a parity error, it sets the PARE (Parity Error) bit in the Channel Status
Register (CSR). The PARE bit can be cleared by writing the Control Register (CR) with the RST-
STA bit at 1. Figure 26-22 on page 321 illustrates the parity bit status setting and clearing.

Table 26-6. Parity Bit Examples

Character Hexa Binary Parity Bit Parity Mode

A 0x41 0100 0001 1 Odd

A 0x41 0100 0001 0 Even

A 0x41 0100 0001 1 Mark

A 0x41 0100 0001 0 Space

A 0x41 0100 0001 None None

32058K AVR32-01/12

321

AT32UC3A

Figure 26-22. Parity Error

26.7.4.3 Multidrop Mode

If the PAR field in the Mode Register (MR) is programmed to the value 0x6 or 0x07, the USART
runs in Multidrop Mode. This mode differentiates the data characters and the address charac-
ters. Data is transmitted with the parity bit at 0 and addresses are transmitted with the parity bit
at 1.

If the USART is configured in multidrop mode, the receiver sets the PARE parity error bit when
the parity bit is high and the transmitter is able to send a character with the parity bit high when
the Control Register is written with the SENDA bit at 1.

To handle parity error, the PARE bit is cleared when the Control Register is written with the bit
RSTSTA at 1.

The transmitter sends an address byte (parity bit set) when SENDA is written to CR. In this case,
the next byte written to THR is transmitted as an address. Any character written in THR without
having written the command SENDA is transmitted normally with the parity at 0.

26.7.4.4 Transmitter Timeguard

The timeguard feature enables the USART interface with slow remote devices.

The timeguard function enables the transmitter to insert an idle state on the TXD line between
two characters. This idle state actually acts as a long stop bit.

The duration of the idle state is programmed in the TG field of the Transmitter Timeguard Regis-
ter (TTGR). When this field is programmed at zero no timeguard is generated. Otherwise, the
transmitter holds a high level on TXD after each transmitted byte during the number of bit peri-
ods programmed in TG in addition to the number of stop bits.

As illustrated in Figure 26-23 on page 322, the behavior of TXRDY and TXEMPTY status bits is
modified by the programming of a timeguard. TXRDY rises only when the start bit of the next
character is sent, and thus remains at 0 during the timeguard transmission if a character has
been written in THR. TXEMPTY remains low until the timeguard transmission is completed as
the timeguard is part of the current character being transmitted.

D0 D1 D2 D3 D4 D5 D6 D7

RXD

Start
Bit

Bad
Parity

Bit

Stop
Bit

Baud Rate
 Clock

Write
US_CR

PARE

RXRDY

RSTSTA = 1

32058K AVR32-01/12

322

AT32UC3A

Figure 26-23. Timeguard Operations

Table 26-7 on page 322 indicates the maximum length of a timeguard period that the transmitter
can handle in relation to the function of the Baud Rate.

26.7.4.5 Receiver Time-out

The Receiver Time-out provides support in handling variable-length frames. This feature detects
an idle condition on the RXD line. When a time-out is detected, the bit TIMEOUT in the Channel
Status Register (CSR) rises and can generate an interrupt, thus indicating to the driver an end of
frame.

The time-out delay period (during which the receiver waits for a new character) is programmed
in the TO field of the Receiver Time-out Register (RTOR). If the TO field is programmed at 0, the
Receiver Time-out is disabled and no time-out is detected. The TIMEOUT bit in CSR remains at
0. Otherwise, the receiver loads a 16-bit counter with the value programmed in TO. This counter
is decremented at each bit period and reloaded each time a new character is received. If the
counter reaches 0, the TIMEOUT bit in the Status Register rises. Then, the user can either:

• Stop the counter clock until a new character is received. This is performed by writing the
Control Register (CR) with the STTTO (Start Time-out) bit at 1. In this case, the idle state on
RXD before a new character is received will not provide a time-out. This prevents having to

D0 D1 D2 D3 D4 D5 D6 D7

TXD

Start
Bit

Parity
Bit

Stop
Bit

Baud Rate
 Clock

Start
Bit

TG = 4

Write
US_THR

D0 D1 D2 D3 D4 D5 D6 D7 Parity
Bit

Stop
Bit

TXRDY

TXEMPTY

TG = 4

Table 26-7. Maximum Timeguard Length Depending on Baud Rate

Baud Rate Bit time Timeguard

Bit/sec µs ms

1 200 833 212.50

9 600 104 26.56

14400 69.4 17.71

19200 52.1 13.28

28800 34.7 8.85

33400 29.9 7.63

56000 17.9 4.55

57600 17.4 4.43

115200 8.7 2.21

32058K AVR32-01/12

323

AT32UC3A

handle an interrupt before a character is received and allows waiting for the next idle state on
RXD after a frame is received.

• Obtain an interrupt while no character is received. This is performed by writing CR with the
RETTO (Reload and Start Time-out) bit at 1. If RETTO is performed, the counter starts
counting down immediately from the value TO. This enables generation of a periodic interrupt
so that a user time-out can be handled, for example when no key is pressed on a keyboard.

If STTTO is performed, the counter clock is stopped until a first character is received. The idle
state on RXD before the start of the frame does not provide a time-out. This prevents having to
obtain a periodic interrupt and enables a wait of the end of frame when the idle state on RXD is
detected.

If RETTO is performed, the counter starts counting down immediately from the value TO. This
enables generation of a periodic interrupt so that a user time-out can be handled, for example
when no key is pressed on a keyboard.

Figure 26-24 on page 323 shows the block diagram of the Receiver Time-out feature.

Figure 26-24. Receiver Time-out Block Diagram

Table 26-8 on page 323 gives the maximum time-out period for some standard baud rates.

16-bit Time-out
Counter

0

TO

TIMEOUT

Baud Rate
Clock

=

Character
Received

RETTO

Load

Clock

16-bit
Value

STTTO

D Q1

Clear

Table 26-8. Maximum Time-out Period

Baud Rate Bit Time Time-out

bit/sec µs ms

600 1 667 109 225

1 200 833 54 613

2 400 417 27 306

4 800 208 13 653

9 600 104 6 827

14400 69 4 551

19200 52 3 413

28800 35 2 276

33400 30 1 962

56000 18 1 170

57600 17 1 138

200000 5 328

32058K AVR32-01/12

324

AT32UC3A

26.7.4.6 Framing Error

The receiver is capable of detecting framing errors. A framing error happens when the stop bit of
a received character is detected at level 0. This can occur if the receiver and the transmitter are
fully desynchronized.

A framing error is reported on the FRAME bit of the Channel Status Register (CSR). The
FRAME bit is asserted in the middle of the stop bit as soon as the framing error is detected. It is
cleared by writing the Control Register (CR) with the RSTSTA bit at 1.

Figure 26-25. Framing Error Status

26.7.4.7 Transmit Break

The user can request the transmitter to generate a break condition on the TXD line. A break con-
dition drives the TXD line low during at least one complete character. It appears the same as a
0x00 character sent with the parity and the stop bits at 0. However, the transmitter holds the
TXD line at least during one character until the user requests the break condition to be removed.

A break is transmitted by writing the Control Register (CR) with the STTBRK bit at 1. This can be
performed at any time, either while the transmitter is empty (no character in either the Shift Reg-
ister or in THR) or when a character is being transmitted. If a break is requested while a
character is being shifted out, the character is first completed before the TXD line is held low.

Once STTBRK command is requested further STTBRK commands are ignored until the end of
the break is completed.

The break condition is removed by writing CR with the STPBRK bit at 1. If the STPBRK is
requested before the end of the minimum break duration (one character, including start, data,
parity and stop bits), the transmitter ensures that the break condition completes.

The transmitter considers the break as though it is a character, i.e. the STTBRK and STPBRK
commands are taken into account only if the TXRDY bit in CSR is at 1 and the start of the break
condition clears the TXRDY and TXEMPTY bits as if a character is processed.

Writing CR with the both STTBRK and STPBRK bits at 1 can lead to an unpredictable result. All
STPBRK commands requested without a previous STTBRK command are ignored. A byte writ-
ten into the Transmit Holding Register while a break is pending, but not started, is ignored.

D0 D1 D2 D3 D4 D5 D6 D7

RXD

Start
Bit

Parity
Bit

Stop
Bit

Baud Rate
 Clock

Write
US_CR

FRAME

RXRDY

RSTSTA = 1

32058K AVR32-01/12

325

AT32UC3A

After the break condition, the transmitter returns the TXD line to 1 for a minimum of 12 bit times.
Thus, the transmitter ensures that the remote receiver detects correctly the end of break and the
start of the next character. If the timeguard is programmed with a value higher than 12, the TXD
line is held high for the timeguard period.

After holding the TXD line for this period, the transmitter resumes normal operations.

Figure 26-26 on page 325 illustrates the effect of both the Start Break (STTBRK) and Stop Break
(STPBRK) commands on the TXD line.

Figure 26-26. Break Transmission

26.7.4.8 Receive Break

The receiver detects a break condition when all data, parity and stop bits are low. This corre-
sponds to detecting a framing error with data at 0x00, but FRAME remains low.

When the low stop bit is detected, the receiver asserts the RXBRK bit in CSR. This bit may be
cleared by writing the Control Register (CR) with the bit RSTSTA at 1.

An end of receive break is detected by a high level for at least 2/16 of a bit period in asynchro-
nous operating mode or one sample at high level in synchronous operating mode. The end of
break detection also asserts the RXBRK bit.

26.7.4.9 Hardware Handshaking

The USART features a hardware handshaking out-of-band flow control. The RTS and CTS pins
are used to connect with the remote device, as shown in Figure 26-27 on page 325.

Figure 26-27. Connection with a Remote Device for Hardware Handshaking

D0 D1 D2 D3 D4 D5 D6 D7

TXD

Start
Bit

Parity
Bit

Stop
Bit

Baud Rate
 Clock

Write
US_CR

TXRDY

TXEMPTY

STPBRK = 1STTBRK = 1

Break Transmission End of Break

USART

TXD

CTS

Remote
Device

RXD

TXDRXD

RTS

RTS

CTS

32058K AVR32-01/12

326

AT32UC3A

Setting the USART to operate with hardware handshaking is performed by writing the MODE
field in the Mode Register (MR) to the value 0x2.

The USART behavior when hardware handshaking is enabled is the same as the behavior in
standard synchronous or asynchronous mode, except that the receiver drives the RTS pin as
described below and the level on the CTS pin modifies the behavior of the transmitter as
described below. Using this mode requires using the PDC channel for reception. The transmitter
can handle hardware handshaking in any case.

Figure 26-28 on page 326 shows how the receiver operates if hardware handshaking is enabled.
The RTS pin is driven high if the receiver is disabled and if the status RXBUFF (Receive Buffer
Full) coming from the PDC channel is high. Normally, the remote device does not start transmit-
ting while its CTS pin (driven by RTS) is high. As soon as the Receiver is enabled, the RTS falls,
indicating to the remote device that it can start transmitting. Defining a new buffer to the PDC
clears the status bit RXBUFF and, as a result, asserts the pin RTS low.

Figure 26-28. Receiver Behavior when Operating with Hardware Handshaking

Figure 26-29 on page 326 shows how the transmitter operates if hardware handshaking is
enabled. The CTS pin disables the transmitter. If a character is being processing, the transmitter
is disabled only after the completion of the current character and transmission of the next char-
acter happens as soon as the pin CTS falls.

Figure 26-29. Transmitter Behavior when Operating with Hardware Handshaking

26.7.5 ISO7816 Mode

The USART features an ISO7816-compatible operating mode. This mode permits interfacing
with smart cards and Security Access Modules (SAM) communicating through an ISO7816 link.
Both T = 0 and T = 1 protocols defined by the ISO7816 specification are supported.

Setting the USART in ISO7816 mode is performed by writing the MODE field in the Mode Regis-
ter (MR) to the value 0x4 for protocol T = 0 and to the value 0x5 for protocol T = 1.

26.7.5.1 ISO7816 Mode Overview

The ISO7816 is a half duplex communication on only one bidirectional line. The baud rate is
determined by a division of the clock provided to the remote device (see ”Baud Rate Generator”
on page 305).

The USART connects to a smart card as shown in Figure 26-30 on page 327. The TXD line
becomes bidirectional and the Baud Rate Generator feeds the ISO7816 clock on the CLK pin.

RTS

RXBUFF

Write
US_CR

RXEN = 1
RXD

RXDIS = 1

CTS

TXD

32058K AVR32-01/12

327

AT32UC3A

As the TXD pin becomes bidirectional, its output remains driven by the output of the transmitter
but only when the transmitter is active while its input is directed to the input of the receiver. The
USART is considered as the master of the communication as it generates the clock.

Figure 26-30. Connection of a Smart Card to the USART

When operating in ISO7816, either in T = 0 or T = 1 modes, the character format is fixed. The
configuration is 8 data bits, even parity and 1 or 2 stop bits, regardless of the values pro-
grammed in the CHRL, MODE9, PAR and CHMODE fields. MSBF can be used to transmit LSB
or MSB first. Parity Bit (PAR) can be used to transmit in normal or inverse mode. Refer to
”USART Mode Register” on page 343 and ”PAR: Parity Type” on page 345.

The USART cannot operate concurrently in both receiver and transmitter modes as the commu-
nication is unidirectional at a time. It has to be configured according to the required mode by
enabling or disabling either the receiver or the transmitter as desired. Enabling both the receiver
and the transmitter at the same time in ISO7816 mode may lead to unpredictable results.

The ISO7816 specification defines an inverse transmission format. Data bits of the character
must be transmitted on the I/O line at their negative value. The USART does not support this for-
mat and the user has to perform an exclusive OR on the data before writing it in the Transmit
Holding Register (THR) or after reading it in the Receive Holding Register (RHR).

26.7.5.2 Protocol T = 0

In T = 0 protocol, a character is made up of one start bit, eight data bits, one parity bit and one
guard time, which lasts two bit times. The transmitter shifts out the bits and does not drive the
I/O line during the guard time.

If no parity error is detected, the I/O line remains at 1 during the guard time and the transmitter
can continue with the transmission of the next character, as shown in Figure 26-31 on page 328.

If a parity error is detected by the receiver, it drives the I/O line at 0 during the guard time, as
shown in Figure 26-32 on page 328. This error bit is also named NACK, for Non Acknowledge.
In this case, the character lasts 1 bit time more, as the guard time length is the same and is
added to the error bit time which lasts 1 bit time.

When the USART is the receiver and it detects an error, it does not load the erroneous character
in the Receive Holding Register (RHR). It appropriately sets the PARE bit in the Status Register
(SR) so that the software can handle the error.

CLK

TXD

USART

CLK

I/O
Smart
Card

32058K AVR32-01/12

328

AT32UC3A

Figure 26-31. T = 0 Protocol without Parity Error

Figure 26-32. T = 0 Protocol with Parity Error

26.7.5.3 Receive Error Counter
The USART receiver also records the total number of errors. This can be read in the Number of
Error (NER) register. The NB_ERRORS field can record up to 255 errors. Reading NER auto-
matically clears the NB_ERRORS field.

26.7.5.4 Receive NACK Inhibit
The USART can also be configured to inhibit an error. This can be achieved by setting the
INACK bit in the Mode Register (MR). If INACK is at 1, no error signal is driven on the I/O line
even if a parity bit is detected, but the INACK bit is set in the Status Register (SR). The INACK
bit can be cleared by writing the Control Register (CR) with the RSTNACK bit at 1.

Moreover, if INACK is set, the erroneous received character is stored in the Receive Holding
Register, as if no error occurred. However, the RXRDY bit does not raise.

26.7.5.5 Transmit Character Repetition
When the USART is transmitting a character and gets a NACK, it can automatically repeat the
character before moving on to the next one. Repetit ion is enabled by writ ing the
MAX_ITERATION field in the Mode Register (MR) at a value higher than 0. Each character can
be transmitted up to eight times; the first transmission plus seven repetitions.

If MAX_ITERATION does not equal zero, the USART repeats the character as many times as
the value loaded in MAX_ITERATION.

When the USART repetition number reaches MAX_ITERATION, the ITERATION bit is set in the
Channel Status Register (CSR). If the repetition of the character is acknowledged by the
receiver, the repetitions are stopped and the iteration counter is cleared.

The ITERATION bit in CSR can be cleared by writing the Control Register with the RSIT bit at 1.

26.7.5.6 Disable Successive Receive NACK
The receiver can limit the number of successive NACKs sent back to the remote transmitter.
This is programmed by setting the bit DSNACK in the Mode Register (MR). The maximum num-
ber of NACK transmitted is programmed in the MAX_ITERATION field. As soon as

D0 D1 D2 D3 D4 D5 D6 D7

RXD

Parity
Bit

Baud Rate
Clock

Start
Bit

Guard
Time 1

Next
Start

Bit

Guard
Time 2

D0 D1 D2 D3 D4 D5 D6 D7

I/O

Parity
Bit

Baud Rate
Clock

Start
Bit

Guard
Time 1

Start
Bit

Guard
Time 2

D0 D1

Error

Repetition

32058K AVR32-01/12

329

AT32UC3A

MAX_ITERATION is reached, the character is considered as correct, an acknowledge is sent on
the line and the ITERATION bit in the Channel Status Register is set.

26.7.5.7 Protocol T = 1

When operating in ISO7816 protocol T = 1, the transmission is similar to an asynchronous for-
mat with only one stop bit. The parity is generated when transmitting and checked when
receiving. Parity error detection sets the PARE bit in the Channel Status Register (CSR).

26.7.6 IrDA Mode

The USART features an IrDA mode supplying half-duplex point-to-point wireless communica-
tion. It embeds the modulator and demodulator which allows a glueless connection to the
infrared transceivers, as shown in Figure 26-33 on page 329. The modulator and demodulator
are compliant with the IrDA specification version 1.1 and support data transfer speeds ranging
from 2.4 Kb/s to 115.2 Kb/s.

The USART IrDA mode is enabled by setting the MODE field in the Mode Register (MR) to the
value 0x8. The IrDA Filter Register (IFR) allows configuring the demodulator filter. The USART
transmitter and receiver operate in a normal asynchronous mode and all parameters are acces-
sible. Note that the modulator and the demodulator are activated.

Figure 26-33. Connection to IrDA Transceivers

The receiver and the transmitter must be enabled or disabled according to the direction of the
transmission to be managed.

26.7.6.1 IrDA Modulation

For baud rates up to and including 115.2 Kbits/sec, the RZI modulation scheme is used. “0” is
represented by a light pulse of 3/16th of a bit time. Some examples of signal pulse duration are
shown in Table 26-9 on page 329.

IrDA
Transceivers

RXD RX

TXD

TX

USART

Demodulator

Modulator

Receiver

Transmitter

Table 26-9. IrDA Pulse Duration

Baud Rate Pulse Duration (3/16)

2.4 Kb/s 78.13 µs

9.6 Kb/s 19.53 µs

19.2 Kb/s 9.77 µs

32058K AVR32-01/12

330

AT32UC3A

Figure 26-34 on page 330 shows an example of character transmission.

Figure 26-34. IrDA Modulation

26.7.6.2 IrDA Baud Rate

Table 26-10 on page 330 gives some examples of CD values, baud rate error and pulse dura-
tion. Note that the requirement on the maximum acceptable error of ±1.87% must be met.

38.4 Kb/s 4.88 µs

57.6 Kb/s 3.26 µs

115.2 Kb/s 1.63 µs

Table 26-9. IrDA Pulse Duration

Baud Rate Pulse Duration (3/16)

Bit Period 3 Bit Period16

Start
Bit

Data Bits Stop
Bit

0 00 0 01 11 11
Transmitter

Output

TXD

Table 26-10. IrDA Baud Rate Error

Peripheral Clock Baud Rate CD Baud Rate Error Pulse Time

3 686 400 115 200 2 0.00% 1.63

20 000 000 115 200 11 1.38% 1.63

32 768 000 115 200 18 1.25% 1.63

40 000 000 115 200 22 1.38% 1.63

3 686 400 57 600 4 0.00% 3.26

20 000 000 57 600 22 1.38% 3.26

32 768 000 57 600 36 1.25% 3.26

40 000 000 57 600 43 0.93% 3.26

3 686 400 38 400 6 0.00% 4.88

20 000 000 38 400 33 1.38% 4.88

32 768 000 38 400 53 0.63% 4.88

40 000 000 38 400 65 0.16% 4.88

3 686 400 19 200 12 0.00% 9.77

20 000 000 19 200 65 0.16% 9.77

32 768 000 19 200 107 0.31% 9.77

40 000 000 19 200 130 0.16% 9.77

32058K AVR32-01/12

331

AT32UC3A

26.7.6.3 IrDA Demodulator

The demodulator is based on the IrDA Receive filter comprised of an 8-bit down counter which is
loaded with the value programmed in IFR. When a falling edge is detected on the RXD pin, the
Filter Counter starts counting down at the CLK_USART speed. If a rising edge is detected on the
RXD pin, the counter stops and is reloaded with IFR. If no rising edge is detected when the
counter reaches 0, the input of the receiver is driven low during one bit time.

Figure 26-35 on page 331 illustrates the operations of the IrDA demodulator.

Figure 26-35. IrDA Demodulator Operations

As the IrDA mode uses the same logic as the ISO7816, note that the FI_DI_RATIO field in FIDI
must be set to a value higher than 0 in order to assure IrDA communications operate correctly.

3 686 400 9 600 24 0.00% 19.53

20 000 000 9 600 130 0.16% 19.53

32 768 000 9 600 213 0.16% 19.53

40 000 000 9 600 260 0.16% 19.53

3 686 400 2 400 96 0.00% 78.13

20 000 000 2 400 521 0.03% 78.13

32 768 000 2 400 853 0.04% 78.13

Table 26-10. IrDA Baud Rate Error (Continued)

Peripheral Clock Baud Rate CD Baud Rate Error Pulse Time

CLK_USART

RXD

Counter
Value

Receiver
Input

6 5 4 63
Pulse

Rejected

2 6 45 3 2 1 0
Pulse

Accepted

Driven Low During 16 Baud Rate Clock Cycles

32058K AVR32-01/12

332

AT32UC3A

26.7.7 RS485 Mode

The USART features the RS485 mode to enable line driver control. While operating in RS485
mode, the USART behaves as though in asynchronous or synchronous mode and configuration
of all the parameters is possible. The difference is that the RTS pin is driven high when the
transmitter is operating. The behavior of the RTS pin is controlled by the TXEMPTY bit. A typical
connection of the USART to a RS485 bus is shown in Figure 26-36 on page 332.

Figure 26-36. Typical Connection to a RS485 Bus

The USART is set in RS485 mode by programming the MODE field in the Mode Register (MR)
to the value 0x1.

The RTS pin is at a level inverse to the TXEMPTY bit. Significantly, the RTS pin remains high
when a timeguard is programmed so that the line can remain driven after the last character com-
pletion. Figure 26-37 on page 332 gives an example of the RTS waveform during a character
transmission when the timeguard is enabled.

Figure 26-37. Example of RTS Drive with Timeguard

USART

RTS

TXD

RXD

Differential
Bus

D0 D1 D2 D3 D4 D5 D6 D7

TXD

Start
Bit

Parity
Bit

Stop
Bit

Baud Rate
 Clock

TG = 4

Write
US_THR

TXRDY

TXEMPTY

RTS

32058K AVR32-01/12

333

AT32UC3A

26.7.8 SPI Mode

The Serial Peripheral Interface (SPI) Mode is a synchronous serial data link that provides com-
munication with external devices in Master or Slave Mode. It also enables communication
between processors if an external processor is connected to the system.

The Serial Peripheral Interface is essentially a shift register that serially transmits data bits to
other SPIs. During a data transfer, one SPI system acts as the “master” which controls the data
flow, while the other devices act as “slaves'' which have data shifted into and out by the master.
Different CPUs can take turns being masters and one master may simultaneously shift data into
multiple slaves. (Multiple Master Protocol is the opposite of Single Master Protocol, where one
CPU is always the master while all of the others are always slaves.) However, only one slave
may drive its output to write data back to the master at any given time.

A slave device is selected when its NSS signal is asserted by the master. The USART in SPI
Master mode can address only one SPI Slave because it can generate only one NSS signal.

The SPI system consists of two data lines and two control lines:

• Master Out Slave In (MOSI): This data line supplies the output data from the master shifted
into the input of the slave.

• Master In Slave Out (MISO): This data line supplies the output data from a slave to the input of
the master.

• Serial Clock (CLK): This control line is driven by the master and regulates the flow of the data
bits. The master may transmit data at a variety of baud rates. The CLK line cycles once for
each bit that is transmitted.

• Slave Select (NSS): This control line allows the master to select or deselect the slave.
26.7.8.1 Modes of Operation

The USART can operate in Master Mode or in Slave Mode.

Operation in SPI Master Mode is programmed by writing at 0xE the MODE field in the Mode
Register. In this case the SPI lines must be connected as described below:

• the MOSI line is driven by the output pin TXD
• the MISO line drives the input pin RXD
• the CLK line is driven by the output pin CLK
• the NSS line is driven by the output pin RTS
Operation in SPI Slave Mode is programmed by writing at 0xF the MODE field in the Mode Reg-
ister. In this case the SPI lines must be connected as described below:

• the MOSI line drives the input pin RXD
• the MISO line is driven by the output pin TXD
• the CLK line drives the input pin CLK
• the NSS line drives the input pin CTS
In order to avoid unpredicted behavior, any change of the SPI Mode must be followed by a soft-
ware reset of the transmitter and of the receiver (except the initial configuration after a hardware
reset).

32058K AVR32-01/12

334

AT32UC3A

26.7.8.2 Baud Rate

In SPI Mode, the baudrate generator operates in the same way as in USART synchronous
mode: See Section “26.7.1.4” on page 307. However, there are some restrictions:

In SPI Master Mode:

• the external clock CLK must not be selected (USCLKS … 0x3), and the bit CLKO must be set
to “1” in the Mode Register (MR), in order to generate correctly the serial clock on the CLK pin.

• to obtain correct behavior of the receiver and the transmitter, the value programmed in CD of
must be superior or equal to 4.

• if the internal clock divided (CLK_USART/DIV) is selected, the value programmed in CD must
be even to ensure a 50:50 mark/space ratio on the CLK pin, this value can be odd if the
internal clock is selected (CLK_USART).

In SPI Slave Mode:

• the external clock (CLK) selection is forced regardless of the value of the USCLKS field in the
Mode Register (MR). Likewise, the value written in BRGR has no effect, because the clock is
provided directly by the signal on the USART CLK pin.

• to obtain correct behavior of the receiver and the transmitter, the external clock (CLK)
frequency must be at least 4 times lower than the system clock.

26.7.8.3 Data Transfer

Up to 9 data bits are successively shifted out on the TXD pin at each rising or falling edge
(depending of CPOL and CPHA) of the programmed serial clock. There is no Start bit, no Parity
bit and no Stop bit.

The number of data bits is selected by the CHRL field and the MODE 9 bit in the Mode Register
(MR). The 9 bits are selected by setting the MODE 9 bit regardless of the CHRL field. The MSB
data bit is always sent first in SPI Mode (Master or Slave).

Four combinations of polarity and phase are available for data transfers. The clock polarity is
programmed with the CPOL bit in the Mode Register. The clock phase is programmed with the
CPHA bit. These two parameters determine the edges of the clock signal upon which data is
driven and sampled. Each of the two parameters has two possible states, resulting in four possi-
ble combinations that are incompatible with one another. Thus, a master/slave pair must use the
same parameter pair values to communicate. If multiple slaves are used and fixed in different
configurations, the master must reconfigure itself each time it needs to communicate with a dif-
ferent slave.

Table 26-11. SPI Bus Protocol Mode

SPI Bus Protocol Mode CPOL CPHA

0 0 1

1 0 0

2 1 1

3 1 0

32058K AVR32-01/12

335

AT32UC3A

Figure 26-38. SPI Transfer Format (CPHA=1, 8 bits per transfer)

Figure 26-39. SPI Transfer Format (CPHA=0, 8 bits per transfer)

26.7.8.4 Receiver and Transmitter Control

See Section “26.7.2” on page 309.

CLK cycle (for reference)

CLK
(CPOL= 1)

MOSI
SPI Master ->TXD
SPI Slave ->RXD

MISO
SPI Master ->RXD

SPI Slave ->TXD

NSS
SPI Master ->RTS

SPI Slave ->CTS

MSB

MSB

1

CLK
(CPOL= 0)

3 5 6 7 8

LSB1234

6

6 5

5 4 3 2 1 LSB

2 4

CLK cycle (for reference)

CLK
(CPOL= 0)

CLK
(CPOL= 1)

MOSI
SPI Master -> TXD
SPI Slave -> RXD

MISO
SPI Master -> RXD

SPI Slave -> TXD

NSS
SPI Master -> RTS
SPI Slave -> CTS

MSB 6 5

MSB 6 5

4

4 3

3 2

2 1

1 LSB

LSB

87654321

32058K AVR32-01/12

336

AT32UC3A

26.7.8.5 Character Transmission

The characters are sent by writing in the Transmit Holding Register (THR). The transmitter
reports two status bits in the Channel Status Register (CSR): TXRDY (Transmitter Ready),
which indicates that THR is empty and TXEMPTY, which indicates that all the characters written
in THR have been processed. When the current character processing is completed, the last
character written in THR is transferred into the Shift Register of the transmitter and THR
becomes empty, thus TXRDY rises.

Both TXRDY and TXEMPTY bits are low when the transmitter is disabled. Writing a character in
THR while TXRDY is low has no effect and the written character is lost.

If the USART is in SPI Slave Mode and if a character must be sent while the Transmit Holding
Register (THR) is empty, the UNRE (Underrun Error) bit is set. The TXD transmission line stays
at high level during all this time. The UNRE bit is cleared by writing the Control Register (CR)
with the RSTSTA (Reset Status) bit at 1.

In SPI Master Mode, the slave select line (NSS) is asserted at low level 1 Tbit before the trans-
mission of the MSB bit and released at high level 1 Tbit after the transmission of the LSB bit. So,
the slave select line (NSS) is always released between each character transmission and a mini-
mum delay of 3 Tbits always inserted. However, in order to address slave devices supporting the
CSAAT mode (Chip Select Active After Transfer), the slave select line (NSS) can be forced at
low level by writing the Control Register (CR) with the RTSEN bit at 1. The slave select line
(NSS) can be released at high level only by writing the Control Register (CR) with the RTSDIS
bit at 1 (for example, when all data have been transferred to the slave device).

In SPI Slave Mode, the transmitter does not require a falling edge of the slave select line (NSS)
to initiate a character transmission but only a low level. However, this low level must be present
on the slave select line (NSS) at least 1 Tbit before the first serial clock cycle corresponding to
the MSB bit.

26.7.8.6 Character Reception

When a character reception is completed, it is transferred to the Receive Holding Register
(RHR) and the RXRDY bit in the Status Register (CSR) rises. If a character is completed while
RXRDY is set, the OVRE (Overrun Error) bit is set. The last character is transferred into RHR
and overwrites the previous one. The OVRE bit is cleared by writing the Control Register (CR)
with the RSTSTA (Reset Status) bit at 1.

To ensure correct behavior of the receiver in SPI Slave Mode, the master device sending the
frame must ensure a minimum delay of 1 Tbit between each character transmission. The
receiver does not require a falling edge of the slave select line (NSS) to initiate a character
reception but only a low level. However, this low level must be present on the slave select line
(NSS) at least 1 Tbit before the first serial clock cycle corresponding to the MSB bit.

26.7.8.7 Receiver Timeout

Because the receiver baudrate clock is active only during data transfers in SPI Mode, a receiver
timeout is impossible in this mode, whatever the Time-out value is (field TO) in the Time-out
Register (RTOR).

32058K AVR32-01/12

337

AT32UC3A

26.7.9 Test Modes

The USART can be programmed to operate in three different test modes. The internal loopback
capability allows on-board diagnostics. In the loopback mode the USART interface pins are dis-
connected or not and reconfigured for loopback internally or externally.

26.7.9.1 Normal Mode

Normal mode connects the RXD pin on the receiver input and the transmitter output on the TXD
pin.

Figure 26-40. Normal Mode Configuration

26.7.9.2 Automatic Echo Mode

Automatic echo mode allows bit-by-bit retransmission. When a bit is received on the RXD pin, it
is sent to the TXD pin, as shown in Figure 26-41 on page 337. Programming the transmitter has
no effect on the TXD pin. The RXD pin is still connected to the receiver input, thus the receiver
remains active.

Figure 26-41. Automatic Echo Mode Configuration

26.7.9.3 Local Loopback Mode

Local loopback mode connects the output of the transmitter directly to the input of the receiver,
as shown in Figure 26-42 on page 337. The TXD and RXD pins are not used. The RXD pin has
no effect on the receiver and the TXD pin is continuously driven high, as in idle state.

Figure 26-42. Local Loopback Mode Configuration

Receiver

Transmitter

RXD

TXD

Receiver

Transmitter

RXD

TXD

Receiver

Transmitter

RXD

TXD
1

32058K AVR32-01/12

338

AT32UC3A

26.7.9.4 Remote Loopback Mode

Remote loopback mode directly connects the RXD pin to the TXD pin, as shown in Figure 26-43
on page 338. The transmitter and the receiver are disabled and have no effect. This mode
allows bit-by-bit retransmission.

Figure 26-43. Remote Loopback Mode Configuration

Receiver

Transmitter

RXD

TXD

1

32058K AVR32-01/12

339

AT32UC3A

26.8 Universal Synchronous/Asynchronous Receiver/Transmitter (USART) User Interface

26.8.1 Register Mapping

3. Values in the Version Register vary with the version of the IP block implementation.

Table 26-12. Register Mapping

Offset Register Name Access Reset

0x0000 Control Register CR Write-only –

0x0004 Mode Register MR Read-write –

0x0008 Interrupt Enable Register IER Write-only –

0x000C Interrupt Disable Register IDR Write-only –

0x0010 Interrupt Mask Register IMR Read-only 0x0

0x0014 Channel Status Register CSR Read-only –

0x0018 Receiver Holding Register RHR Read-only 0x0

0x001C Transmitter Holding Register THR Write-only –

0x0020 Baud Rate Generator Register BRGR Read-write 0x0

0x0024 Receiver Time-out Register RTOR Read-write 0x0

0x0028 Transmitter Timeguard Register TTGR Read-write 0x0

0x2C - 0x3C Reserved – – –

0x0040 FI DI Ratio Register FIDI Read-write 0x174

0x0044 Number of Errors Register NER Read-only –

0x0048 Reserved – – –

0x004C IrDA Filter Register IFR Read-write 0x0

0x0050 Manchester Encoder Decoder Register MAN Read-write 0x30011004

0x5C - 0xF8 Reserved – – –

0xFC Version Register VERSION Read-only 0x–(3)

0x5C - 0xFC Reserved – – –

32058K AVR32-01/12

340

AT32UC3A

26.8.2 USART Control Register

Name: CR

Access Type: Write-only

Offset: 0x0

Reset Value: -

• RTSDIS/RCS: Request to Send Disable/Release SPI Chip Select

– If USART does not operate in SPI Master Mode (MODE … 0xE):
0: No effect.

1: Drives the pin RTS to 1.

– If USART operates in SPI Master Mode (MODE = 0xE):
RCS = 0: No effect.

RCS = 1: Releases the Slave Select Line NSS (RTS pin).

• RTSEN/FCS: Request to Send Enable/Force SPI Chip Select

– If USART does not operate in SPI Master Mode (MODE … 0xE):
0: No effect.

1: Drives the pin RTS to 0.

– If USART operates in SPI Master Mode (MODE = 0xE):
FCS = 0: No effect.

FCS = 1: Forces the Slave Select Line NSS (RTS pin) to 0, even if USART is no transmitting, in order to address SPI slave

devices supporting the CSAAT Mode (Chip Select Active After Transfer).

• RETTO: Rearm Time-out
0: No effect

1: Restart Time-out

• RSTNACK: Reset Non Acknowledge
0: No effect

1: Resets NACK in CSR.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – RTSDIS/RCS RTSEN/FCS – –

15 14 13 12 11 10 9 8
RETTO RSTNACK RSTIT SENDA STTTO STPBRK STTBRK RSTSTA

7 6 5 4 3 2 1 0
TXDIS TXEN RXDIS RXEN RSTTX RSTRX – –

32058K AVR32-01/12

341

AT32UC3A

• RSTIT: Reset Iterations
0: No effect.

1: Resets ITERATION in CSR. No effect if the ISO7816 is not enabled.

• SENDA: Send Address
0: No effect.

1: In Multidrop Mode only, the next character written to the THR is sent with the address bit set.

• STTTO: Start Time-out
0: No effect.

1: Starts waiting for a character before clocking the time-out counter. Resets the status bit TIMEOUT in CSR.

• STPBRK: Stop Break
0: No effect.

1: Stops transmission of the break after a minimum of one character length and transmits a high level during 12-bit periods.
No effect if no break is being transmitted.

• STTBRK: Start Break
0: No effect.

1: Starts transmission of a break after the characters present in THR and the Transmit Shift Register have been transmit-
ted. No effect if a break is already being transmitted.

• RSTSTA: Reset Status Bits
0: No effect.

1: Resets the status bits PARE, FRAME, OVRE, MANERR and RXBRK in CSR.

• TXDIS: Transmitter Disable
0: No effect.

1: Disables the transmitter.

• TXEN: Transmitter Enable
0: No effect.

1: Enables the transmitter if TXDIS is 0.

• RXDIS: Receiver Disable
0: No effect.

1: Disables the receiver.

• RXEN: Receiver Enable
0: No effect.

1: Enables the receiver, if RXDIS is 0.

• RSTTX: Reset Transmitter
0: No effect.

32058K AVR32-01/12

342

AT32UC3A

1: Resets the transmitter.

• RSTRX: Reset Receiver
0: No effect.

1: Resets the receiver.

32058K AVR32-01/12

343

AT32UC3A

26.8.3 USART Mode Register

Name: MR

Access Type: Read-write

Offset: 0x4

Reset Value: -

• ONEBIT: Start Frame Delimiter Selector
0: Start Frame delimiter is COMMAND or DATA SYNC.

1: Start Frame delimiter is One Bit.

• MODSYNC: Manchester Synchronization Mode
0:The Manchester Start bit is a 0 to 1 transition

1: The Manchester Start bit is a 1 to 0 transition.

• MAN: Manchester Encoder/Decoder Enable
0: Manchester Encoder/Decoder are disabled.

1: Manchester Encoder/Decoder are enabled.

• FILTER: Infrared Receive Line Filter
0: The USART does not filter the receive line.

1: The USART filters the receive line using a three-sample filter (1/16-bit clock) (2 over 3 majority).

• MAX_ITERATION
Defines the maximum number of iterations in mode ISO7816, protocol T= 0.

• VAR_SYNC: Variable Synchronization of Command/Data Sync Start Frame Delimiter
0: User defined configuration of command or data sync field depending on SYNC value.

1: The sync field is updated when a character is written into THR register.

• DSNACK: Disable Successive NACK
0: NACK is sent on the ISO line as soon as a parity error occurs in the received character (unless INACK is set).

31 30 29 28 27 26 25 24
ONEBIT MODSYNC MAN FILTER – MAX_ITERATION

23 22 21 20 19 18 17 16
– VAR_SYNC DSNACK INACK OVER CLKO MODE9 MSBF/CPOL

15 14 13 12 11 10 9 8
CHMODE NBSTOP PAR SYNC/CPHA

7 6 5 4 3 2 1 0
CHRL USCLKS MODE

32058K AVR32-01/12

344

AT32UC3A

1: Successive parity errors are counted up to the value specified in the MAX_ITERATION field. These parity errors gener-
ate a NACK on the ISO line. As soon as this value is reached, no additional NACK is sent on the ISO line. The flag
ITERATION is asserted.

• INACK: Inhibit Non Acknowledge
0: The NACK is generated.

1: The NACK is not generated.

• OVER: Oversampling Mode
0: 16x Oversampling.

1: 8x Oversampling.

• CLKO: Clock Output Select
0: The USART does not drive the CLK pin.

1: The USART drives the CLK pin if USCLKS does not select the external clock CLK.

• MODE9: 9-bit Character Length
0: CHRL defines character length.

1: 9-bit character length.

• MSBF/CPOL: Bit Order or SPI Clock Polarity

– If USART does not operate in SPI Mode (MODE … 0xE and 0xF):
MSBF = 0: Least Significant Bit is sent/received first.

MSBF = 1: Most Significant Bit is sent/received first.

– If USART operates in SPI Mode (Slave or Master, MODE = 0xE or 0xF):
CPOL = 0: The inactive state value of SPCK is logic level zero.

CPOL = 1: The inactive state value of SPCK is logic level one.

CPOL is used to determine the inactive state value of the serial clock (SPCK). It is used with CPHA to produce the required
clock/data relationship between master and slave devices.

• CHMODE: Channel Mode

• NBSTOP: Number of Stop Bits

CHMODE Mode Description

0 0 Normal Mode

0 1 Automatic Echo. Receiver input is connected to the TXD pin.

1 0 Local Loopback. Transmitter output is connected to the Receiver Input..

1 1 Remote Loopback. RXD pin is internally connected to the TXD pin.

NBSTOP Asynchronous (SYNC = 0) Synchronous (SYNC = 1)

0 0 1 stop bit 1 stop bit

32058K AVR32-01/12

345

AT32UC3A

• PAR: Parity Type

• SYNC/CPHA: Synchronous Mode Select or SPI Clock Phase

– If USART does not operate in SPI Mode (MODE is … 0xE and 0xF):
SYNC = 0: USART operates in Asynchronous Mode.

SYNC = 1: USART operates in Synchronous Mode.

– If USART operates in SPI Mode (MODE = 0xE or 0xF):
CPHA = 0: Data is changed on the leading edge of SPCK and captured on the following edge of SPCK.

CPHA = 1: Data is captured on the leading edge of SPCK and changed on the following edge of SPCK.

CPHA determines which edge of SPCK causes data to change and which edge causes data to be captured. CPHA is used
with CPOL to produce the required clock/data relationship between master and slave devices.

• CHRL: Character Length.

• USCLKS: Clock Selection

0 1 1.5 stop bits Reserved

1 0 2 stop bits 2 stop bits

1 1 Reserved Reserved

PAR Parity Type

0 0 0 Even parity

0 0 1 Odd parity

0 1 0 Parity forced to 0 (Space)

0 1 1 Parity forced to 1 (Mark)

1 0 x No parity

1 1 x Multidrop mode

CHRL Character Length

0 0 5 bits

0 1 6 bits

1 0 7 bits

1 1 8 bits

USCLKS Selected Clock

0 0 CLK_USART

0 1 CLK_USART/DIV (DIV = xx)

1 0 Reserved

1 1 CLK

32058K AVR32-01/12

346

AT32UC3A

• MODE

MODE Mode of the USART

0 0 0 0 Normal

0 0 0 1 RS485

0 0 1 0 Hardware Handshaking

0 1 0 0 IS07816 Protocol: T = 0

0 1 1 0 IS07816 Protocol: T = 1

1 0 0 0 IrDA

1 1 1 0 SPI Master

1 1 1 1 SPI Slave

Others Reserved

32058K AVR32-01/12

347

AT32UC3A

26.8.4 USART Interrupt Enable Register

Name: IER

Access Type: Write-only

Offset: 0x8

Reset Value: -

• MANEA: Manchester Error Interrupt Enable

• MANE: Manchester Error Interrupt Enable

• CTSIC: Clear to Send Input Change Interrupt Enable

• NACK: Non Acknowledge Interrupt Enable

• RXBUFF: Buffer Full Interrupt Enable

• TXBUFE: Buffer Empty Interrupt Enable

• ITER/UNRE: Iteration or SPI Underrun Error Interrupt Enable

• TXEMPTY: TXEMPTY Interrupt Enable

• TIMEOUT: Time-out Interrupt Enable

• PARE: Parity Error Interrupt Enable

• FRAME: Framing Error Interrupt Enable

• OVRE: Overrun Error Interrupt Enable

• ENDTX: End of Transmit Interrupt Enable

• ENDRX: End of Receive Transfer Interrupt Enable

• RXBRK: Receiver Break Interrupt Enable

• TXRDY: TXRDY Interrupt Enable

• RXRDY: RXRDY Interrupt Enable

31 30 29 28 27 26 25 24
– – – – – MANEA

23 22 21 20 19 18 17 16
– – – MANE CTSIC – – –

15 14 13 12 11 10 9 8
NACK RXBUFF TXBUFE ITER/UNRE TXEMPTY TIMEOUT

7 6 5 4 3 2 1 0
PARE FRAME OVRE ENDTX ENDRX RXBRK TXRDY RXRDY

32058K AVR32-01/12

348

AT32UC3A

26.8.5 USART Interrupt Disable Register

Name: IDR

32058K AVR32-01/12

349

AT32UC3A

Access Type: Write-only

Offset: 0xC

Reset Value: -

• MANEA: Manchester Error Interrupt Disable

• MANE: Manchester Error Interrupt Disable

• CTSIC: Clear to Send Input Change Interrupt Disable

• NACK: Non Acknowledge Interrupt Disable

• RXBUFF: Buffer Full Interrupt Disable

• TXBUFE: Buffer Empty Interrupt Disable

• ITER/UNRE: Iteration or SPI Underrun Error Interrupt Enable

• TXEMPTY: TXEMPTY Interrupt Disable

• TIMEOUT: Time-out Interrupt Disable

• PARE: Parity Error Interrupt Disable

• FRAME: Framing Error Interrupt Disable

• OVRE: Overrun Error Interrupt Disable

• ENDTX: End of Transmit Interrupt Disable

• ENDRX: End of Receive Transfer Interrupt Disable

• RXBRK: Receiver Break Interrupt Disable

• TXRDY: TXRDY Interrupt Disable

• RXRDY: RXRDY Interrupt Disable

31 30 29 28 27 26 25 24
– – MANEA

23 22 21 20 19 18 17 16
– – – MANE CTSIC – – –

15 14 13 12 11 10 9 8
NACK RXBUFF TXBUFE ITER/UNRE TXEMPTY TIMEOUT

7 6 5 4 3 2 1 0
PARE FRAME OVRE ENDTX ENDRX RXBRK TXRDY RXRDY

32058K AVR32-01/12

350

AT32UC3A

26.8.6 USART Interrupt Mask Register

Name: IMR

Access Type: Read-only

Offset: 0x10

Reset Value: 0x00000000

• MANEA: Manchester Error Interrupt Mask

• MANE: Manchester Error Interrupt Mask

• CTSIC: Clear to Send Input Change Interrupt Mask

• NACK: Non Acknowledge Interrupt Mask

• RXBUFF: Buffer Full Interrupt Mask

• TXBUFE: Buffer Empty Interrupt Mask

• ITER/UNRE: Iteration or SPI Underrun Error Interrupt Enable

• TXEMPTY: TXEMPTY Interrupt Mask

• TIMEOUT: Time-out Interrupt Mask

• PARE: Parity Error Interrupt Mask

• FRAME: Framing Error Interrupt Mask

• OVRE: Overrun Error Interrupt Mask

• ENDTX: End of Transmit Interrupt Mask

• ENDRX: End of Receive Transfer Interrupt Mask

• RXBRK: Receiver Break Interrupt Mask

• TXRDY: TXRDY Interrupt Mask

• RXRDY: RXRDY Interrupt Mask

31 30 29 28 27 26 25 24
– – MANEA

23 22 21 20 19 18 17 16
– – – MANE CTSIC – – –

15 14 13 12 11 10 9 8
NACK RXBUFF TXBUFE ITER/UNRE TXEMPTY TIMEOUT

7 6 5 4 3 2 1 0
PARE FRAME OVRE ENDTX ENDRX RXBRK TXRDY RXRDY

32058K AVR32-01/12

351

AT32UC3A

26.8.7 USART Channel Status Register

Name: CSR

32058K AVR32-01/12

352

AT32UC3A

Access Type: Read-only

Offset: 0x14

Reset Value: -

• MANERR: Manchester Error
0: No Manchester error has been detected since the last RSTSTA.

1: At least one Manchester error has been detected since the last RSTSTA.

• CTS: Image of CTS Input
0: CTS is at 0.

1: CTS is at 1.

• CTSIC: Clear to Send Input Change Flag
0: No input change has been detected on the CTS pin since the last read of CSR.

1: At least one input change has been detected on the CTS pin since the last read of CSR.

• NACK: Non Acknowledge
0: No Non Acknowledge has not been detected since the last RSTNACK.

1: At least one Non Acknowledge has been detected since the last RSTNACK.

• RXBUFF: Reception Buffer Full
0: The signal Buffer Full from the Receive PDC channel is inactive.

1: The signal Buffer Full from the Receive PDC channel is active.

• TXBUFE: Transmission Buffer Empty
0: The signal Buffer Empty from the Transmit PDC channel is inactive.

1: The signal Buffer Empty from the Transmit PDC channel is active.

• ITER/UNRE: Max number of Repetitions Reached or SPI Underrun Error

– If USART does not operate in SPI Slave Mode (MODE … 0xF):
ITER = 0: Maximum number of repetitions has not been reached since the last RSTSTA.

ITER = 1: Maximum number of repetitions has been reached since the last RSTSTA.

31 30 29 28 27 26 25 24
– – MANERR

23 22 21 20 19 18 17 16
CTS – – – CTSIC – – –

15 14 13 12 11 10 9 8
NACK RXBUFF TXBUFE ITER/UNRE TXEMPTY TIMEOUT

7 6 5 4 3 2 1 0
PARE FRAME OVRE ENDTX ENDRX RXBRK TXRDY RXRDY

32058K AVR32-01/12

353

AT32UC3A

– If USART operates in SPI Slave Mode (MODE = 0xF):
UNRE = 0: No SPI underrun error has occurred since the last RSTSTA.

UNRE = 1: At least one SPI underrun error has occurred since the last RSTSTA.

• TXEMPTY: Transmitter Empty
0: There are characters in either THR or the Transmit Shift Register, or the transmitter is disabled.

TXEMPTY == 1: Means that the Transmit Shift Register is empty and that there is no data in THR.

• TIMEOUT: Receiver Time-out
0: There has not been a time-out since the last Start Time-out command (STTTO in CR) or the Time-out Register is 0.

1: There has been a time-out since the last Start Time-out command (STTTO in CR).

• PARE: Parity Error
0: No parity error has been detected since the last RSTSTA.

1: At least one parity error has been detected since the last RSTSTA.

• FRAME: Framing Error
0: No stop bit has been detected low since the last RSTSTA.

1: At least one stop bit has been detected low since the last RSTSTA.

• OVRE: Overrun Error
0: No overrun error has occurred since the last RSTSTA.

1: At least one overrun error has occurred since the last RSTSTA.

• ENDTX: End of Transmitter Transfer
0: The End of Transfer signal from the Transmit PDC channel is inactive.

1: The End of Transfer signal from the Transmit PDC channel is active.

• ENDRX: End of Receiver Transfer
0: The End of Transfer signal from the Receive PDC channel is inactive.

1: The End of Transfer signal from the Receive PDC channel is active.

• RXBRK: Break Received/End of Break
0: No Break received or End of Break detected since the last RSTSTA.

1: Break Received or End of Break detected since the last RSTSTA.

• TXRDY: Transmitter Ready
0: A character is in the THR waiting to be transferred to the Transmit Shift Register, or an STTBRK command has been
requested, or the transmitter is disabled. As soon as the transmitter is enabled, TXRDY becomes 1.

1: There is no character in the THR.

• RXRDY: Receiver Ready
0: No complete character has been received since the last read of RHR or the receiver is disabled. If characters were being
received when the receiver was disabled, RXRDY changes to 1 when the receiver is enabled.

32058K AVR32-01/12

354

AT32UC3A

1: At least one complete character has been received and RHR has not yet been read.

32058K AVR32-01/12

355

AT32UC3A

26.8.8 USART Receive Holding Register

Name: RHR

Access Type: Read-only

Offset: 0x18

Reset Value: 0x00000000

• RXSYNH: Received Sync
0: Last Character received is a Data.

1: Last Character received is a Command.

• RXCHR: Received Character
Last character received if RXRDY is set.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
RXSYNH – – – – – – RXCHR

7 6 5 4 3 2 1 0
RXCHR

32058K AVR32-01/12

356

AT32UC3A

26.8.9 USART Transmit Holding Register

Name: THR

Access Type: Write-only

Offset: 0x1C

Reset Value: -

• TXSYNH: Sync Field to be transmitted
0: The next character sent is encoded as a data. Start Frame Delimiter is DATA SYNC.

1: The next character sent is encoded as a command. Start Frame Delimiter is COMMAND SYNC.

• TXCHR: Character to be Transmitted
Next character to be transmitted after the current character if TXRDY is not set.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
TXSYNH – – – – – – TXCHR

7 6 5 4 3 2 1 0
TXCHR

32058K AVR32-01/12

357

AT32UC3A

26.8.10 USART Baud Rate Generator Register

Name: BRGR

Access Type: Read-write

Offset: 0x20

Reset Value: 0x00000000

• FP: Fractional Part
0: Fractional divider is disabled.

1 - 7: Baudrate resolution, defined by FP x 1/8.

• CD: Clock Divider

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – FP–

15 14 13 12 11 10 9 8
CD

7 6 5 4 3 2 1 0
CD

CD

MODE ≠ ISO7816

MODE = ISO7816

SYNC = 0

SYNC = 1
or

MODE = SPI
(Master or Slave)

OVER = 0 OVER = 1

0 Baud Rate Clock Disabled

1 to 65535
Baud Rate =
Selected Clock/16/CD

Baud Rate =
Selected Clock/8/CD

Baud Rate =
Selected Clock /CD

Baud Rate = Selected
Clock/CD/FI_DI_RATIO

32058K AVR32-01/12

358

AT32UC3A

26.8.11 USART Receiver Time-out Register

Name: RTOR

Access Type: Read-write

Offset: 0x24

Reset Value: 0x00000000

• TO: Time-out Value
0: The Receiver Time-out is disabled.

1 - 65535: The Receiver Time-out is enabled and the Time-out delay is TO x Bit Period.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
TO

7 6 5 4 3 2 1 0
TO

32058K AVR32-01/12

359

AT32UC3A

26.8.12 USART Transmitter Timeguard Register

Name: TTGR

Access Type: Read-write

Offset: 0x28

Reset Value: 0x00000000

• TG: Timeguard Value

0: The Transmitter Timeguard is disabled.

1 - 255: The Transmitter timeguard is enabled and the timeguard delay is TG x Bit Period.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
TG

32058K AVR32-01/12

360

AT32UC3A

26.8.13 USART FI DI RATIO Register

Name: FIDI

Access Type: Read-write

Offset: 0x40

Reset Value: 0x00000174

• FI_DI_RATIO: FI Over DI Ratio Value
0: If ISO7816 mode is selected, the Baud Rate Generator generates no signal.

1 - 2047: If ISO7816 mode is selected, the Baud Rate is the clock provided on CLK divided by FI_DI_RATIO.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – FI_DI_RATIO

7 6 5 4 3 2 1 0
FI_DI_RATIO

32058K AVR32-01/12

361

AT32UC3A

26.8.14 USART Number of Errors Register

Name: NER

Access Type: Read-only

Offset: 0x44

Reset Value: -

• NB_ERRORS: Number of Errors
Total number of errors that occurred during an ISO7816 transfer. This register automatically clears when read.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
NB_ERRORS

32058K AVR32-01/12

362

AT32UC3A

26.8.15 USART IrDA FILTER Register

Name: IFR

Access Type: Read-write

Offset: 0x4C

Reset Value: 0x00000000

• IRDA_FILTER: IrDA Filter
Sets the filter of the IrDA demodulator.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
IRDA_FILTER

32058K AVR32-01/12

363

AT32UC3A

26.8.16 USART Manchester Configuration Register

Name: MAN

Access Type: Read-write

Offset: 0x50

Reset Value: 0x30011004

• DRIFT: Drift compensation
0: The USART can not recover from an important clock drift

1: The USART can recover from clock drift. The 16X clock mode must be enabled.

• RX_MPOL: Receiver Manchester Polarity
0: Logic Zero is coded as a zero-to-one transition, Logic One is coded as a one-to-zero transition.

1: Logic Zero is coded as a one-to-zero transition, Logic One is coded as a zero-to-one transition.

• RX_PP: Receiver Preamble Pattern detected

• RX_PL: Receiver Preamble Length
0: The receiver preamble pattern detection is disabled

1 - 15: The detected preamble length is RX_PL x Bit Period

• TX_MPOL: Transmitter Manchester Polarity
0: Logic Zero is coded as a zero-to-one transition, Logic One is coded as a one-to-zero transition.

1: Logic Zero is coded as a one-to-zero transition, Logic One is coded as a zero-to-one transition.

31 30 29 28 27 26 25 24
– DRIFT 1 RX_MPOL – – RX_PP

23 22 21 20 19 18 17 16
– – – – RX_PL

15 14 13 12 11 10 9 8
– – – TX_MPOL – – TX_PP

7 6 5 4 3 2 1 0
– – – – TX_PL

RX_PP Preamble Pattern default polarity assumed (RX_MPOL field not set)

0 0 ALL_ONE

0 1 ALL_ZERO

1 0 ZERO_ONE

1 1 ONE_ZERO

32058K AVR32-01/12

364

AT32UC3A

• TX_PP: Transmitter Preamble Pattern

• TX_PL: Transmitter Preamble Length
0: The Transmitter Preamble pattern generation is disabled

1 - 15: The Preamble Length is TX_PL x Bit Period

TX_PP Preamble Pattern default polarity assumed (TX_MPOL field not set)

0 0 ALL_ONE

0 1 ALL_ZERO

1 0 ZERO_ONE

1 1 ONE_ZERO

32058K AVR32-01/12

365

AT32UC3A

26.8.17 USART Version Register

Name: VERSION

Access Type: Read-only

Offset: 0xFC

Reset Value: 0x00000000

• VARIANT
Reserved. No functionality associated.

• VERSION
Version of the module. No functionality associated.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – VARIANT

15 14 13 12 11 10 9 8
– – – – VERSION

7 6 5 4 3 2 1 0
VERSION

32058K AVR32-01/12

366

AT32UC3A

27. Static Memory Controller (SMC)
Rev. 1.0.0.0

27.1 Features

• 4 Chip Selects Available
• 64-Mbyte Address Space per Chip Select
• 8-, 16- or 32-bit Data Bus
• Word, Halfword, Byte Transfers
• Byte Write or Byte Select Lines
• Programmable Setup, Pulse And Hold Time for Read Signals per Chip Select
• Programmable Setup, Pulse And Hold Time for Write Signals per Chip Select
• Programmable Data Float Time per Chip Select
• Compliant with LCD Module
• External Wait Request
• Automatic Switch to Slow Clock Mode
• Asynchronous Read in Page Mode Supported: Page Size Ranges from 4 to 32 Bytes

27.2 Overview

The Static Memory Controller (SMC) generates the signals that control the access to the exter-
nal memory devices or peripheral devices. It has 4 Chip Selects and a 26-bit address bus. The
32-bit data bus can be configured to interface with 8-, or16-, or 32-bit external devices. Separate
read and write control signals allow for direct memory and peripheral interfacing. Read and write
signal waveforms are fully parametrizable.

The SMC can manage wait requests from external devices to extend the current access. The
SMC is provided with an automatic slow clock mode. In slow clock mode, it switches from user-
programmed waveforms to slow-rate specific waveforms on read and write signals. The SMC
supports asynchronous burst read in page mode access for page size up to 32 bytes.

32058K AVR32-01/12

367

AT32UC3A

27.3 Block Diagram

Figure 27-1. Block Diagram

27.4 I/O Lines Description

Table 27-1. I/O Line Description

Name Description Type Active Level

NCS[3:0] Static Memory Controller Chip Select Lines Output Low

NRD Read Signal Output Low

NWR0/NWE Write 0/Write Enable Signal Output Low

A0/NBS0 Address Bit 0/Byte 0 Select Signal Output Low

NWR1/NBS1 Write 1/Byte 1 Select Signal Output Low

A1/NWR2/NBS2 Address Bit 1/Write 2/Byte 2 Select Signal Output Low

NWR3/NBS3 Write 3/Byte 3 Select Signal Output Low

A[25:2] Address Bus Output

D[31:0] Data Bus I/O

NWAIT External Wait Signal Input Low

SMC
Chip SelectBus

Matrix

PM CLK_SMC

SMC

GPIO
Controller

NCS[5:0]

NRD

NWR0/NWE

A0/NBS0

NWR1/NBS1
A1/NWR2/NBS2

NWR3/NBS3

A[25:2]

D[31:0]

NWAIT

User Interface

Peripheral Bus

NCS[5:0]

NRD

NWR0/NWE

A0/NBS0

NWR1/NBS1

A1/NWR2/NBS2

NWR3/NBS3

A[25:2]

D[31:0]

NWAIT

32058K AVR32-01/12

368

AT32UC3A

27.5 Product Dependencies

27.5.1 EBI I/O Lines

The Static Memory Controller signals pass througth the EBI module where they are multiplexed.
The programmer must first configure the GPIO controller to assign the EBI pins corresponding to
SMC signals to their peripheral function. If I/O lines of the EBI corresponding to SMC
signals are not used by the application, they can be used for other purposes by the GPIO
Controller.

27.6 Functionnal Description

27.6.1 Application Example

27.6.1.1 Hardware Interface

Figure 27-2. SMC Connections to Static Memory Devices

27.6.2 External Memory Mapping

The SMC provides up to 26 address lines, A[25:0]. This allows each chip select line to address
up to 64 Mbytes of memory.

128K x 8
SRAM

D0-D7

CS

OE

WE

A0-A16

128K x 8
SRAM

D0-D7

CS

OE

WE

A0-A16

128K x 8
SRAM

D0-D7

CS

OE

WE

A0-A16

128K x 8
SRAM

D0-D7

CS

OE

WE

A0-A16

D0-D31

NWR1/NBS1

A0/NBS0
NWR0/NWE

A1/NWR2/NBS2
NWR3/NBS3

NCS0
NCS1
NCS2
NCS3

NCS5
NCS4

NRD

NRD NRD

NRD

A2-A25

Static Memory
Controller

A1/NWR2/NBS2

NWR0/NWE NWR1/NBS1

NWR3/NBS3

D8-D15D0-D7

D16-D23 D24-D31

A2-A18A2-A18

A2-A18
A2-A18

32058K AVR32-01/12

369

AT32UC3A

If the physical memory device connected on one chip select is smaller than 64 Mbytes, it wraps
around and appears to be repeated within this space. The SMC correctly handles any valid
access to the memory device within the page (see Figure 27-3).

A[25:0] is only significant for 8-bit memory, A[25:1] is used for 16-bit memory, A[25:2] is used for
32-bit memory.

Figure 27-3. Memory Connections for 6 External Devices

27.6.3 Connection to External Devices

27.6.3.1 Data Bus Width

A data bus width of 8, 16 or 32 bits can be selected for each chip select. This option is controlled
by the field DBW in MODE (Mode Register) for the corresponding chip select.

Figure 27-4 shows how to connect a 512K x 8-bit memory on NCS2. Figure 27-5 shows how to
connect a 512K x 16-bit memory on NCS2. Figure 27-6 shows two 16-bit memories connected
as a single 32-bit memory.

27.6.3.2 Byte Write or Byte Select Access

Each chip select with a 16-bit or 32-bit data bus can operate with one of two different types of
write access: byte write or byte select access. This is controlled by the BAT field of the MODE
register for the corresponding chip select.

NCS[0] - NCS[5]

NRD

NWE

A[25:0]

D[31:0]

SMC NCS5

NCS4

NCS3

NCS2

NCS1

NCS0

8 or 16 or 32

Memory Enable

Memory Enable

Memory Enable

Memory Enable

Memory Enable

Memory Enable

Output Enable

Write Enable

A[25:0]
D[31:0] or D[15:0] or
D[7:0]

32058K AVR32-01/12

370

AT32UC3A

Figure 27-4. Memory Connection for an 8-bit Data Bus

Figure 27-5. Memory Connection for a 16-bit Data Bus

Figure 27-6. Memory Connection for a 32-bit Data Bus

SMC

A0

NWE
NRD

NCS[2]

A0

Write Enable
Output Enable

Memory Enable

D[7:0] D[7:0]

A[18:2]A[18:2]

A1 A1

SMC NBS0

NWE

NRD

NCS[2]

Low Byte Enable

Write Enable

Output Enable

Memory Enable

NBS1 High Byte Enable

D[15:0] D[15:0]

A[19:2] A[18:1]

A[0]A1

D[31:16]

SMC NBS0

NWE

NRD

NCS[2]

NBS1

D[15:0]

A[20:2]

D[31:16]

NBS2

NBS3

Byte 0 Enable

Write Enable

Output Enable

Memory Enable

Byte 1 Enable

D[15:0]

A[18:0]

Byte 2 Enable

Byte 3 Enable

32058K AVR32-01/12

371

AT32UC3A

– Byte Write Access

Byte write access supports one byte write signal per byte of the data bus and a single read
signal.

Note that the SMC does not allow boot in Byte Write Access mode.

• For 16-bit devices: the SMC provides NWR0 and NWR1 write signals for respectively byte0
(lower byte) and byte1 (upper byte) of a 16-bit bus. One single read signal (NRD) is provided.

Byte Write Access is used to connect 2 x 8-bit devices as a 16-bit memory.

• For 32-bit devices: NWR0, NWR1, NWR2 and NWR3, are the write signals of byte0 (lower
byte), byte1, byte2 and byte 3 (upper byte) respectively. One single read signal (NRD) is
provided.

Byte Write Access is used to connect 4 x 8-bit devices as a 32-bit memory.

Byte Write option is illustrated on Figure 27-7.

– Byte Select Access

In this mode, read/write operations can be enabled/disabled at a byte level. One byte-select line
per byte of the data bus is provided. One NRD and one NWE signal control read and write.

• For 16-bit devices: the SMC provides NBS0 and NBS1 selection signals for respectively byte0
(lower byte) and byte1 (upper byte) of a 16-bit bus.

Byte Select Access is used to connect one 16-bit device.

• For 32-bit devices: NBS0, NBS1, NBS2 and NBS3, are the selection signals of byte0 (lower
byte), byte1, byte2 and byte 3 (upper byte) respectively. Byte Select Access is used to connect
two 16-bit devices.

Figure 27-8 shows how to connect two 16-bit devices on a 32-bit data bus in Byte Select Access
mode, on NCS3 (BAT = Byte Select Access).

32058K AVR32-01/12

372

AT32UC3A

Figure 27-7. Connection of 2 x 8-bit Devices on a 16-bit Bus: Byte Write Option

– Signal Multiplexing

Depending on the BAT, only the write signals or the byte select signals are used. To save IOs at
the external bus interface, control signals at the SMC interface are multiplexed.

For 32-bit devices, bits A0 and A1 are unused. For 16-bit devices, bit A0 of address is unused.
When Byte Select Option is selected, NWR1 to NWR3 are unused. When Byte Write option is
selected, NBS0 to NBS3 are unused.

SMC A1
NWR0

NRD

NCS[3]

Write Enable

Read Enable

Memory Enable

NWR1

Write Enable

Read Enable

Memory Enable

D[7:0] D[7:0]

D[15:8]

D[15:8]

A[24:2]

A[23:1]

A[23:1]
A[0]

A[0]

32058K AVR32-01/12

373

AT32UC3A

Figure 27-8. Connection of 2x16-bit Data Bus on a 32-bit Data Bus (Byte Select Option)

27.6.4 Standard Read and Write Protocols

In the following sections, the byte access type is not considered. Byte select lines (NBS0 to
NBS3) always have the same timing as the A address bus. NWE represents either the NWE sig-
nal in byte select access type or one of the byte write lines (NWR0 to NWR3) in byte write
access type. NWR0 to NWR3 have the same timings and protocol as NWE. In the same way,
NCS represents one of the NCS[0..3] chip select lines.

SMC

NWE

NRD

NCS[3]

Write Enable

Read Enable

Memory Enable

NBS0

D[15:0] D[15:0]

D[31:16]

A[25:2] A[23:0]

Write Enable

Read Enable

Memory Enable

D[31:16]

A[23:0]

Low Byte Enable

High Byte Enable

Low Byte Enable

High Byte EnableNBS1

NBS2

NBS3

Table 27-2. SMC Multiplexed Signal Translation

Signal Name 32-bit Bus 16-bit Bus 8-bit Bus

Device Type 1x32-bit 2x16-bit 4 x 8-bit 1x16-bit 2 x 8-bit 1 x 8-bit

Byte Access Type (BAT) Byte Select Byte Select Byte Write Byte Select Byte Write

NBS0_A0 NBS0 NBS0 NBS0 A0

NWE_NWR0 NWE NWE NWR0 NWE NWR0 NWE

NBS1_NWR1 NBS1 NBS1 NWR1 NBS1 NWR1

NBS2_NWR2_A1 NBS2 NBS2 NWR2 A1 A1 A1

NBS3_NWR3 NBS3 NBS3 NWR3

32058K AVR32-01/12

374

AT32UC3A

27.6.4.1 Read Waveforms

The read cycle is shown on Figure 27-9.

The read cycle starts with the address setting on the memory address bus, i.e.:

{A[25:2], A1, A0} for 8-bit devices

{A[25:2], A1} for 16-bit devices

A[25:2] for 32-bit devices.

Figure 27-9. Standard Read Cycle

– NRD Waveform

The NRD signal is characterized by a setup timing, a pulse width and a hold timing.

1. NRD_SETUP: the NRD setup time is defined as the setup of address before the NRD
falling edge;

2. NRD_PULSE: the NRD pulse length is the time between NRD falling edge and NRD ris-
ing edge;

3. NRD_HOLD: the NRD hold time is defined as the hold time of address after the NRD ris-
ing edge.

A[25:2]

CLK_SMC

NBS0, NBS1,
A0, A1

NRD

NCS

D[15:0]

NCS_RD_SETUP

NRD_SETUP NRD_PULSE

NCS_RD_PULSE

NRD_CYCLE

NRD_HOLD

NCS_RD_HOLD

32058K AVR32-01/12

375

AT32UC3A

– NCS Waveform

Similarly, the NCS signal can be divided into a setup time, pulse length and hold time:

1. NCS_RD_SETUP: the NCS setup time is defined as the setup time of address before the
NCS falling edge.

2. NCS_RD_PULSE: the NCS pulse length is the time between NCS falling edge and NCS
rising edge;

3. NCS_RD_HOLD: the NCS hold time is defined as the hold time of address after the NCS
rising edge.

– Read Cycle

The NRD_CYCLE time is defined as the total duration of the read cycle, i.e., from the time where
address is set on the address bus to the point where address may change. The total read cycle
time is equal to:

NRD_CYCLE = NRD_SETUP + NRD_PULSE + NRD_HOLD

= NCS_RD_SETUP + NCS_RD_PULSE + NCS_RD_HOLD

All NRD and NCS timings are defined separately for each chip select as an integer number of
Master Clock cycles. To ensure that the NRD and NCS timings are coherent, user must define
the total read cycle instead of the hold timing. NRD_CYCLE implicitly defines the NRD hold time
and NCS hold time as:

NRD_HOLD = NRD_CYCLE - NRD SETUP - NRD PULSE

NCS_RD_HOLD = NRD_CYCLE - NCS_RD_SETUP - NCS_RD_PULSE

– Null Delay Setup and Hold

If null setup and hold parameters are programmed for NRD and/or NCS, NRD and NCS remain
active continuously in case of consecutive read cycles in the same memory (see Figure 27-10).

32058K AVR32-01/12

376

AT32UC3A

Figure 27-10. No Setup, No Hold On NRD and NCS Read Signals

– Null Pulse

Programming null pulse is not permitted. Pulse must be at least set to 1. A null value leads to
unpredictable behavior.

27.6.4.2 Read Mode

As NCS and NRD waveforms are defined independently of one other, the SMC needs to know
when the read data is available on the data bus. The SMC does not compare NCS and NRD tim-
ings to know which signal rises first. The READ_MODE parameter in the MODE register of the
corresponding chip select indicates which signal of NRD and NCS controls the read operation.

– Read is Controlled by NRD (READ_MODE = 1):

Figure 27-11 shows the waveforms of a read operation of a typical asynchronous RAM. The
read data is available tPACC after the falling edge of NRD, and turns to ‘Z’ after the rising edge of
NRD. In this case, the READ_MODE must be set to 1 (read is controlled by NRD), to indicate
that data is available with the rising edge of NRD. The SMC samples the read data internally on
the rising edge of Master Clock that generates the rising edge of NRD, whatever the pro-
grammed waveform of NCS may be.

CLK_SMC

A[25:2]

NBS0, NBS1,
A0, A1

NRD

NCS

D[15:0]

NRD_SETUP NRD_PULSE

NCS_RD_PULSE

NRD_CYCLE NRD_CYCLE

NCS_RD_PULSE NCS_RD_PULSE

NRD_PULSE

NRD_CYCLE

32058K AVR32-01/12

377

AT32UC3A

Figure 27-11. READ_MODE = 1: Data is sampled by SMC before the rising edge of NRD

– Read is Controlled by NCS (READ_MODE = 0)

Figure 27-12 shows the typical read cycle of an LCD module. The read data is valid tPACC after
the falling edge of the NCS signal and remains valid until the rising edge of NCS. Data must be
sampled when NCS is raised. In that case, the READ_MODE must be set to 0 (read is controlled
by NCS): the SMC internally samples the data on the rising edge of Master Clock that generates
the rising edge of NCS, whatever the programmed waveform of NRD may be.

CLK_SMC

A[25:2]

NBS0, NBS1,
A0, A1

NRD

NCS

D[15:0]
tPACC

Data Sampling

32058K AVR32-01/12

378

AT32UC3A

Figure 27-12. READ_MODE = 0: Data is sampled by SMC before the rising edge of NCS

27.6.4.3 Write Waveforms

The write protocol is similar to the read protocol. It is depicted in Figure 27-13. The write cycle
starts with the address setting on the memory address bus.

– NWE Waveforms

The NWE signal is characterized by a setup timing, a pulse width and a hold timing.

1. NWE_SETUP: the NWE setup time is defined as the setup of address and data before
the NWE falling edge;

2. NWE_PULSE: The NWE pulse length is the time between NWE falling edge and NWE
rising edge;

3. NWE_HOLD: The NWE hold time is defined as the hold time of address and data after
the NWE rising edge.

The NWE waveforms apply to all byte-write lines in Byte Write access mode: NWR0 to NWR3.

27.6.4.4 NCS Waveforms

The NCS signal waveforms in write operation are not the same that those applied in read opera-
tions, but are separately defined:

1. NCS_WR_SETUP: the NCS setup time is defined as the setup time of address before
the NCS falling edge.

2. NCS_WR_PULSE: the NCS pulse length is the time between NCS falling edge and NCS
rising edge;

3. NCS_WR_HOLD: the NCS hold time is defined as the hold time of address after the
NCS rising edge.

CLK_SMC

A[25:2]

NBS0, NBS1,
A0, A1

NRD

NCS

D[15:0]
tPACC

Data Sampling

32058K AVR32-01/12

379

AT32UC3A

Figure 27-13. Write Cycle

– Write Cycle

The write_cycle time is defined as the total duration of the write cycle, that is, from the time
where address is set on the address bus to the point where address may change. The total write
cycle time is equal to:

NWE_CYCLE = NWE_SETUP + NWE_PULSE + NWE_HOLD

= NCS_WR_SETUP + NCS_WR_PULSE + NCS_WR_HOLD

All NWE and NCS (write) timings are defined separately for each chip select as an integer num-
ber of Master Clock cycles. To ensure that the NWE and NCS timings are coherent, the user
must define the total write cycle instead of the hold timing. This implicitly defines the NWE hold
time and NCS (write) hold times as:

NWE_HOLD = NWE_CYCLE - NWE_SETUP - NWE_PULSE

NCS_WR_HOLD = NWE_CYCLE - NCS_WR_SETUP - NCS_WR_PULSE

– Null Delay Setup and Hold

If null setup parameters are programmed for NWE and/or NCS, NWE and/or NCS remain active
continuously in case of consecutive write cycles in the same memory (see Figure 27-14). How-
ever, for devices that perform write operations on the rising edge of NWE or NCS, such as
SRAM, either a setup or a hold must be programmed.

CLK_SMC

A[25:2]

NBS0, NBS1,
A0, A1

NWE

NCS

NWE_SETUP NWE_PULSE

NCS_WR_SETUP NCS_WR_PULSE

NWE_CYCLE

NWE_HOLD

NCS_WR_HOLD

32058K AVR32-01/12

380

AT32UC3A

Figure 27-14. Null Setup and Hold Values of NCS and NWE in Write Cycle

– Null Pulse

Programming null pulse is not permitted. Pulse must be at least set to 1. A null value leads to
unpredictable behavior.

27.6.4.5 Write Mode

The WRITE_MODE parameter in the MODE register of the corresponding chip select indicates
which signal controls the write operation.

– Write is Controlled by NWE (WRITE_MODE = 1):

Figure 27-15 shows the waveforms of a write operation with WRITE_MODE set to 1. The data is
put on the bus during the pulse and hold steps of the NWE signal. The internal data buffers are
turned out after the NWE_SETUP time, and until the end of the write cycle, regardless of the
programmed waveform on NCS.

CLK_SMC

A[25:2]

NBS0, NBS1,
A0, A1

NWE,
NWE0, NWE1

NCS

NWE_SETUP NWE_PULSE

NCS_WR_PULSENCS_WR_SETUP

NWE_CYCLE

D[15:0]

NWE_CYCLE

NWE_PULSE

NCS_WR_PULSE

NWE_CYCLE

32058K AVR32-01/12

381

AT32UC3A

Figure 27-15. WRITE_MODE = 1. The write operation is controlled by NWE

– Write is Controlled by NCS (WRITE_MODE = 0)

Figure 27-16 shows the waveforms of a write operation with WRITE_MODE set to 0. The data is
put on the bus during the pulse and hold steps of the NCS signal. The internal data buffers are
turned out after the NCS_WR_SETUP time, and until the end of the write cycle, regardless of
the programmed waveform on NWE.

Figure 27-16. WRITE_MODE = 0. The write operation is controlled by NCS

27.6.4.6 Coding Timing Parameters

All timing parameters are defined for one chip select and are grouped together in one REGIS-
TER according to their type.

CLK_SMC

A[25:2]

NBS0, NBS1,
A0, A1

NWE,
NWR0, NWR1

NCS

D[15:0]

CLK_SMC

A[25:2]

NBS0, NBS1,
A0, A1

NWE,
NWR0, NWR1

NCS

D[15:0]

32058K AVR32-01/12

382

AT32UC3A

The SETUP register groups the definition of all setup parameters:

• NRD_SETUP, NCS_RD_SETUP, NWE_SETUP, NCS_WR_SETUP
The PULSE register groups the definition of all pulse parameters:

• NRD_PULSE, ncs_rd_pULSE, nwe_pULSE, ncs_wr_pULSE
The CYCLE register groups the definition of all cycle parameters:

• NRD_CYCLE, NWE_CYCLEe
Table 27-3 shows how the timing parameters are coded and their permitted range.

27.6.4.7 Usage Restriction

The SMC does not check the validity of the user-programmed parameters. If the sum of
SETUP and PULSE parameters is larger than the corresponding CYCLE parameter, this
leads to unpredictable behavior of the SMC.

For read operations:

Null but positive setup and hold of address and NRD and/or NCS can not be guaranteed at the
memory interface because of the propagation delay of theses signals through external logic and
pads. If positive setup and hold values must be verified, then it is strictly recommended to pro-
gram non-null values so as to cover possible skews between address, NCS and NRD signals.

For write operations:

If a null hold value is programmed on NWE, the SMC can guarantee a positive hold of address,
byte select lines, and NCS signal after the rising edge of NWE. This is true for WRITE_MODE =
1 only. See ”Early Read Wait State” on page 385.

For read and write operations: a null value for pulse parameters is forbidden and may lead to
unpredictable behavior.

In read and write cycles, the setup and hold time parameters are defined in reference to the
address bus. For external devices that require setup and hold time between NCS and NRD sig-
nals (read), or between NCS and NWE signals (write), these setup and hold times must be
converted into setup and hold times in reference to the address bus.

27.6.5 Automatic Wait States

Under certain circumstances, the SMC automatically inserts idle cycles between accesses to
avoid bus contention or operation conflict.

Table 27-3. Coding and Range of Timing Parameters

Coded Value Number of Bits Effective Value

Permitted Range

Coded Value Effective Value

setup [5:0] 6 128 x setup[5] + setup[4:0] 0 ≤ ≤ 31 128 ≤ ≤ 128+31

pulse [6:0] 7 256 x pulse[6] + pulse[5:0] 0 ≤ ≤ 63 256 ≤ ≤ 256+63

cycle [8:0] 9 256 x cycle[8:7] + cycle[6:0] 0 ≤ ≤ 127
256 ≤ ≤ 256+127
512 ≤ ≤ 512+127
768 ≤ ≤ 768+127

32058K AVR32-01/12

383

AT32UC3A

27.6.5.1 Chip Select Wait States

The SMC always inserts an idle cycle between 2 transfers on separate chip selects. This idle
cycle ensures that there is no bus contention between the de-activation of one device and the
activation of the next one.

During chip select wait state, all control lines are turned inactive: NBS0 to NBS3, NWR0 to
NWR3, NCS[0..5], NRD lines are all set to 1.

Figure 27-17 illustrates a chip select wait state between access on Chip Select 0 and Chip
Select 2.

32058K AVR32-01/12

384

AT32UC3A

Figure 27-17. Chip Select Wait State between a Read Access on NCS0 and a Write Access on
NCS2

CLK_SMC

A[25:2]

S0, NBS1,
A0, A1

NRD

NWE

NCS0

NCS2

D[15:0]

NRD_CYCLE

Read to Write
Wait State

Chip Select
Wait State

NWE_CYCLE

32058K AVR32-01/12

385

AT32UC3A

27.6.5.2 Early Read Wait State

In some cases, the SMC inserts a wait state cycle between a write access and a read access to
allow time for the write cycle to end before the subsequent read cycle begins. This wait state is
not generated in addition to a chip select wait state. The early read cycle thus only occurs
between a write and read access to the same memory device (same chip select).

• An early read wait state is automatically inserted if at least one of the following conditions is
valid:

• if the write controlling signal has no hold time and the read controlling signal has no setup time
(Figure 27-18).

• in NCS write controlled mode (WRITE_MODE = 0), if there is no hold timing on the NCS signal
and the NCS_RD_SETUP parameter is set to 0, regardless of the read mode (Figure 27-19).
The write operation must end with a NCS rising edge. Without an Early Read Wait State, the
write operation could not complete properly.

• in NWE controlled mode (WRITE_MODE = 1) and if there is no hold timing (NWE_HOLD = 0),
the feedback of the write control signal is used to control address, data, chip select and byte
select lines. If the external write control signal is not inactivated as expected due to load
capacitances, an Early Read Wait State is inserted and address, data and control signals are
maintained one more cycle. See Figure 27-20.

Figure 27-18. Early Read Wait State: Write with No Hold Followed by Read with No Setup.

CLK_SMC

A[25:2]

NBS0, NBS1,
A0, A1

NWE

NRD

D[15:0]

No hold
No setup

Read cycleEarly Read
Wait state

Write cycle

32058K AVR32-01/12

386

AT32UC3A

Figure 27-19. Early Read Wait State: NCS Controlled Write with No Hold Followed by a Read
with No Setup.

CLK_SMC

A[25:2]

NBS0, NBS1,
A0, A1

NWE

NRD

D[15:0]

No hold No setup

Read cycleEarly Read
(READ_MODE=0 or READ_MODE=1)Wait state

Write cycle
(WRITE_MODE=0)

32058K AVR32-01/12

387

AT32UC3A

Figure 27-20. Early Read Wait State: NWE-controlled Write with No Hold Followed by a Read
with one Set-up Cycle.

27.6.5.3 Reload User Configuration Wait State

The user may change any of the configuration parameters by writing the SMC user interface.

When detecting that a new user configuration has been written in the user interface, the SMC
inserts a wait state before starting the next access. The so called “Reload User Configuration
Wait State” is used by the SMC to load the new set of parameters to apply to next accesses.

The Reload Configuration Wait State is not applied in addition to the Chip Select Wait State. If
accesses before and after re-programming the user interface are made to different devices
(Chip Selects), then one single Chip Select Wait State is applied.

On the other hand, if accesses before and after writing the user interface are made to the same
device, a Reload Configuration Wait State is inserted, even if the change does not concern the
current Chip Select.

– User Procedure

To insert a Reload Configuration Wait State, the SMC detects a write access to any MODE reg-
ister of the user interface. If the user only modifies timing registers (SETUP, PULSE, CYCLE
registers) in the user interface, he must validate the modification by writing the MODE, even if no
change was made on the mode parameters.

– Slow Clock Mode Transition

A Reload Configuration Wait State is also inserted when the Slow Clock Mode is entered or
exited, after the end of the current transfer (see ”Slow Clock Mode” on page 398).

CLK_SMC

A[25:2]

NBS0, NBS1,
A0, A1

Internal write controlling signal

external write controlling
signal(NWE)

NRD

D[15:0]

No hold Read setup=1

Write cycle
(WRITE_MODE = 1)

Early Read
Wait state

Read cycle
(READ_MODE=0 or READ_MODE=1)

32058K AVR32-01/12

388

AT32UC3A

27.6.5.4 Read to Write Wait State

Due to an internal mechanism, a wait cycle is always inserted between consecutive read and
write SMC accesses.

This wait cycle is referred to as a read to write wait state in this document.

This wait cycle is applied in addition to chip select and reload user configuration wait states
when they are to be inserted. See Figure 27-17 on page 384.

27.6.6 Data Float Wait States

Some memory devices are slow to release the external bus. For such devices, it is necessary to
add wait states (data float wait states) after a read access:

• before starting a read access to a different external memory
• before starting a write access to the same device or to a different external one.
The Data Float Output Time (tDF) for each external memory device is programmed in the
TDF_CYCLES field of the MODE register for the corresponding chip select. The value of
TDF_CYCLES indicates the number of data float wait cycles (between 0 and 15) before the
external device releases the bus, and represents the time allowed for the data output to go to
high impedance after the memory is disabled.

Data float wait states do not delay internal memory accesses. Hence, a single access to an
external memory with long tDF will not slow down the execution of a program from internal
memory.

The data float wait states management depends on the READ_MODE and the TDF_MODE
fields of the MODE register for the corresponding chip select.

27.6.6.1 READ_MODE

Setting the READ_MODE to 1 indicates to the SMC that the NRD signal is responsible for turn-
ing off the tri-state buffers of the external memory device. The Data Float Period then begins
after the rising edge of the NRD signal and lasts TDF_CYCLES MCK cycles.

When the read operation is controlled by the NCS signal (READ_MODE = 0), the TDF field gives
the number of MCK cycles during which the data bus remains busy after the rising edge of NCS.

Figure 27-21 illustrates the Data Float Period in NRD-controlled mode (READ_MODE =1),
assuming a data float period of 2 cycles (TDF_CYCLES = 2). Figure 27-22 shows the read oper-
ation when controlled by NCS (READ_MODE = 0) and the TDF_CYCLES parameter equals 3.

32058K AVR32-01/12

389

AT32UC3A

Figure 27-21. TDF Period in NRD Controlled Read Access (TDF = 2)

Figure 27-22. TDF Period in NCS Controlled Read Operation (TDF = 3)

CLK_SMC

A[25:2]

NBS0, NBS1,
A0, A1

NRD

NCS

D[15:0]
tPACC

NRD controlled read operation

TDF = 2 clock cycles

CLK_SMC

A[25:2]

NBS0, NBS1,
A0, A1

NRD

NCS

D[15:0]
tPACC

NCS controlled read operation

TDF = 3 clock cycles

32058K AVR32-01/12

390

AT32UC3A

27.6.6.2 TDF Optimization Enabled (TDF_MODE = 1)

When the TDF_MODE of the MODE register is set to 1 (TDF optimization is enabled), the SMC
takes advantage of the setup period of the next access to optimize the number of wait states
cycle to insert.

Figure 27-23 shows a read access controlled by NRD, followed by a write access controlled by
NWE, on Chip Select 0. Chip Select 0 has been programmed with:

NRD_HOLD = 4; READ_MODE = 1 (NRD controlled)

NWE_SETUP = 3; WRITE_MODE = 1 (NWE controlled)

TDF_CYCLES = 6; TDF_MODE = 1 (optimization enabled).

Figure 27-23. TDF Optimization: No TDF wait states are inserted if the TDF period is over when the next access begins

27.6.6.3 TDF Optimization Disabled (TDF_MODE = 0)

When optimization is disabled, tdf wait states are inserted at the end of the read transfer, so that
the data float period is ended when the second access begins. If the hold period of the read1
controlling signal overlaps the data float period, no additional tdf wait states will be inserted.

Figure 27-24, Figure 27-25 and Figure 27-26 illustrate the cases:

• read access followed by a read access on another chip select,
• read access followed by a write access on another chip select,

CLK_SMC

A[25:2]

NRD

NWE

NCS0

D[15:0]

Read access on NCS0 (NRD controlled) Read to Write
Wait State

write access on NCS0 (NWE controlled)

TDF_CYCLES = 6

NWE_SETUP = 3

NRD_HOLD = 4

32058K AVR32-01/12

391

AT32UC3A

• read access followed by a write access on the same chip select,
with no TDF optimization.

Figure 27-24. TDF Optimization Disabled (TDF Mode = 0). TDF wait states between 2 read accesses on different chip
selects.

Figure 27-25. TDF Mode = 0: TDF wait states between a read and a write access on different chip selects.

CLK_SMC

A[25:2]

NBS0, NBS1,
A0, A1

Read1 controlling
signal(NRD)

Read2 controlling
signal(NRD)

D[15:0]

Read1 hold = 1

Read1 cycle
TDF_CYCLES = 6

Chip Select Wait State

5 TDF WAIT STATES

TDF_CYCLES = 6

Read2 setup = 1

Read 2 cycle
TDF_MODE=0

(optimization disabled)

CLK_SMC

A[25:2]

NBS0, NBS1,
A0, A1

Read1 controlling
signal(NRD)

Write2 controlling
signal(NWE)

D[15:0]

Read1 cycle
TDF_CYCLES = 4

Chip Select
Wait State

Read1 hold = 1

TDF_CYCLES = 4

Read to Write
Wait State

2 TDF WAIT STATES

Write2 setup = 1

Write 2 cycle
TDF_MODE=0

(optimization disabled)

32058K AVR32-01/12

392

AT32UC3A

Figure 27-26. TDF Mode = 0: TDF wait states between read and write accesses on the same chip select.

27.6.7 External Wait

Any access can be extended by an external device using the NWAIT input signal of the SMC.
The EXNW_MODE field of the MODE register on the corresponding chip select must be set to
either to “10” (frozen mode) or “11” (ready mode). When the EXNW_MODE is set to “00” (dis-
abled), the NWAIT signal is simply ignored on the corresponding chip select. The NWAIT signal
delays the read or write operation in regards to the read or write controlling signal, depending on
the read and write modes of the corresponding chip select.

27.6.7.1 Restriction

When one of the EXNW_MODE is enabled, it is mandatory to program at least one hold
cycle for the read/write controlling signal. For that reason, the NWAIT signal cannot be
used in Page Mode (”Asynchronous Page Mode” on page 400), or in Slow Clock Mode
(”Slow Clock Mode” on page 398).

The NWAIT signal is assumed to be a response of the external device to the read/write
request of the SMC. Then NWAIT is examined by the SMC only in the pulse state of the
read or write controlling signal. The assertion of the NWAIT signal outside the expected
period has no impact on SMC behavior.

CLK_SMC

A[25:2]

NBS0, NBS1,
A0, A1

Read1 controlling
signal(NRD)

Write2 controlling
signal(NWE)

D[15:0]

Read1 hold = 1

TDF_CYCLES = 5

Read1 cycle
TDF_CYCLES = 5

Read to Write
Wait State

4 TDF WAIT STATES

Write2 setup = 1

Write 2 cycle
TDF_MODE=0

(optimization disabled)

32058K AVR32-01/12

393

AT32UC3A

27.6.7.2 Frozen Mode

When the external device asserts the NWAIT signal (active low), and after internal synchroniza-
tion of this signal, the SMC state is frozen, i.e., SMC internal counters are frozen, and all control
signals remain unchanged. When the resynchronized NWAIT signal is deasserted, the SMC
completes the access, resuming the access from the point where it was stopped. See Figure 27-
27. This mode must be selected when the external device uses the NWAIT signal to delay the
access and to freeze the SMC.

The assertion of the NWAIT signal outside the expected period is ignored as illustrated in Figure
27-28.

Figure 27-27. Write Access with NWAIT Assertion in Frozen Mode (EXNW_MODE = 10).

CLK_SMC

A[25:2]

NBS0, NBS1,
A0, A1

NWE

NCS

D[15:0]

6 5 4

4

3

3

2

2 1 1

2

1

2 2

1

0

0

FROZEN STATE

NWAIT

Internally synchronized
NWAIT signal

Write cycle

EXNW_MODE = 10 (Frozen)
WRITE_MODE = 1 (NWE_controlled)

NWE_PULSE = 5
NCS_WR_PULSE = 7

32058K AVR32-01/12

394

AT32UC3A

Figure 27-28. Read Access with NWAIT Assertion in Frozen Mode (EXNW_MODE = 10).

CLK_SMC

A[25:2]

NBS0, NBS1,
A0, A1

NCS

NRD

NWAIT

Internally synchronized
NWAIT signal

EXNW_MODE = 10 (Frozen)
READ_MODE = 0 (NCS_controlled)

NRD_PULSE = 2, NRD_HOLD = 6
NCS_RD_PULSE = 5, NCS_RD_HOLD = 3

Read cycle

Assertion is ignored

4 3 2 1 02 2

1 0

5 5 5 4 3

2

2 1

1 0

0

FROZEN STATE

32058K AVR32-01/12

395

AT32UC3A

27.6.7.3 Ready Mode

In Ready mode (EXNW_MODE = 11), the SMC behaves differently. Normally, the SMC begins
the access by down counting the setup and pulse counters of the read/write controlling signal. In
the last cycle of the pulse phase, the resynchronized NWAIT signal is examined.

If asserted, the SMC suspends the access as shown in Figure 27-29 and Figure 27-30. After
deassertion, the access is completed: the hold step of the access is performed.

This mode must be selected when the external device uses deassertion of the NWAIT signal to
indicate its ability to complete the read or write operation.

If the NWAIT signal is deasserted before the end of the pulse, or asserted after the end of the
pulse of the controlling read/write signal, it has no impact on the access length as shown in Fig-
ure 27-30.

Figure 27-29. NWAIT Assertion in Write Access: Ready Mode (EXNW_MODE = 11).

C LK _S M C

A [25 :2]

N B S 0, N B S 1,
A 0, A 1

N W E

N C S

D [15 :0]

6 5 4

4

3

3

2

2 1 0

1

0

1 1

0

FR O ZE N S TA TE

N W AIT

Interna lly synchron ized
N W A IT s igna l

W rite cyc le

E X N W _M O D E = 11 (R eady m ode)
W R ITE _M O D E = 1 (N W E_contro lled)

N W E _P U LS E = 5
N C S _W R _P U LS E = 7

0

32058K AVR32-01/12

396

AT32UC3A

Figure 27-30. NWAIT Assertion in Read Access: Ready Mode (EXNW_MODE = 11).

CLK_SMC

A[25:2]

NBS0, NBS1,
A0, A1

NCS

NRD
6

6

5

5

4

4 3 2

3

1

2 1

0

NWAIT

Internally synchronized
NWAIT signal

Read cycle

EXNW_MODE = 11 (Ready mode)
READ_MODE = 0 (NCS_controlled)

NRD_PULSE = 7
NCS_RD_PULSE = 7

1

0

0

Assertion is ignored Assertion is ignored

Wait STATE

32058K AVR32-01/12

397

AT32UC3A

27.6.7.4 NWAIT Latency and Read/write Timings

There may be a latency between the assertion of the read/write controlling signal and the asser-
tion of the NWAIT signal by the device. The programmed pulse length of the read/write
controlling signal must be at least equal to this latency plus the 2 cycles of resynchronization + 1
cycle. Otherwise, the SMC may enter the hold state of the access without detecting the NWAIT
signal assertion. This is true in frozen mode as well as in ready mode. This is illustrated on Fig-
ure 27-31.

When EXNW_MODE is enabled (ready or frozen), the user must program a pulse length of the
read and write controlling signal of at least:

minimal pulse length = NWAIT latency + 2 resynchronization cycles + 1 cycle

Figure 27-31. NWAIT Latency

Wait STATE

01234

CLK_SMC

A[25:2]

NBS0, NBS1,
A0, A1

NRD

NWAIT

nternally synchronized
NWAIT signal

Minimal pulse length

00

NWAIT latency 2 cycle resynchronization

Read cycle

EXNW_MODE = 10 or 11
READ_MODE = 1 (NRD_controlled)

NRD_PULSE = 5

32058K AVR32-01/12

398

AT32UC3A

27.6.8 Slow Clock Mode

The SMC is able to automatically apply a set of “slow clock mode” read/write waveforms when
an internal signal driven by the Power Management Controller is asserted because CLK_SMC
has been turned to a very slow clock rate (typically 32kHz clock rate). In this mode, the user-pro-
grammed waveforms are ignored and the slow clock mode waveforms are applied. This mode is
provided so as to avoid reprogramming the User Interface with appropriate waveforms at very
slow clock rate. When activated, the slow mode is active on all chip selects.

27.6.8.1 Slow Clock Mode Waveforms

Figure 27-32 illustrates the read and write operations in slow clock mode. They are valid on all
chip selects. indicates the value of read and write parameters in slow clock mode.

Figure 27-32. Read/write Cycles in Slow Clock Mode

CLK_SMC

A[25:2]

NBS0, NBS1,
A0, A1

NCS

NWE

NWE_CYCLES = 3

SLOW CLOCK MODE WRITE

1

1

1

CLK_SMC

A[25:2]

NBS0, NBS1,
A0, A1

NCS

NRD

SLOW CLOCK MODE READ

NRD_CYCLES = 2

1

1

Table 27-4. Read and Write Timing Parameters in Slow Clock Mode

Read Parameters Duration (cycles) Write Parameters Duration (cycles)

NRD_SETUP 1 NWE_SETUP 1

NRD_PULSE 1 NWE_PULSE 1

NCS_RD_SETUP 0 NCS_WR_SETUP 0

NCS_RD_PULSE 2 NCS_WR_PULSE 3

NRD_CYCLE 2 NWE_CYCLE 3

32058K AVR32-01/12

399

AT32UC3A

27.6.8.2 Switching from (to) Slow Clock Mode to (from) Normal Mode

When switching from slow clock mode to the normal mode, the current slow clock mode transfer
is completed at high clock rate, with the set of slow clock mode parameters.See Figure 27-33 on
page 399. The external device may not be fast enough to support such timings.

Figure 27-34 illustrates the recommended procedure to properly switch from one mode to the
other.

Figure 27-33. Clock Rate Transition Occurs while the SMC is Performing a Write Operation

CLK_SMC

A[25:2]

NBS0, NBS1,
A0, A1

NCS

NWE

Slow Clock Mode
Internal signal from PM

This write cycle finishes with the slow clock mode set
Of parameters after the clock rate transition

NWE_CYCLE = 3

SLOW CLOCK MODE WRITE SLOW CLOCK MODE WRITE

1 1 1 1 1 1 2 3 2

NWE_CYCLE = 7

NORMAL MODE WRITE

Slow clock mode transition is detected:
Reload Configuration Wait State

32058K AVR32-01/12

400

AT32UC3A

Figure 27-34. Recommended Procedure to Switch from Slow Clock Mode to Normal Mode or from Normal Mode to Slow
Clock Mode

27.6.9 Asynchronous Page Mode

The SMC supports asynchronous burst reads in page mode, providing that the page mode is
enabled in the MODE register (PMEN field). The page size must be configured in the MODE
register (PS field) to 4, 8, 16 or 32 bytes.

The page defines a set of consecutive bytes into memory. A 4-byte page (resp. 8-, 16-, 32-byte
page) is always aligned to 4-byte boundaries (resp. 8-, 16-, 32-byte boundaries) of memory. The
MSB of data address defines the address of the page in memory, the LSB of address define the
address of the data in the page as detailed in Table 27-5.

With page mode memory devices, the first access to one page (tpa) takes longer than the subse-
quent accesses to the page (tsa) as shown in Figure 27-35. When in page mode, the SMC
enables the user to define different read timings for the first access within one page, and next
accesses within the page.

Notes: 1. A denotes the address bus of the memory device
2. For 16-bit devices, the bit 0 of address is ignored. For 32-bit devices, bits [1:0] are ignored.

27.6.9.1 Protocol and Timings in Page Mode

Figure 27-35 shows the NRD and NCS timings in page mode access.

CLK_SMC

Slow Clock Mode
Internal signal from PM

A[25:2]

NBS0, NBS1,
A0, A1

NWE

NCS

1 1

SLOW CLOCK MODE WRITE

2 3 2

IDLE STATE

Reload Configuration
Wait State

NORMAL MODE WRITE

1

Table 27-5. Page Address and Data Address within a Page

Page Size Page Address(1) Data Address in the Page(2)

4 bytes A[25:2] A[1:0]

8 bytes A[25:3] A[2:0]

16 bytes A[25:4] A[3:0]

32 bytes A[25:5] A[4:0]

32058K AVR32-01/12

401

AT32UC3A

Figure 27-35. Page Mode Read Protocol (Address MSB and LSB are defined in Table 27-5)

The NRD and NCS signals are held low during all read transfers, whatever the programmed val-
ues of the setup and hold timings in the User Interface may be. Moreover, the NRD and NCS
timings are identical. The pulse length of the first access to the page is defined with the
NCS_RD_PULSE field of the PULSE register. The pulse length of subsequent accesses within
the page are defined using the NRD_PULSE parameter.

In page mode, the programming of the read timings is described in Table 27-6:

The SMC does not check the coherency of timings. It will always apply the NCS_RD_PULSE
timings as page access timing (tpa) and the NRD_PULSE for accesses to the page (tsa), even if
the programmed value for tpa is shorter than the programmed value for tsa.

27.6.9.2 Byte Access Type in Page Mode

The Byte Access Type configuration remains active in page mode. For 16-bit or 32-bit page
mode devices that require byte selection signals, configure the BAT field of the REGISTER to 0
(byte select access type).

CLK_SMC

A[MSB]

A[LSB]

NCS

NRD

D[15:0]

tpa

NCS_RD_PULSE

tsa

NRD_PULSE NRD_PULSE

tsa

Table 27-6. Programming of Read Timings in Page Mode

Parameter Value Definition

READ_MODE ‘x’ No impact

NCS_RD_SETUP ‘x’ No impact

NCS_RD_PULSE tpa Access time of first access to the page

NRD_SETUP ‘x’ No impact

NRD_PULSE tsa Access time of subsequent accesses in the page

NRD_CYCLE ‘x’ No impact

32058K AVR32-01/12

402

AT32UC3A

27.6.9.3 Page Mode Restriction

The page mode is not compatible with the use of the NWAIT signal. Using the page mode and
the NWAIT signal may lead to unpredictable behavior.

27.6.9.4 Sequential and Non-sequential Accesses

If the chip select and the MSB of addresses as defined in Table 27-5 are identical, then the cur-
rent access lies in the same page as the previous one, and no page break occurs.

Using this information, all data within the same page, sequential or not sequential, are accessed
with a minimum access time (tsa). Figure 27-36 illustrates access to an 8-bit memory device in
page mode, with 8-byte pages. Access to D1 causes a page access with a long access time
(tpa). Accesses to D3 and D7, though they are not sequential accesses, only require a short
access time (tsa).

If the MSB of addresses are different, the SMC performs the access of a new page. In the same
way, if the chip select is different from the previous access, a page break occurs. If two sequen-
tial accesses are made to the page mode memory, but separated by an other internal or external
peripheral access, a page break occurs on the second access because the chip select of the
device was deasserted between both accesses.

Figure 27-36. Access to Non-sequential Data within the Same Page

CLK_SMC

A[25:3]

A[2], A1, A0

NCS

NRD

D[7:0]

A1

Page address

A3 A7

D1 D3 D7

NCS_RD_PULSE NRD_PULSE NRD_PULSE

32058K AVR32-01/12

403

AT32UC3A

27.7 User Interface

The SMC is programmed using the registers listed in Table 27-7. For each chip select, a set of 4 registers is used to pro-
gram the parameters of the external device connected on it. In Table 27-7, “CS_number” denotes the chip select number.
16 bytes (0x10) are required per chip select.

The user must complete writing the configuration by writing any one of the MODE registers.

Table 27-7. SMC Register Mapping

Offset Register Name Access Reset State

0x10 x CS_number + 0x00 SMC Setup Register SETUP Read/Write –

0x10 x CS_number + 0x04 SMC Pulse Register PULSE Read/Write –

0x10 x CS_number + 0x08 SMC Cycle Register CYCLE Read/Write –

0x10 x CS_number + 0x0C SMC Mode Register MODE Read/Write –

32058K AVR32-01/12

404

AT32UC3A

27.7.1 Setup Register

Register Name: SETUP[0 ..3]

Access Type: Read/Write

Offset: 0x10 x CS_number + 0x00

Reset Value: –

• NCS_RD_SETUP: NCS Setup Length in READ Access
In read access, the NCS signal setup length is defined as:

NCS setup length = (128* NCS_RD_SETUP[5] + NCS_RD_SETUP[4:0]) clock cycles

• NRD_SETUP: NRD Setup Length
The NRD signal setup length is defined in clock cycles as:

NRD setup length = (128* NRD_SETUP[5] + NRD_SETUP[4:0]) clock cycles

• NCS_WR_SETUP: NCS Setup Length in WRITE Access
In write access, the NCS signal setup length is defined as:

NCS setup length = (128* NCS_WR_SETUP[5] + NCS_WR_SETUP[4:0]) clock cycles

• NWE_SETUP: NWE Setup Length
The NWE signal setup length is defined as:

NWE setup length = (128* NWE_SETUP[5] + NWE_SETUP[4:0]) clock cycles

31 30 29 28 27 26 25 24
– – NCS_RD_SETUP

23 22 21 20 19 18 17 16
– – NRD_SETUP

15 14 13 12 11 10 9 8
– – NCS_WR_SETUP

7 6 5 4 3 2 1 0
– – NWE_SETUP

32058K AVR32-01/12

405

AT32UC3A

27.7.2 Pulse Register

Register Name: PULSE[0..3]

Access Type: Read/Write

Offset: 0x10 x CS_number + 0x04

Reset Value: –

• NCS_RD_PULSE: NCS Pulse Length in READ Access
In standard read access, the NCS signal pulse length is defined as:

NCS pulse length = (256* NCS_RD_PULSE[6] + NCS_RD_PULSE[5:0]) clock cycles

The NCS pulse length must be at least 1 clock cycle.

In page mode read access, the NCS_RD_PULSE parameter defines the duration of the first access to one page.

• NRD_PULSE: NRD Pulse Length
In standard read access, the NRD signal pulse length is defined in clock cycles as:

NRD pulse length = (256* NRD_PULSE[6] + NRD_PULSE[5:0]) clock cycles

The NRD pulse length must be at least 1 clock cycle.

In page mode read access, the NRD_PULSE parameter defines the duration of the subsequent accesses in the page.

• NCS_WR_PULSE: NCS Pulse Length in WRITE Access
In write access, the NCS signal pulse length is defined as:

NCS pulse length = (256* NCS_WR_PULSE[6] + NCS_WR_PULSE[5:0]) clock cycles

The NCS pulse length must be at least 1 clock cycle.

• NWE_PULSE: NWE Pulse Length
The NWE signal pulse length is defined as:

NWE pulse length = (256* NWE_PULSE[6] + NWE_PULSE[5:0]) clock cycles

The NWE pulse length must be at least 1 clock cycle.

31 30 29 28 27 26 25 24
– NCS_RD_PULSE

23 22 21 20 19 18 17 16
– NRD_PULSE

15 14 13 12 11 10 9 8
– NCS_WR_PULSE

7 6 5 4 3 2 1 0
– NWE_PULSE

32058K AVR32-01/12

406

AT32UC3A

27.7.3 Cycle Register

Register Name: CYCLE[0..3]

Access Type: Read/Write

Offset: 0x10 x CS_number + 0x08

Reset Value: –

• NRD_CYCLE: Total Read Cycle Length
The total read cycle length is the total duration in clock cycles of the read cycle. It is equal to the sum of the setup, pulse
and hold steps of the NRD and NCS signals. It is defined as:

Read cycle length = (NRD_CYCLE[8:7]*256 + NRD_CYCLE[6:0]) clock cycles

• NWE_CYCLE: Total Write Cycle Length
The total write cycle length is the total duration in clock cycles of the write cycle. It is equal to the sum of the setup, pulse
and hold steps of the NWE and NCS signals. It is defined as:

Write cycle length = (NWE_CYCLE[8:7]*256 + NWE_CYCLE[6:0]) clock cycles

31 30 29 28 27 26 25 24
– – – – – – – NRD_CYCLE

23 22 21 20 19 18 17 16
NRD_CYCLE

15 14 13 12 11 10 9 8
– – – – – – – NWE_CYCLE

7 6 5 4 3 2 1 0
NWE_CYCLE

32058K AVR32-01/12

407

AT32UC3A

27.7.4 MODE Register

Register Name: MODE[0..3]

Access Type: Read/Write

Offset: 0x10 x CS_number + 0x0C

Reset Value: –

• PS: Page Size
If page mode is enabled, this field indicates the size of the page in bytes.

• PMEN: Page Mode Enabled
1: Asynchronous burst read in page mode is applied on the corresponding chip select.

0: Standard read is applied.

• TDF_MODE: TDF Optimization
1: TDF optimization is enabled.

– The number of TDF wait states is optimized using the setup period of the next read/write access.
0: TDF optimization is disabled.

– The number of TDF wait states is inserted before the next access begins.

• TDF_CYCLES: Data Float Time
This field gives the integer number of clock cycles required by the external device to release the data after the rising edge
of the read controlling signal. The SMC always provide one full cycle of bus turnaround after the TDF_CYCLES period. The

31 30 29 28 27 26 25 24
– – PS – – – PMEN

23 22 21 20 19 18 17 16
– – – TDF_MODE TDF_CYCLES

15 14 13 12 11 10 9 8
– – DBW – – – BAT

7 6 5 4 3 2 1 0

– – EXNW_MODE – – WRITE_MOD
E READ_MODE

Table 27-8. Page size settings.

PS Page Size

0 0 4-byte page

0 1 8-byte page

1 0 16-byte page

1 1 32-byte page

32058K AVR32-01/12

408

AT32UC3A

external bus cannot be used by another chip select during TDF_CYCLES + 1 cycles. From 0 up to 15 TDF_CYCLES can
be set.

• BAT: Byte Access Type
This field is used only if DBW defines a 16- or 32-bit data bus.

1: Byte write access type:

– Write operation is controlled using NCS, NWR0, NWR1, NWR2, NWR3.
– Read operation is controlled using NCS and NRD.

0: Byte select access type:

– Write operation is controlled using NCS, NWE, NBS0, NBS1, NBS2 and NBS3
– Read operation is controlled using NCS, NRD, NBS0, NBS1, NBS2 and NBS3

• EXNW_MODE: NWAIT Mode
The NWAIT signal is used to extend the current read or write signal. It is only taken into account during the pulse phase of
the read and write controlling signal. When the use of NWAIT is enabled, at least one cycle hold duration must be pro-
grammed for the read and write controlling signal.

• Disabled Mode: The NWAIT input signal is ignored on the corresponding Chip Select.
• Frozen Mode: If asserted, the NWAIT signal freezes the current read or write cycle. After deassertion, the read/write

cycle is resumed from the point where it was stopped.
• Ready Mode: The NWAIT signal indicates the availability of the external device at the end of the pulse of the controlling

read or write signal, to complete the access. If high, the access normally completes. If low, the access is extended until
NWAIT returns high.

• WRITE_MODE
1: The write operation is controlled by the NWE signal.

– If TDF optimization is enabled (TDF_MODE =1), TDF wait states will be inserted after the setup of NWE.
0: The write operation is controlled by the NCS signal.

– If TDF optimization is enabled (TDF_MODE =1), TDF wait states will be inserted after the setup of NCS.

• READ_MODE:
1: The read operation is controlled by the NRD signal.

• Data Bus Width (DBW)

DBW Data Bus Width

0 0 8-bit bus

0 1 16-bit bus

1 0 32-bit bus

1 1 Reserved

Table 27-9. EXNW_MODE

EXNW_MODE NWAIT Mode

0 0 Disabled

0 1 Reserved

1 0 Frozen Mode

1 1 Ready Mode

32058K AVR32-01/12

409

AT32UC3A

– If TDF cycles are programmed, the external bus is marked busy after the rising edge of NRD.
– If TDF optimization is enabled (TDF_MODE =1), TDF wait states are inserted after the setup of NRD.

0: The read operation is controlled by the NCS signal.

– If TDF cycles are programmed, the external bus is marked busy after the rising edge of NCS.
– If TDF optimization is enabled (TDF_MODE =1), TDF wait states are inserted after the setup of NCS.

32058K AVR32-01/12

410

AT32UC3A

28. SDRAM Controller (SDRAMC)

Rev: 2.0.1.1

28.1 Features

• Numerous Configurations Supported
– 2K, 4K, 8K Row Address Memory Parts
– SDRAM with Two or Four Internal Banks
– SDRAM with 16- or 32-bit Data Path

• Programming Facilities
– Word, Half-word, Byte Access
– Automatic Page Break When Memory Boundary Has Been Reached
– Multibank Ping-pong Access
– Timing Parameters Specified by Software
– Automatic Refresh Operation, Refresh Rate is Programmable
– Automatic Update of DS, TCR and PASR Parameters (Mobile SDRAM Devices)

• Energy-saving Capabilities
– Self-refresh, Power-down and Deep Power Modes Supported
– Supports Mobile SDRAM Devices

• Error Detection
– Refresh Error Interrupt

• SDRAM Power-up Initialization by Software
• CAS Latency of 1, 2, 3 Supported
• Auto Precharge Command Not Used

28.2 Description

The SDRAM Controller (SDRAMC) extends the memory capabilities of a chip by providing the
interface to an external 16-bit or 32-bit SDRAM device. The page size supports ranges from
2048 to 8192 and the number of columns from 256 to 2048. It supports byte (8-bit), half-word
(16-bit) and word (32-bit) accesses.

The SDRAM Controller supports a read or write burst length of one location. It keeps track of the
active row in each bank, thus maximizing SDRAM performance, e.g., the application may be
placed in one bank and data in the other banks. So as to optimize performance, it is advisable to
avoid accessing different rows in the same bank.

The SDRAM controller supports a CAS latency of 1, 2 or 3 and optimizes the read access
depending on the frequency.

The different modes available - self-refresh, power-down and deep power-down modes - mini-
mize power consumption on the SDRAM device.

32058K AVR32-01/12

411

AT32UC3A

28.3 Block Diagram

Figure 28-1. SDRAM Controller Block Diagram

28.4 I/O Lines Description

Memory
Controller

Peripheral Bus

SDRAMC
Interrupt

SDCK

SDCS

SDRAMC_A[12:0]

SDRAMC

PIO
Controller

BA[1:0]

SDCKE

RAS

CAS

SDWE

NBS[3:0]

User Interface

PMC MCK

D[31:0]

SDRAMC
Chip Select

Table 28-1. I/O Line Description

Name Description Type Active Level

SDCK SDRAM Clock Output

SDCKE SDRAM Clock Enable Output High

SDCS SDRAM Controller Chip Select Output Low

BA[1:0] Bank Select Signals Output

RAS Row Signal Output Low

CAS Column Signal Output Low

SDWE SDRAM Write Enable Output Low

NBS[3:0] Data Mask Enable Signals Output Low

SDRAMC_A[12:0] Address Bus Output

D[31:0] Data Bus I/O

32058K AVR32-01/12

412

AT32UC3A

28.5 Application Example

28.5.1 Hardware Interface

Figure 28-2 shows an example of SDRAM device connection to the SDRAM Controller using a
32-bit data bus width. Figure 28-3 shows an example of SDRAM device connection using a 16-
bit data bus width. It is important to note that these examples are given for a direct connection of
the devices to the SDRAM Controller, without External Bus Interface or PIO Controller
multiplexing.

Figure 28-2. SDRAM Controller Connections to SDRAM Devices: 32-bit Data Bus Width

Figure 28-3. SDRAM Controller Connections to SDRAM Devices: 16-bit Data Bus Width

SDRAM
Controller

D0-D31

SDRAMC_A[0-12]

RAS
CAS

SDCK
SDCKE
SDWE
NBS0

2M x 8
SDRAM

D0-D7

A0-A9, A11

RAS
CAS

CLK
CKE
WE

DQM

CS

BA0
BA1

NBS1
NBS2
NBS3

SDCS

D0-D7 D8-D15

BA0
BA1

A10
SDRAMC_A[0-9], SDRAMC_A11
SDRAMC_A10
BA0
BA1

2M x 8
SDRAM

D0-D7

A0-A9, A11

RAS
CAS

CLK
CKE
WE

DQM

CS

BA0
BA1

A10
SDRAMC_A[0-9], SDRAMC_A11
SDRAMC_A10
BA0
BA1

2M x 8
SDRAM

D0-D7

A0-A9, A11

RAS
CAS

CLK
CKE
WE

DQM

CS

BA0
BA1

D16-D23 D24-D31

A10
SDRAMC_A[0-9], SDRAMC_ A11
SDRAMC_A10
BA0
BA1

2M x 8
SDRAM

D0-D7

A0-A9, A11

RAS
CAS

CLK
CKE
WE

DQM

CS

BA0
BA1

A10

SDRAMC_A[0-9], SDRAMC_A11
SDRAMC_A10
BA0
BA1

NBS0 NBS1

NBS3NBS2

SDWE

SDWESDWE

SDWE

SDRAM
Controller

D0-D31

SDRAMC_A[0-12]

RAS
CAS

SDCK
SDCKE
SDWE
NBS0

2M x 8
SDRAM

D0-D7

A0-A9, A11

RAS
CAS

CLK
CKE
WE

DQM

CS

BA0
BA1

NBS1

SDCS

D0-D7 D8-D15

BA0
BA1

A10
SDRAMC_A[0-9], SDRAMC_A11
SDRAMC_A10
BA0
BA1

2M x 8
SDRAM

D0-D7

A0-A9, A11

RAS
CAS

CLK
CKE
WE

DQM

CS

BA0
BA1

A10
SDRAMC_A[0-9], SDRAMC_A11
SDRAMC_A10
BA0
BA1

NBS0 NBS1

SDWESDWE

32058K AVR32-01/12

413

AT32UC3A

28.5.2 Software Interface

The SDRAM address space is organized into banks, rows, and columns. The SDRAM controller
allows mapping different memory types according to the values set in the SDRAMC configura-
tion register.

The SDRAM Controller’s function is to make the SDRAM device access protocol transparent to
the user. Table 28-2 to Table 28-7 illustrate the SDRAM device memory mapping seen by the
user in correlation with the device structure. Various configurations are illustrated.

28.5.2.1 32-bit Memory Data Bus Width

Notes: 1. M[1:0] is the byte address inside a 32-bit word.
2. Bk[1] = BA1, Bk[0] = BA0.

Table 28-2. SDRAM Configuration Mapping: 2K Rows, 256/512/1024/2048 Columns
CPU Address Line

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

Bk[1:0] Row[10:0] Column[7:0] M[1:0]

Bk[1:0] Row[10:0] Column[8:0] M[1:0]

Bk[1:0] Row[10:0] Column[9:0] M[1:0]

Bk[1:0] Row[10:0] Column[10:0] M[1:0]

Table 28-3. SDRAM Configuration Mapping: 4K Rows, 256/512/1024/2048 Columns
CPU Address Line

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

Bk[1:0] Row[11:0] Column[7:0] M[1:0]

Bk[1:0] Row[11:0] Column[8:0] M[1:0]

Bk[1:0] Row[11:0] Column[9:0] M[1:0]

Bk[1:0] Row[11:0] Column[10:0] M[1:0]

Table 28-4. SDRAM Configuration Mapping: 8K Rows, 256/512/1024/2048 Columns
CPU Address Line

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

Bk[1:0] Row[12:0] Column[7:0] M[1:0]

Bk[1:0] Row[12:0] Column[8:0] M[1:0]

Bk[1:0] Row[12:0] Column[9:0] M[1:0]

Bk[1:0] Row[12:0] Column[10:0] M[1:0]

32058K AVR32-01/12

414

AT32UC3A

28.5.2.2 16-bit Memory Data Bus Width

Notes: 1. M0 is the byte address inside a 16-bit half-word.
2. Bk[1] = BA1, Bk[0] = BA0.

Table 28-5. SDRAM Configuration Mapping: 2K Rows, 256/512/1024/2048 Columns
CPU Address Line

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

Bk[1:0] Row[10:0] Column[7:0] M
0

Bk[1:0] Row[10:0] Column[8:0] M
0

Bk[1:0] Row[10:0] Column[9:0] M
0

Bk[1:0] Row[10:0] Column[10:0] M
0

Table 28-6. SDRAM Configuration Mapping: 4K Rows, 256/512/1024/2048 Columns
CPU Address Line

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

Bk[1:0] Row[11:0] Column[7:0] M
0

Bk[1:0] Row[11:0] Column[8:0] M
0

Bk[1:0] Row[11:0] Column[9:0] M
0

Bk[1:0] Row[11:0] Column[10:0] M
0

Table 28-7. SDRAM Configuration Mapping: 8K Rows, 256/512/1024/2048 Columns
CPU Address Line

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

Bk[1:0] Row[12:0] Column[7:0] M
0

Bk[1:0] Row[12:0] Column[8:0] M
0

Bk[1:0] Row[12:0] Column[9:0] M
0

Bk[1:0] Row[12:0] Column[10:0] M
0

32058K AVR32-01/12

415

AT32UC3A

28.6 Product Dependencies

28.6.1 SDRAM Device Initialization

The initialization sequence is generated by software. The SDRAM devices are initialized by the
following sequence:

1. SDRAM features must be set in the configuration register: asynchronous timings (TRC,
TRAS, ...), number of column, rows, CAS latency, and the data bus width.

2. For mobile SDRAM, temperature-compensated self refresh (TCSR), drive strength (DS)
and partial array self refresh (PASR) must be set in the Low Power Register.

3. The SDRAM memory type must be set in the Memory Device Register.
4. An No Operation (NOP)command must be issued to the SDRAM devices to start the

SDRAM clock. The application must set Mode to 1 in the and perform a write access to
any SDRAM address.

5. A minimum pause of 200 µs is provided to precede any signal toggle.
6. An All Banks Precharge command must be issued to the SDRAM devices. The applica-

tion must set Mode to 2 in the Mode Register and perform a write access to any SDRAM
address.

7. Eight auto-refresh (CBR) cycles are provided. The application must set the Mode to 4 in
the Mode Register and performs a write access to any SDRAM location eight times.

8. A Mode Register set (MRS) cycle must be issued to program the parameters of the
SDRAM devices, in particular CAS latency and burst length. The application must set
Mode to 3 in the Mode Register and perform a write access to the SDRAM. The write
address must be chosen so that BA[1:0] are set to 0. For example, with a 16-bit 128 MB
SDRAM (12 rows, 9 columns, 4 banks) bank address, the SDRAM write access should
be done at the address 0x20000000.

9. For mobile SDRAM initialization, an Extended Mode Register set (EMRS) cycle must be
issued to program the SDRAM parameters (TCSR, PASR, DS). The application must set
Mode to 5 in the Mode Register and perform a write access to the SDRAM. The write
address must be chosen so that BA[1] or BA[0] are set to 1. For example, with a 16-bit
128 MB SDRAM, (12 rows, 9 columns, 4 banks) bank address the SDRAM write access
should be done at the address 0x20800000 or 0x20400000.

10. The application must go into Normal Mode, setting Mode to 0 in the Mode Register and
performing a write access at any location in the SDRAM.

11. Write the refresh rate into the count field in the SDRAMC Refresh Timer register.
(Refresh rate = delay between refresh cycles). The SDRAM device requires a refresh
every 15.625 us or 7.81 us. With a 100 MHz frequency, the Refresh Timer Counter Reg-
ister must be set with the value 1562 (15.625 µs x 100 MHz) or 781 (7.81 µs x 100 MHz).

After initialization, the SDRAM devices are fully functional.

32058K AVR32-01/12

416

AT32UC3A

Figure 28-4. SDRAM Device Initialization Sequence

28.6.2 I/O Lines

The pins used for interfacing the SDRAM Controller may be multiplexed with the PIO lines. The
programmer must first program the PIO controller to assign the SDRAM Controller pins to their
peripheral function. If I/O lines of the SDRAM Controller are not used by the application, they
can be used for other purposes by the PIO Controller.

28.6.3 Interrupt

The SDRAM Controller has an interrupt line connected to the interrupt controller. In order to han-
dle interrupts, the interrupt controller must be programmed before configuring the SDRAM
Controller.

Using the SDRAM Controller interrupt requires the IC to be programmed first.)

SDCK

SDRAMC_A[9:0]

A10

SDRAMC_A[12:11]

SDCS

RAS

CAS

SDWE

NBS

Inputs Stable for
200 μsec

Precharge All Banks 1st Auto-refresh 8th Auto-refresh MRS Command Valid Command

SDCKE tRP tRC tMRD

32058K AVR32-01/12

417

AT32UC3A

28.7 Functional Description

28.7.1 SDRAM Controller Write Cycle

The SDRAM Controller allows burst access or single access. In both cases, the SDRAM control-
ler keeps track of the active row in each bank, thus maximizing performance. To initiate a burst
access, the SDRAM Controller uses the transfer type signal provided by the master requesting
the access. If the next access is a sequential write access, writing to the SDRAM device is car-
ried out. If the next access is a write-sequential access, but the current access is to a boundary
page, or if the next access is in another row, then the SDRAM Controller generates a precharge
command, activates the new row and initiates a write command. To comply with SDRAM timing
parameters, additional clock cycles are inserted between precharge/active (tRP) commands and
active/write (tRCD) commands. For definition of these timing parameters, refer to the ”SDRAMC
Configuration Register” on page 427. This is described in Figure 28-5 below.

Figure 28-5. Write Burst, 32-bit SDRAM Access

28.7.2 SDRAM Controller Read Cycle

The SDRAM Controller allows burst access, incremental burst of unspecified length or single
access. In all cases, the SDRAM Controller keeps track of the active row in each bank, thus
maximizing performance of the SDRAM. If row and bank addresses do not match the previous
row/bank address, then the SDRAM controller automatically generates a precharge command,
activates the new row and starts the read command. To comply with the SDRAM timing param-
eters, additional clock cycles on SDCK are inserted between precharge and active commands
(tRP) and between active and read command (tRCD). These two parameters are set in the config-
uration register of the SDRAM Controller. After a read command, additional wait states are
generated to comply with the CAS latency (1, 2 or 3 clock delays specified in the configuration
register).

SDCK

SDCS

RAS

CAS

SDRAMC_A[12:0]

D[31:0]

tRCD = 3

Dna

SDWE

Dnb Dnc Dnd Dne Dnf Dng Dnh Dni Dnj Dnk Dnl

Row n col a col b col c col d col e col f col g col h col i col j col k col l

32058K AVR32-01/12

418

AT32UC3A

For a single access or an incremented burst of unspecified length, the SDRAM Controller antici-
pates the next access. While the last value of the column is returned by the SDRAM Controller
on the bus, the SDRAM Controller anticipates the read to the next column and thus anticipates
the CAS latency. This reduces the effect of the CAS latency on the internal bus.

For burst access of specified length (4, 8, 16 words), access is not anticipated. This case leads
to the best performance. If the burst is broken (border, busy mode, etc.), the next access is han-
dled as an incrementing burst of unspecified length.

Figure 28-6. Read Burst, 32-bit SDRAM Access

28.7.3 Border Management

When the memory row boundary has been reached, an automatic page break is inserted. In this
case, the SDRAM controller generates a precharge command, activates the new row and initi-
ates a read or write command. To comply with SDRAM timing parameters, an additional clock
cycle is inserted between the precharge/active (tRP) command and the active/read (tRCD) com-
mand. This is described in Figure 28-7 below.

SDCK

SDCS

RAS

CAS

SDRAMC_A[12:0]

D[31:0]
(Input)

tRCD = 3

Dna

SDWE

Dnb Dnc Dnd Dne Dnf

Row n col a col b col c col d col e col f

CAS = 2

32058K AVR32-01/12

419

AT32UC3A

Figure 28-7. Read Burst with Boundary Row Access

28.7.4 SDRAM Controller Refresh Cycles

An auto-refresh command is used to refresh the SDRAM device. Refresh addresses are gener-
ated internally by the SDRAM device and incremented after each auto-refresh automatically.
The SDRAM Controller generates these auto-refresh commands periodically. An internal timer is
loaded with the value in the register TR that indicates the number of clock cycles between
refresh cycles.

A refresh error interrupt is generated when the previous auto-refresh command did not perform.
It is acknowledged by reading the Interrupt Status Register (ISR).

When the SDRAM Controller initiates a refresh of the SDRAM device, internal memory accesses
are not delayed. However, if the CPU tries to access the SDRAM, the slave indicates that the
device is busy and the master is held by a wait signal. See Figure 28-8.

SDCK

SDCS

RAS

CAS

SDRAMC_A[12:0]

D[31:0]

TRP = 3

SDWE

Row mcol a col a col b col c col d col e

Dna Dnb Dnc Dnd

TRCD = 3 CAS = 2

col b col c col d

Dma Dmb Dmc Dmd

Row n

Dme

32058K AVR32-01/12

420

AT32UC3A

Figure 28-8. Refresh Cycle Followed by a Read Access

28.7.5 Power Management

Three low-power modes are available:

• Self-refresh Mode: The SDRAM executes its own Auto-refresh cycle without control of the
SDRAM Controller. Current drained by the SDRAM is very low.

• Power-down Mode: Auto-refresh cycles are controlled by the SDRAM Controller. Between
auto-refresh cycles, the SDRAM is in power-down. Current drained in Power-down mode is
higher than in Self-refresh Mode.

• Deep Power-down Mode: (Only available with Mobile SDRAM) The SDRAM contents are lost,
but the SDRAM does not drain any current.

The SDRAM Controller activates one low-power mode as soon as the SDRAM device is not
selected. It is possible to delay the entry in self-refresh and power-down mode after the last
access by programming a timeout value in the Low Power Register.

28.7.5.1 Self-refresh Mode

This mode is selected by programming the LPCB field to 1 in the SDRAMC Low Power Register.
In self-refresh mode, the SDRAM device retains data without external clocking and provides its
own internal clocking, thus performing its own auto-refresh cycles. All the inputs to the SDRAM
device become “don’t care” except SDCKE, which remains low. As soon as the SDRAM device
is selected, the SDRAM Controller provides a sequence of commands and exits self-refresh
mode.

Some low-power SDRAMs (e.g., mobile SDRAM) can refresh only one quarter or a half quarter
or all banks of the SDRAM array. This feature reduces the self-refresh current. To configure this
feature, Temperature Compensated Self Refresh (TCSR), Partial Array Self Refresh (PASR)
and Drive Strength (DS) parameters must be set in the Low Power Register and transmitted to
the low-power SDRAM during initialization.

SDCK

SDCS

RAS

CAS

SDRAMC_A[12:0]

D[31:0]
(input)

tRP = 3

SDWE

Dnb Dnc Dnd

col c col d

CAS = 2

Row m col a

tRC = 8 tRCD = 3

Dma

Row n

32058K AVR32-01/12

421

AT32UC3A

After initialization, as soon as PASR/DS/TCSR fields are modified and self-refresh mode is acti-
vated, the Extended Mode Register is accessed automatically and PASR/DS/TCSR bits are
updated before entry into self-refresh mode.

The SDRAM device must remain in self-refresh mode for a minimum period of tRAS and may
remain in self-refresh mode for an indefinite period. This is described in Figure 28-9.

Figure 28-9. Self-refresh Mode Behavior

28.7.5.2 Low-power Mode

This mode is selected by programming the LPCB field to 2 in the SDRAMC Low Power Register.
Power consumption is greater than in self-refresh mode. All the input and output buffers of the
SDRAM device are deactivated except SDCKE, which remains low. In contrast to self-refresh
mode, the SDRAM device cannot remain in low-power mode longer than the refresh period (64
ms for a whole device refresh operation). As no auto-refresh operations are performed by the
SDRAM itself, the SDRAM Controller carries out the refresh operation. The exit procedure is
faster than in self-refresh mode.

This is described in Figure 28-10.

SDCK

SDCS

RAS

CAS

SDRAMC_A[12:0]

Self Refresh Mode

SDWE

Row

TXSR = 3

SDCKE

Write
SDRAMC_SRR

SRCB = 1

Access Request
to the SDRAM Controller

32058K AVR32-01/12

422

AT32UC3A

Figure 28-10. Low-power Mode Behavior

28.7.5.3 Deep Power-down Mode

This mode is selected by programming the LPCB field to 3 in the SDRAMC Low Power Register.
When this mode is activated, all internal voltage generators inside the SDRAM are stopped and
all data is lost.

When this mode is enabled, the application must not access to the SDRAM until a new initializa-
tion sequence is done (See ”SDRAM Device Initialization” on page 415).

This is described in Figure 28-11.

SDCK

SDCS

RAS

CAS

SDRAMC_A[12:0]

D[31:0]
(input)

TRCD = 3

Dna Dnb Dnc Dnd Dne Dnf

Row n col a col b col c col d col e col f

CAS = 2

SDCKE

Low Power Mode

32058K AVR32-01/12

423

AT32UC3A

Figure 28-11. Deep Power-down Mode Behavior

SDCK

SDCS

RAS

CAS

SDRAMC_A[12:0]

D[31:0]
(input)

tRP = 3

SDWE

Dnb Dnc Dnd

col c col d
Row n

CKE

32058K AVR32-01/12

424

AT32UC3A

28.8 SDRAM Controller User Interface

Table 28-8. SDRAM Controller Memory Map

Offset Register Name Access Reset State

0x00 SDRAMC Mode Register MR Read/Write 0x00000000

0x04 SDRAMC Refresh Timer Register TR Read/Write 0x00000000

0x08 SDRAMC Configuration Register CR Read/Write 0x852372C0

0x0C SDRAMC High Speed Register HSR Read/Write 0x00

0x10 SDRAMC Low Power Register LPR Read/Write 0x0

0x14 SDRAMC Interrupt Enable Register IER Write-only –

0x18 SDRAMC Interrupt Disable Register IDR Write-only –

0x1C SDRAMC Interrupt Mask Register IMR Read-only 0x0

0x20 SDRAMC Interrupt Status Register ISR Read-only 0x0

0x24 SDRAMC Memory Device Register MDR Read/Write 0x0

0x28 - 0xFC Reserved – – –

32058K AVR32-01/12

425

AT32UC3A

28.8.1 SDRAMC Mode Register

Register Name: MR

Access Type: Read/Write

Reset Value: 0x00000000

• MODE: SDRAMC Command Mode

This field defines the command issued by the SDRAM Controller when the SDRAM device is accessed.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
– – – – – MODE

Table 28-9.

MODE Description

0 0 0 Normal mode. Any access to the SDRAM is decoded normally.

0 0 1 The SDRAM Controller issues a NOP command when the SDRAM device is accessed regardless of the cycle.

0 1 0 The SDRAM Controller issues an “All Banks Precharge” command when the SDRAM device is accessed
regardless of the cycle.

0 1 1
The SDRAM Controller issues a “Load Mode Register” command when the SDRAM device is accessed
regardless of the cycle. The command will load the CAS latency from the Configuration Register and every other
value set to 0 into the Mode Register.

1 0 0 The SDRAM Controller issues an “Auto-Refresh” Command when the SDRAM device is accessed regardless of
the cycle. Previously, an “All Banks Precharge” command must be issued.

1 0 1
The SDRAM Controller issues an extended load mode register command when the SDRAM device is accessed
regardless of the cycle. The command will load the PASR, DS and TCR from the Low Power Register and every
other value set to 0 into the Extended Mode Register.

1 1 0 Deep power-down mode. Enters deep power-down mode.

32058K AVR32-01/12

426

AT32UC3A

28.8.2 SDRAMC Refresh Timer Register

Register Name: TR

Access Type: Read/Write

Reset Value: 0x00000000

• COUNT: SDRAMC Refresh Timer Count

This 12-bit field is loaded into a timer that generates the refresh pulse. Each time the refresh pulse is generated, a refresh
burst is initiated. The value to be loaded depends on the SDRAMC clock frequency (MCK: Master Clock), the refresh rate
of the SDRAM device and the refresh burst length where 15.6 µs per row is a typical value for a burst of length one.

To refresh the SDRAM device, this 12-bit field must be written. If this condition is not satisfied, no refresh command is
issued and no refresh of the SDRAM device is carried out.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – COUNT

7 6 5 4 3 2 1 0
COUNT

32058K AVR32-01/12

427

AT32UC3A

28.8.3 SDRAMC Configuration Register

Register Name: CR

Access Type: Read/Write

Reset Value: 0x852372C0

• NC: Number of Column Bits

Reset value is 8 column bits.

• NR: Number of Row Bits

Reset value is 11 row bits.

• NB: Number of Banks

Reset value is two banks.

31 30 29 28 27 26 25 24
TXSR TRAS

23 22 21 20 19 18 17 16
TRCD TRP

15 14 13 12 11 10 9 8
TRC TWR

7 6 5 4 3 2 1 0
DBW CAS NB NR NC

NC Column Bits

0 0 8

0 1 9

1 0 10

1 1 11

NR Row Bits

0 0 11

0 1 12

1 0 13

1 1 Reserved

NB Number of Banks

0 2

1 4

32058K AVR32-01/12

428

AT32UC3A

• CAS: CAS Latency

Reset value is two cycles.

In the SDRAMC, only a CAS latency of one, two and three cycles is managed.

• DBW: Data Bus Width

Reset value is 16 bits

0: Data bus width is 32 bits.

1: Data bus width is 16 bits.

• TWR: Write Recovery Delay

Reset value is two cycles.

This field defines the Write Recovery Time in number of cycles. Number of cycles is between 0 and 15.

• TRC: Row Cycle Delay

Reset value is seven cycles.

This field defines the delay between a Refresh and an Activate Command in number of cycles. Number of cycles is
between 0 and 15.

• TRP: Row Precharge Delay

Reset value is three cycles.

This field defines the delay between a Precharge Command and another Command in number of cycles. Number of cycles
is between 0 and 15.

• TRCD: Row to Column Delay

Reset value is two cycles.

This field defines the delay between an Activate Command and a Read/Write Command in number of cycles. Number of
cycles is between 0 and 15.

• TRAS: Active to Precharge Delay

Reset value is five cycles.

This field defines the delay between an Activate Command and a Precharge Command in number of cycles. Number of
cycles is between 0 and 15.

• TXSR: Exit Self Refresh to Active Delay

Reset value is height cycles.

This field defines the delay between SCKE set high and an Activate Command in number of cycles. Number of cycles is
between 0 and 15.

CAS CAS Latency (Cycles)

0 0 Reserved

0 1 1

1 0 2

1 1 3

32058K AVR32-01/12

429

AT32UC3A

28.8.4 SDRAMC High Speed Register

Register Name: HSR

Access Type: Read/Write

• DA: Decode Cycle Enable

A decode cycle can be added on the addresses as soon as a non-sequential access is performed on the HSB bus.

The addition of the decode cycle allows the SDRAMC to gain time to access the SDRAM memory.

0: Decode cycle is disabled.

1: Decode cycle is enabled.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
– – – – – – – DA

32058K AVR32-01/12

430

AT32UC3A

28.8.5 SDRAMC Low Power Register

Register Name: LPR

Access Type: Read/Write

Reset Value: 0x0

• LPCB: Low-power Configuration Bits

• PASR: Partial Array Self-refresh (only for low-power SDRAM)

PASR parameter is transmitted to the SDRAM during initialization to specify whether only one quarter, one half or all banks
of the SDRAM array are enabled. Disabled banks are not refreshed in self-refresh mode. This parameter must be set
according to the SDRAM device specification.

After initialization, as soon as PASR field is modified and self-refresh mode is activated, the Extended Mode Register is
accessed automatically and PASR bits are updated before entry in self-refresh mode.

• TCSR: Temperature Compensated Self-Refresh (only for low-power SDRAM)

TCSR parameter is transmitted to the SDRAM during initialization to set the refresh interval during self-refresh mode
depending on the temperature of the low-power SDRAM. This parameter must be set according to the SDRAM device
specification.

After initialization, as soon as TCSR field is modified and self-refresh mode is activated, the Extended Mode Register is
accessed automatically and TCSR bits are updated before entry in self-refresh mode.

• DS: Drive Strength (only for low-power SDRAM)

DS parameter is transmitted to the SDRAM during initialization to select the SDRAM strength of data output. This parame-
ter must be set according to the SDRAM device specification.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – TIMEOUT DS TCSR

7 6 5 4 3 2 1 0
– PASR – – LPCB

00 Low Power Feature is inhibited: no Power-down, Self-refresh or Deep Power-down command is issued to
the SDRAM device.

01
The SDRAM Controller issues a Self-refresh command to the SDRAM device, the SDCLK clock is
deactivated and the SDCKE signal is set low. The SDRAM device leaves the Self Refresh Mode when
accessed and enters it after the access.

10
The SDRAM Controller issues a Power-down Command to the SDRAM device after each access, the
SDCKE signal is set to low. The SDRAM device leaves the Power-down Mode when accessed and
enters it after the access.

11 The SDRAM Controller issues a Deep Power-down command to the SDRAM device. This mode is
unique to low-power SDRAM.

32058K AVR32-01/12

431

AT32UC3A

After initialization, as soon as DS field is modified and self-refresh mode is activated, the Extended Mode Register is
accessed automatically and DS bits are updated before entry in self-refresh mode.

• TIMEOUT: Time to define when low-power mode is enabled

00 The SDRAM controller activates the SDRAM low-power mode immediately after the end of the last transfer.

01 The SDRAM controller activates the SDRAM low-power mode 64 clock cycles after the end of the last
transfer.

10 The SDRAM controller activates the SDRAM low-power mode 128 clock cycles after the end of the last
transfer.

11 Reserved.

32058K AVR32-01/12

432

AT32UC3A

28.8.6 SDRAMC Interrupt Enable Register

Register Name: IER

Access Type: Write-only

• RES: Refresh Error Status

0: No effect.

1: Enables the refresh error interrupt.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
– – – – – – – RES

32058K AVR32-01/12

433

AT32UC3A

28.8.7 SDRAMC Interrupt Disable Register

Register Name: IDR

Access Type: Write-only

• RES: Refresh Error Status

0: No effect.

1: Disables the refresh error interrupt.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
– – – – – – – RES

32058K AVR32-01/12

434

AT32UC3A

28.8.8 SDRAMC Interrupt Mask Register

Register Name: IMR

Access Type: Read-only

• RES: Refresh Error Status

0: The refresh error interrupt is disabled.

1: The refresh error interrupt is enabled.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
– – – – – – – RES

32058K AVR32-01/12

435

AT32UC3A

28.8.9 SDRAMC Interrupt Status Register

Register Name: ISR

Access Type: Read-only

• RES: Refresh Error Status

0: No refresh error has been detected since the register was last read.

1: A refresh error has been detected since the register was last read.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
– – – – – – – RES

32058K AVR32-01/12

436

AT32UC3A

28.8.10 SDRAMC Memory Device Register

Register Name: MDR

Access Type: Read/Write

• MD: Memory Device Type

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
– – – – – – MD

00 SDRAM

01 Low-power SDRAM

10 Reserved

11 Reserved.

32058K AVR32-01/12

437

AT32UC3A

29. Ethernet MAC (MACB)

Rev: 1.1.2.5

29.1 Features
• Compatible with IEEE Standard 802.3
• 10 and 100 Mbit/s Operation
• Full- and Half-duplex Operation
• Statistics Counter Registers
• MII/RMII Interface to the Physical Layer
• Interrupt Generation to Signal Receive and Transmit Completion
• DMA Master on Receive and Transmit Channels
• Transmit and Receive FIFOs
• Automatic Pad and CRC Generation on Transmitted Frames
• Automatic Discard of Frames Received with Errors
• Address Checking Logic Supports Up to Four Specific 48-bit Addresses
• Supports Promiscuous Mode Where All Valid Received Frames are Copied to Memory
• Hash Matching of Unicast and Multicast Destination Addresses
• External Address Matching of Received Frames
• Physical Layer Management through MDIO Interface
• Half-duplex Flow Control by Forcing Collisions on Incoming Frames
• Full-duplex Flow Control with Recognition of Incoming Pause Frames and Hardware Generation

of Transmitted Pause Frames
• Support for 802.1Q VLAN Tagging with Recognition of Incoming VLAN and Priority Tagged

Frames
• Multiple Buffers per Receive and Transmit Frame
• Wake-on-LAN Support
• Jumbo Frames Up to 10240 bytes Supported

29.2 Description
The MACB module implements a 10/100 Ethernet MAC compatible with the IEEE 802.3 stan-
dard using an address checker, statistics and control registers, receive and transmit blocks, and
a DMA interface.

The address checker recognizes four specific 48-bit addresses and contains a 64-bit hash regis-
ter for matching multicast and unicast addresses. It can recognize the broadcast address of all
ones, copy all frames, and act on an external address match signal.

The statistics register block contains registers for counting various types of events associated
with transmit and receive operations. These registers, along with the status words stored in the
receive buffer list, enable software to generate network management statistics compatible with
IEEE 802.3.

32058K AVR32-01/12

438

AT32UC3A

29.3 Block Diagram

Figure 29-1. MACB Block Diagram

29.4 Product Dependencies

29.4.1 I/O Lines

The pins used for interfacing the compliant external devices may be multiplexed with PIO lines.
The programmer must first program the PIO controllers to assign the MACB pins to their periph-
eral functions.

29.4.2 Power Management

The MACB clock is generated by the Power Manager. Before using the MACB, the programmer
must ensure that the MACB clock is enabled in the Power Manager.

In the MACB description, Master Clock (MCK) is the clock of the peripheral bus to which the
MACB is connected.

The synchronization module in the MACB requires that the bus clock (hclk) runs on at least the
speed of the macb_tx/rx_clk, which is 25MHz in 100Mbps, and 2.5MHZ in 10Mbps in MII mode
and 50MHz in 100Mbps, and 5MHZ in 10Mbps in RMII mode.

To prevent bus errors the MACB operation must be terminated before entering sleep mode.

Peripheral Bus
Slave

Register Interface

DMA Interface

Address Checker

Statistics Registers

Control Registers

Ethernet Receive

Ethernet Transmit

MDIO

MII/RMII

RX FIFO TX FIFO

High Speed Bus
Master

32058K AVR32-01/12

439

AT32UC3A

29.4.3 Interrupt

The MACB interface has an interrupt line connected to the Interrupt Controller. Handling the
MACB interrupt requires programming the interrupt controller before configuring the MACB.

29.5 Functional Description
Figure 29-1 on page 438 illustrates the different blocks of the MACB module.

The control registers drive the MDIO interface, setup DMA activity, start frame transmission and
select modes of operation such as full- or half-duplex.

The receive block checks for valid preamble, FCS, alignment and length, and presents received
frames to the address checking block and DMA interface.

The transmit block takes data from the DMA interface, adds preamble and, if necessary, pad
and FCS, and transmits data according to the CSMA/CD (carrier sense multiple access with col-
lision detect) protocol. The start of transmission is deferred if CRS (carrier sense) is active.

If COL (collision) becomes active during transmission, a jam sequence is asserted and the
transmission is retried after a random back off. CRS and COL have no effect in full duplex mode.

The DMA block connects to external memory through its high speed bus (HSB) interface. It con-
tains receive and transmit FIFOs for buffering frame data. It loads the transmit FIFO and empties
the receive FIFO using HSB bus master operations. Receive data is not sent to memory until the
address checking logic has determined that the frame should be copied. Receive or transmit
frames are stored in one or more buffers. Receive buffers have a fixed length of 128 bytes.
Transmit buffers range in length between 0 and 2047 bytes, and up to 128 buffers are permitted
per frame. The DMA block manages the transmit and receive framebuffer queues. These
queues can hold multiple frames.

29.5.1 Memory Interface
Frame data is transferred to and from the MACB through the DMA interface. All transfers are 32-
bit words and may be single accesses or bursts of 2, 3 or 4 words. Burst accesses do not cross
sixteen-byte boundaries. Bursts of 4 words are the default data transfer; single accesses or
bursts of less than four words may be used to transfer data at the beginning or the end of a
buffer.

The DMA controller performs six types of operation on the bus. In order of priority, these are:

1. Receive buffer manager write
2. Receive buffer manager read
3. Transmit data DMA read
4. Receive data DMA write
5. Transmit buffer manager read
6. Transmit buffer manager write

29.5.1.1 FIFO
The FIFO depths are 124 bytes.

Data is typically transferred into and out of the FIFOs in bursts of four words. For receive, a bus
request is asserted when the FIFO contains four words and has space for three more. For trans-
mit, a bus request is generated when there is space for four words, or when there is space for
two words if the next transfer is to be only one or two words.

32058K AVR32-01/12

440

AT32UC3A

Thus the bus latency must be less than the time it takes to load the FIFO and transmit or receive
three words (12 bytes) of data.

At 100 Mbit/s, it takes 960 ns to transmit or receive 12 bytes of data. In addition, six master clock
cycles should be allowed for data to be loaded from the bus and to propagate through the
FIFOs. For a 60 MHz master clock this takes 100 ns, making the bus latency requirement 860
ns.

29.5.1.2 Receive Buffers
Received frames, optionally including CRC/FCS, are written to receive buffers stored in mem-
ory. Each receive buffer is 128 bytes long. The start location for each receive buffer is stored in
memory in a list of receive buffer descriptors at a location pointed to by the receive buffer queue
pointer register. The receive buffer start location is a word address. For the first buffer of a
frame, the start location can be offset by up to three bytes depending on the value written to bits
14 and 15 of the network configuration register. If the start location of the buffer is offset the
available length of the first buffer of a frame is reduced by the corresponding number of bytes.

Each list entry consists of two words, the first being the address of the receive buffer and the
second being the receive status. If the length of a receive frame exceeds the buffer length, the
status word for the used buffer is written with zeroes except for the “start of frame” bit and the
offset bits, if appropriate. Bit zero of the address field is written to one to show the buffer has
been used. The receive buffer manager then reads the location of the next receive buffer and
fills that with receive frame data. The final buffer descriptor status word contains the complete
frame status. Refer to Table 29-1 for details of the receive buffer descriptor list.

Table 29-1. Receive Buffer Descriptor Entry

Bit Function

Word 0

31:2 Address of beginning of buffer

1 Wrap - marks last descriptor in receive buffer descriptor list.

0
Ownership - needs to be zero for the MACB to write data to the receive buffer. The MACB sets this to one once it has
successfully written a frame to memory.
Software has to clear this bit before the buffer can be used again.

Word 1

31 Global all ones broadcast address detected

30 Multicast hash match

29 Unicast hash match

28 External address match

27 Reserved for future use

26 Specific address register 1 match

25 Specific address register 2 match

24 Specific address register 3 match

23 Specific address register 4 match

22 Type ID match

21 VLAN tag detected (i.e., type id of 0x8100)

32058K AVR32-01/12

441

AT32UC3A

To receive frames, the buffer descriptors must be initialized by writing an appropriate address to
bits 31 to 2 in the first word of each list entry. Bit zero must be written with zero. Bit one is the
wrap bit and indicates the last entry in the list.

The start location of the receive buffer descriptor list must be written to the receive buffer queue
pointer register before setting the receive enable bit in the network control register to enable
receive. As soon as the receive block starts writing received frame data to the receive FIFO, the
receive buffer manager reads the first receive buffer location pointed to by the receive buffer
queue pointer register.

If the filter block then indicates that the frame should be copied to memory, the receive data
DMA operation starts writing data into the receive buffer. If an error occurs, the buffer is recov-
ered. If the current buffer pointer has its wrap bit set or is the 1024th descriptor, the next receive
buffer location is read from the beginning of the receive descriptor list. Otherwise, the next
receive buffer location is read from the next word in memory.

There is an 11-bit counter to count out the 2048 word locations of a maximum length, receive
buffer descriptor list. This is added with the value originally written to the receive buffer queue
pointer register to produce a pointer into the list. A read of the receive buffer queue pointer reg-
ister returns the pointer value, which is the queue entry currently being accessed. The counter is
reset after receive status is written to a descriptor that has its wrap bit set or rolls over to zero
after 1024 descriptors have been accessed. The value written to the receive buffer pointer regis-
ter may be any word-aligned address, provided that there are at least 2048 word locations
available between the pointer and the top of the memory.

The System Bus specification states that bursts should not cross 1K boundaries. As receive buf-
fer manager writes are bursts of two words, to ensure that this does not occur, it is best to write
the pointer register with the least three significant bits set to zero. As receive buffers are used,
the receive buffer manager sets bit zero of the first word of the descriptor to indicate used. If a
receive error is detected the receive buffer currently being written is recovered. Previous buffers
are not recovered. Software should search through the used bits in the buffer descriptors to find
out how many frames have been received. It should be checking the start-of-frame and end-of-
frame bits, and not rely on the value returned by the receive buffer queue pointer register which
changes continuously as more buffers are used.

20 Priority tag detected (i.e., type id of 0x8100 and null VLAN identifier)

19:17 VLAN priority (only valid if bit 21 is set)

16 Concatenation format indicator (CFI) bit (only valid if bit 21 is set)

15 End of frame - when set the buffer contains the end of a frame. If end of frame is not set, then the only other valid status
are bits 12, 13 and 14.

14 Start of frame - when set the buffer contains the start of a frame. If both bits 15 and 14 are set, then the buffer contains a
whole frame.

13:12

Receive buffer offset - indicates the number of bytes by which the data in the first buffer is offset from the word address.
Updated with the current values of the network configuration register. If jumbo frame mode is enabled through bit 3 of the
network configuration register, then bits 13:12 of the receive buffer descriptor entry are used to indicate bits 13:12 of the
frame length.

11:0 Length of frame including FCS (if selected). Bits 13:12 are also used if jumbo frame mode is selected.

Table 29-1. Receive Buffer Descriptor Entry (Continued)

Bit Function

32058K AVR32-01/12

442

AT32UC3A

For CRC errored frames, excessive length frames or length field mismatched frames, all of
which are counted in the statistics registers, it is possible that a frame fragment might be stored
in a sequence of receive buffers. Software can detect this by looking for start of frame bit set in a
buffer following a buffer with no end of frame bit set.

For a properly working Ethernet system, there should be no excessively long frames or frames
greater than 128 bytes with CRC/FCS errors. Collision fragments are less than 128 bytes long.
Therefore, it is a rare occurrence to find a frame fragment in a receive buffer.

If bit zero is set when the receive buffer manager reads the location of the receive buffer, then
the buffer has already been used and cannot be used again until software has processed the
frame and cleared bit zero. In this case, the DMA block sets the buffer not available bit in the
receive status register and triggers an interrupt.

If bit zero is set when the receive buffer manager reads the location of the receive buffer and a
frame is being received, the frame is discarded and the receive resource error statistics register
is incremented.

A receive overrun condition occurs when bus was not granted in time or because HRESP was
not OK (bus error). In a receive overrun condition, the receive overrun interrupt is asserted and
the buffer currently being written is recovered. The next frame received with an address that is
recognized reuses the buffer.

If bit 17 of the network configuration register is set, the FCS of received frames shall not be cop-
ied to memory. The frame length indicated in the receive status field shall be reduced by four
bytes in this case.

29.5.1.3 Transmit Buffer
Frames to be transmitted are stored in one or more transmit buffers. Transmit buffers can be
between 0 and 2047 bytes long, so it is possible to transmit frames longer than the maximum
length specified in IEEE Standard 802.3. Zero length buffers are allowed. The maximum number
of buffers permitted for each transmit frame is 128.

The start location for each transmit buffer is stored in memory in a list of transmit buffer descrip-
tors at a location pointed to by the transmit buffer queue pointer register. Each list entry consists
of two words, the first being the byte address of the transmit buffer and the second containing
the transmit control and status. Frames can be transmitted with or without automatic CRC gen-
eration. If CRC is automatically generated, padding is also automatically generated to take
frames to a minimum length of 64 bytes. Table 29-2 on page 443 defines an entry in the transmit
buffer descriptor list. To transmit frames, the buffer descriptors must be initialized by writing an
appropriate byte address to bits 31 to 0 in the first word of each list entry. The second transmit
buffer descriptor is initialized with control information that indicates the length of the buffer,
whether or not it is to be transmitted with CRC and whether the buffer is the last buffer in the
frame.

After transmission, the control bits are written back to the second word of the first buffer along
with the “used” bit and other status information. Before a transmission, bit 31 is the “used” bit
which must be zero when the control word is read. It is written to one when a frame has been
transmitted. Bits 27, 28 and 29 indicate various transmit error conditions. Bit 30 is the “wrap” bit
which can be set for any buffer within a frame. If no wrap bit is encountered after 1024 descrip-
tors, the queue pointer rolls over to the start.

The transmit buffer queue pointer register must not be written while transmit is active. If a new
value is written to the transmit buffer queue pointer register, the queue pointer resets itself to

32058K AVR32-01/12

443

AT32UC3A

point to the beginning of the new queue. If transmit is disabled by writing to bit 3 of the network
control, the transmit buffer queue pointer register resets to point to the beginning of the transmit
queue. Note that disabling receive does not have the same effect on the receive queue pointer.

Once the transmit queue is initialized, transmit is activated by writing to bit 9, the Transmit Start
bit of the network control register. Transmit is halted when a buffer descriptor with its used bit set
is read, or if a transmit error occurs, or by writing to the transmit halt bit of the network control
register. (Transmission is suspended if a pause frame is received while the pause enable bit is
set in the network configuration register.) Rewriting the start bit while transmission is active is
allowed.

Transmission control is implemented with a Tx_go variable which is readable in the transmit sta-
tus register at bit location 3. The Tx_go variable is reset when:

– transmit is disabled
– a buffer descriptor with its ownership bit set is read
– a new value is written to the transmit buffer queue pointer register
– bit 10, tx_halt, of the network control register is written
– there is a transmit error such as too many retries or a transmit underrun.

To set tx_go, write to bit 9, tx_start, of the network control register. Transmit halt does not take
effect until any ongoing transmit finishes. If a collision occurs during transmission of a multi-buf-
fer frame, transmission automatically restarts from the first buffer of the frame. If a “used” bit is
read midway through transmission of a multi-buffer frame, this is treated as a transmit error.
Transmission stops, tx_er is asserted and the FCS is bad.

If transmission stops due to a transmit error, the transmit queue pointer resets to point to the
beginning of the transmit queue. Software needs to re-initialize the transmit queue after a trans-
mit error.

If transmission stops due to a “used” bit being read at the start of the frame, the transmission
queue pointer is not reset and transmit starts from the same transmit buffer descriptor when the
transmit start bit is written

Table 29-2. Transmit Buffer Descriptor Entry

Bit Function

Word 0

31:0 Byte Address of buffer

Word 1

31

Used. Needs to be zero for the MACB to read data from the transmit buffer. The MACB sets this to one for the first buffer
of a frame once it has been successfully transmitted.
Software has to clear this bit before the buffer can be used again.
Note: This bit is only set for the first buffer in a frame unlike receive where all buffers have the Used bit set once used.

30 Wrap. Marks last descriptor in transmit buffer descriptor list.

29 Retry limit exceeded, transmit error detected

28 Transmit underrun, occurs either when hresp is not OK (bus error) or the transmit data could not be fetched in time or
when buffers are exhausted in mid frame.

27 Buffers exhausted in mid frame

26:17 Reserved

32058K AVR32-01/12

444

AT32UC3A

29.5.2 Transmit Block
This block transmits frames in accordance with the Ethernet IEEE 802.3 CSMA/CD protocol.
Frame assembly starts by adding preamble and the start frame delimiter. Data is taken from the
transmit FIFO a word at a time. Data is transmitted least significant nibble first. If necessary,
padding is added to increase the frame length to 60 bytes. CRC is calculated as a 32-bit polyno-
mial. This is inverted and appended to the end of the frame, taking the frame length to a
minimum of 64 bytes. If the No CRC bit is set in the second word of the last buffer descriptor of a
transmit frame, neither pad nor CRC are appended.

In full-duplex mode, frames are transmitted immediately. Back-to-back frames are transmitted at
least 96 bit times apart to guarantee the interframe gap.

In half-duplex mode, the transmitter checks carrier sense. If asserted, it waits for it to de-assert
and then starts transmission after the interframe gap of 96 bit times. If the collision signal is
asserted during transmission, the transmitter transmits a jam sequence of 32 bits taken from the
data register and retries transmission after the back off time has elapsed.

The back-off time is based on an XOR of the 10 least significant bits of the data coming from the
transmit FIFO and a 10-bit pseudo random number. The number of bits used depends on the
number of collisions seen. After the first collision, 1 bit is used, after the second 2, and so on up
to 10. Above 10, all 10 bits are used. An error is indicated and no further attempts are made if 16
attempts cause collisions.

If transmit DMA underruns, bad CRC is automatically appended using the same mechanism as
jam insertion and the TX_ER signal is asserted. In a properly configured system, this should
never happen.

If the back pressure bit is set in the network control register in half duplex mode, the transmit
block transmits 64 bits of data, which can consist of 16 nibbles of 1011 or in bit-rate mode 64 1s,
whenever it sees an incoming frame to force a collision. This provides a way of implementing
flow control in half-duplex mode.

29.5.3 Pause Frame Support
The start of an 802.3 pause frame is as follows:

The network configuration register contains a receive pause enable bit (13). If a valid pause
frame is received, the pause time register is updated with the frame’s pause time, regardless of

16 No CRC. When set, no CRC is appended to the current frame. This bit only needs to be set for the last buffer of a frame.

15 Last buffer. When set, this bit indicates the last buffer in the current frame has been reached.

14:11 Reserved

10:0 Length of buffer

Table 29-2. Transmit Buffer Descriptor Entry (Continued)

Bit Function

Table 29-3. Start of an 802.3 Pause Frame

Destination Address
Source

Address
Type

(Mac Control Frame)
Pause

Opcode Pause Time

0x0180C2000001 6 bytes 0x8808 0x0001 2 bytes

32058K AVR32-01/12

445

AT32UC3A

its current contents and regardless of the state of the configuration register bit 13. An interrupt
(12) is triggered when a pause frame is received, assuming it is enabled in the interrupt mask
register. If bit 13 is set in the network configuration register and the value of the pause time reg-
ister is non-zero, no new frame is transmitted until the pause time register has decremented to
zero.

The loading of a new pause time, and hence the pausing of transmission, only occurs when the
MACB is configured for full-duplex operation. If the MACB is configured for half-duplex, there is
no transmission pause, but the pause frame received interrupt is still triggered.

A valid pause frame is defined as having a destination address that matches either the address
stored in specific address register 1 or matches 0x0180C2000001 and has the MAC control
frame type ID of 0x8808 and the pause opcode of 0x0001. Pause frames that have FCS or other
errors are treated as invalid and are discarded. Valid pause frames received increment the
Pause Frame Received statistic register.

The pause time register decrements every 512 bit times (i.e., 128 rx_clks in nibble mode)
once transmission has stopped. For test purposes, the register decrements every rx_clk cycle
once transmission has stopped if bit 12 (retry test) is set in the network configuration register. If
the pause enable bit (13) is not set in the network configuration register, then the decrementing
occurs regardless of whether transmission has stopped or not.

An interrupt (13) is asserted whenever the pause time register decrements to zero (assuming it
is enabled in the interrupt mask register). Automatic transmission of pause frames is supported
through the transmit pause frame bits of the network control register and the tx_pause and
tx_pause_zero inputs. If either bit 11 or bit 12 of the network control register is written to with
a 1, or if the input signal tx_pause is toggled, a pause frame is transmitted only if full duplex is
selected in the network configuration register and transmit is enabled in the network control
register.

Pause frame transmission occurs immediately if transmit is inactive or if transmit is active
between the current frame and the next frame due to be transmitted. The transmitted pause
frame is comprised of the items in the following list:

• a destination address of 01-80-C2-00-00-01
• a source address taken from the specific address 1 register
• a type ID of 88-08 (MAC control frame)
• a pause opcode of 00-01
• a pause quantum
• fill of 00 to take the frame to minimum frame length
• valid FCS

The pause quantum used in the generated frame depends on the trigger source for the frame as
follows:

1. If bit 11 is written with a one, the pause quantum comes from the transmit pause quan-
tum register. The Transmit Pause Quantum register resets to a value of 0xFFFF giving
a maximum pause quantum as a default.

2. If bit 12 is written with a one, the pause quantum is zero.
3. If the tx_pause input is toggled and the tx_pause_zero input is held low until the

next toggle, the pause quantum comes from the transmit pause quantum register.
4. If the tx_pause input is toggled and the tx_pause_zero input is held high until the

next toggle, the pause quantum is zero.

32058K AVR32-01/12

446

AT32UC3A

After transmission, no interrupts are generated and the only statistics register that is incre-
mented is the pause frames transmitted register.

29.5.4 Receive Block
The receive block checks for valid preamble, FCS, alignment and length, presents received
frames to the DMA block and stores the frames destination address for use by the address
checking block. If, during frame reception, the frame is found to be too long or rx_er is asserted,
a bad frame indication is sent to the DMA block. The DMA block then ceases sending data to
memory. At the end of frame reception, the receive block indicates to the DMA block whether the
frame is good or bad. The DMA block recovers the current receive buffer if the frame was bad.
The receive block signals the register block to increment the alignment error, the CRC (FCS)
error, the short frame, long frame, jabber error, the receive symbol error statistics and the length
field mismatch statistics.

The enable bit for jumbo frames in the network configuration register allows the MACB to receive
jumbo frames of up to 10240 bytes in size. This operation does not form part of the IEEE802.3
specification and is disabled by default. When jumbo frames are enabled, frames received with a
frame size greater than 10240 bytes are discarded.

29.5.5 Address Checking Block
The address checking (or filter) block indicates to the DMA block which receive frames should
be copied to memory. Whether a frame is copied depends on what is enabled in the network
configuration register, the state of the external match pin, the contents of the specific address
and hash registers and the frame’s destination address. In this implementation of the MACB, the
frame’s source address is not checked. Provided that bit 18 of the Network Configuration regis-
ter is not set, a frame is not copied to memory if the MACB is transmitting in half duplex mode at
the time a destination address is received. If bit 18 of the Network Configuration register is set,
frames can be received while transmitting in half-duplex mode.

Ethernet frames are transmitted a byte at a time, least significant bit first. The first six bytes (48
bits) of an Ethernet frame make up the destination address. The first bit of the destination
address, the LSB of the first byte of the frame, is the group/individual bit: this is One for multicast
addresses and Zero for unicast. The All Ones address is the broadcast address, and a special
case of multicast.

The MACB supports recognition of four specific addresses. Each specific address requires two
registers, specific address register bottom and specific address register top. Specific address
register bottom stores the first four bytes of the destination address and specific address register
top contains the last two bytes. The addresses stored can be specific, group, local or universal.

The destination address of received frames is compared against the data stored in the specific
address registers once they have been activated. The addresses are deactivated at reset or
when their corresponding specific address register bottom is written. They are activated when
specific address register top is written. If a receive frame address matches an active address,
the frame is copied to memory.

32058K AVR32-01/12

447

AT32UC3A

The following example illustrates the use of the address match registers for a MAC address of
21:43:65:87:A9:CB.

Preamble 55

SFD D5

DA (Octet0 - LSB) 21

DA(Octet 1) 43

DA(Octet 2) 65

DA(Octet 3) 87

DA(Octet 4) A9

DA (Octet5 - MSB) CB

SA (LSB) 00

SA 00

SA 00

SA 00

SA 00

SA (MSB) 43

SA (LSB) 21

The sequence above shows the beginning of an Ethernet frame. Byte order of transmission is
from top to bottom as shown. For a successful match to specific address 1, the following
address matching registers must be set up:

• Base address + 0x98 0x87654321 (Bottom)
• Base address + 0x9C 0x0000CBA9 (Top)

And for a successful match to the Type ID register, the following should be set up:

• Base address + 0xB8 0x00004321

29.5.6 Broadcast Address
The broadcast address of 0xFFFFFFFFFFFF is recognized unless the ‘no broadcast’ bit in the
network configuration register is set.

29.5.7 Hash Addressing
The hash address register is 64 bits long and takes up two locations in the memory map. The
least significant bits are stored in hash register bottom and the most significant bits in hash reg-
ister top.

The unicast hash enable and the multicast hash enable bits in the network configuration register
enable the reception of hash matched frames. The destination address is reduced to a 6-bit
index into the 64-bit hash register using the following hash function. The hash function is an
exclusive or of every sixth bit of the destination address.

32058K AVR32-01/12

448

AT32UC3A

hash_index[5] = da[5] ^ da[11] ^ da[17] ^ da[23] ^ da[29] ^ da[35] ^ da[41] ^ da[47]

hash_index[4] = da[4] ^ da[10] ^ da[16] ^ da[22] ^ da[28] ^ da[34] ^ da[40] ^ da[46]

hash_index[3] = da[3] ^ da[09] ^ da[15] ^ da[21] ^ da[27] ^ da[33] ^ da[39] ^ da[45]

hash_index[2] = da[2] ^ da[08] ^ da[14] ^ da[20] ^ da[26] ^ da[32] ^ da[38] ^ da[44]

hash_index[1] = da[1] ^ da[07] ^ da[13] ^ da[19] ^ da[25] ^ da[31] ^ da[37] ^ da[43]

hash_index[0] = da[0] ^ da[06] ^ da[12] ^ da[18] ^ da[24] ^ da[30] ^ da[36] ^ da[42]

da[0] represents the least significant bit of the first byte received, that is, the multicast/unicast
indicator, and da[47] represents the most significant bit of the last byte received.

If the hash index points to a bit that is set in the hash register, then the frame is matched accord-
ing to whether the frame is multicast or unicast.

A multicast match is signalled if the multicast hash enable bit is set. da[0] is 1 and the hash index
points to a bit set in the hash register.

A unicast match is signalled if the unicast hash enable bit is set. da[0] is 0 and the hash index
points to a bit set in the hash register.

To receive all multicast frames, the hash register should be set with all ones and the multicast
hash enable bit should be set in the network configuration register.

29.5.8 External Address Matching
The external address signal (eam) is enabled by bit 9 in the network configuration register.
When enabled, the filter block sends the store frame and the external address match status sig-
nal to the DMA block if the external address match signal is asserted (from a source external to
the MACB) and the destination address has been received and the frame has not completed.

For the DMA block to be able to copy the frame to memory, the external address signal must be
asserted before four words have been loaded into the receive FIFO.

29.5.9 Copy All Frames (or Promiscuous Mode)
If the copy all frames bit is set in the network configuration register, then all non-errored frames
are copied to memory. For example, frames that are too long, too short, or have FCS errors or
rx_er asserted during reception are discarded and all others are received. Frames with FCS
errors are copied to memory if bit 19 in the network configuration register is set.

29.5.10 Type ID Checking
The contents of the type_id register are compared against the length/type ID of received frames
(i.e., bytes 13 and 14). Bit 22 in the receive buffer descriptor status is set if there is a match. The
reset state of this register is zero which is unlikely to match the length/type ID of any valid Ether-
net frame.

Note: A type ID match does not affect whether a frame is copied to memory.

32058K AVR32-01/12

449

AT32UC3A

29.5.11 VLAN Support
An Ethernet encoded 802.1Q VLAN tag looks like this:

The VLAN tag is inserted at the 13th byte of the frame, adding an extra four bytes to the frame. If
the VID (VLAN identifier) is null (0x000), this indicates a priority-tagged frame. The MAC can
support frame lengths up to 1536 bytes, 18 bytes more than the original Ethernet maximum
frame length of 1518 bytes. This is achieved by setting bit 8 in the network configuration register.

The following bits in the receive buffer descriptor status word give information about VLAN
tagged frames:

• Bit 21 set if receive frame is VLAN tagged (i.e. type id of 0x8100)
• Bit 20 set if receive frame is priority tagged (i.e. type id of 0x8100 and null VID). (If bit 20 is

set bit 21 is set also.)
• Bit 19, 18 and 17 set to priority if bit 21 is set
• Bit 16 set to CFI if bit 21 is set

29.5.12 PHY Maintenance
The register MAN enables the MACB to communicate with a PHY by means of the MDIO inter-
face. It is used during auto-negotiation to ensure that the MACB and the PHY are configured for
the same speed and duplex configuration.

The PHY maintenance register is implemented as a shift register. Writing to the register starts a
shift operation which is signalled as complete when bit two is set in the network status register
(about 2000 MCK cycles later when bit ten is set to zero, and bit eleven is set to one in the net-
work configuration register). An interrupt is generated as this bit is set. During this time, the MSB
of the register is output on the MDIO pin and the LSB updated from the MDIO pin with each
MDC cycle. This causes transmission of a PHY management frame on MDIO.

Reading during the shift operation returns the current contents of the shift register. At the end of
management operation, the bits have shifted back to their original locations. For a read opera-
tion, the data bits are updated with data read from the PHY. It is important to write the correct
values to the register to ensure a valid PHY management frame is produced.

The MDIO interface can read IEEE 802.3 clause 45 PHYs as well as clause 22 PHYs. To read
clause 45 PHYs, bits[31:28] should be written as 0x0011. For a description of MDC generation,
see the network configuration register in the ”Network Control Register” on page 456.

29.5.13 Media Independent Interface
The Ethernet MAC is capable of interfacing to both RMII and MII Interfaces. The RMII bit in the
USRIO register controls the interface that is selected. When this bit is set, the RMII interface is
selected, else the MII interface is selected.

Table 29-4. 802.1Q VLAN Tag

TPID (Tag Protocol Identifier) 16 bits TCI (Tag Control Information) 16 bits

0x8100 First 3 bits priority, then CFI bit, last 12 bits VID

32058K AVR32-01/12

450

AT32UC3A

The MII and RMII interface are capable of both 10Mb/s and 100Mb/s data rates as described in
the IEEE 802.3u standard. The signals used by the MII and RMII interfaces are described in
Table 29-5.

The intent of the RMII is to provide a reduced pin count alternative to the IEEE 802.3u MII. It
uses 2 bits for transmit (ETX0 and ETX1) and two bits for receive (ERX0 and ERX1). There is a
Transmit Enable (ETXEN), a Receive Error (ERXER), a Carrier Sense (ECRS_DV), and a 50
MHz Reference Clock (ETXCK_EREFCK) for 100Mb/s data rate.

29.5.13.1 RMII Transmit and Receive Operation
The same signals are used internally for both the RMII and the MII operations. The RMII maps
these signals in a more pin-efficient manner. The transmit and receive bits are converted from a
4-bit parallel format to a 2-bit parallel scheme that is clocked at twice the rate. The carrier sense
and data valid signals are combined into the ECRSDV signal. This signal contains information
on carrier sense, FIFO status, and validity of the data. Transmit error bit (ETXER) and collision
detect (ECOL) are not used in RMII mode.

Table 29-5. Pin Configuration

Pin Name MII RMII

ETXCK_EREFCK ETXCK: Transmit Clock EREFCK: Reference Clock

ECRS ECRS: Carrier Sense

ECOL ECOL: Collision Detect

ERXDV ERXDV: Data Valid ECRSDV: Carrier Sense/Data Valid

ERX0 - ERX3 ERX0 - ERX3: 4-bit Receive Data ERX0 - ERX1: 2-bit Receive Data

ERXER ERXER: Receive Error ERXER: Receive Error

ERXCK ERXCK: Receive Clock

ETXEN ETXEN: Transmit Enable ETXEN: Transmit Enable

ETX0-ETX3 ETX0 - ETX3: 4-bit Transmit Data ETX0 - ETX1: 2-bit Transmit Data

ETXER ETXER: Transmit Error

32058K AVR32-01/12

451

AT32UC3A

29.6 Programming Interface

29.6.1 Initialization

29.6.1.1 Configuration
Initialization of the MACB configuration (e.g. frequency ratios) must be done while the transmit
and receive circuits are disabled. See the description of the network control register and network
configuration register later in this document.

29.6.1.2 Receive Buffer List
Receive data is written to areas of data (i.e., buffers) in system memory. These buffers are listed
in another data structure that also resides in main memory. This data structure (receive buffer
queue) is a sequence of descriptor entries as defined in ”Receive Buffer Descriptor Entry” on
page 440. It points to this data structure.

Figure 29-2. Receive Buffer List

To create the list of buffers:

1. Allocate a number (n) of buffers of 128 bytes in system memory.
2. Allocate an area 2n words for the receive buffer descriptor entry in system memory and

create n entries in this list. Mark all entries in this list as owned by MACB, i.e., bit 0 of
word 0 set to 0.

3. If less than 1024 buffers are defined, the last descriptor must be marked with the wrap bit
(bit 1 in word 0 set to 1).

4. Write address of receive buffer descriptor entry to MACB register receive_buffer queue
pointer.

5. The receive circuits can then be enabled by writing to the address recognition registers
and then to the network control register.

Receive Buffer Queue Pointer
(MAC Register)

Receive Buffer 0

Receive Buffer 1

Receive Buffer N

Receive Buffer Descriptor List
(In memory) (In memory)

32058K AVR32-01/12

452

AT32UC3A

29.6.1.3 Transmit Buffer List
Transmit data is read from the system memory These buffers are listed in another data structure
that also resides in main memory. This data structure (Transmit Buffer Queue) is a sequence of
descriptor entries (as defined in Table 29-2 on page 443) that points to this data structure.

To create this list of buffers:

1. Allocate a number (n) of buffers of between 1 and 2047 bytes of data to be transmitted
in system memory. Up to 128 buffers per frame are allowed.

2. Allocate an area 2n words for the transmit buffer descriptor entry in system memory
and create N entries in this list. Mark all entries in this list as owned by MACB, i.e. bit 31
of word 1 set to 0.

3. If fewer than 1024 buffers are defined, the last descriptor must be marked with the wrap
bit — bit 30 in word 1 set to 1.

4. Write address of transmit buffer descriptor entry to MACB register transmit_buffer
queue pointer.

5. The transmit circuits can then be enabled by writing to the network control register.

29.6.1.4 Address Matching
The MACB register-pair hash address and the four specific address register-pairs must be writ-
ten with the required values. Each register-pair comprises a bottom register and top register,
with the bottom register being written first. The address matching is disabled for a particular reg-
ister-pair after the bottom-register has been written and re-enabled when the top register is
written. See Section “29.5.5” on page 446. for details of address matching. Each register-pair
may be written at any time, regardless of whether the receive circuits are enabled or disabled.

29.6.1.5 Interrupts
There are 14 interrupt conditions that are detected within the MACB. These are ORed to make a
single interrupt. This interrupt is passed to the interrupt controller. On receipt of the interrupt sig-
nal, the CPU enters the interrupt handler. To ascertain which interrupt has been generated, read
the interrupt status register. Note that this register clears itself when read. At reset, all interrupts
are disabled. To enable an interrupt, write to interrupt enable register with the pertinent interrupt
bit set to 1. To disable an interrupt, write to interrupt disable register with the pertinent interrupt
bit set to 1. To check whether an interrupt is enabled or disabled, read interrupt mask register: if
the bit is set to 1, the interrupt is disabled.

29.6.1.6 Transmitting Frames
To set up a frame for transmission:

1. Enable transmit in the network control register.
2. Allocate an area of system memory for transmit data. This does not have to be contigu-

ous, varying byte lengths can be used as long as they conclude on byte borders.
3. Set-up the transmit buffer list.
4. Set the network control register to enable transmission and enable interrupts.
5. Write data for transmission into these buffers.
6. Write the address to transmit buffer descriptor queue pointer.
7. Write control and length to word one of the transmit buffer descriptor entry.
8. Write to the transmit start bit in the network control register.

32058K AVR32-01/12

453

AT32UC3A

29.6.1.7 Receiving Frames
When a frame is received and the receive circuits are enabled, the MACB checks the address
and, in the following cases, the frame is written to system memory:

• if it matches one of the four specific address registers.
• if it matches the hash address function.
• if it is a broadcast address (0xFFFFFFFFFFFF) and broadcasts are allowed.
• if the MACB is configured to copy all frames.
• if the EAM is asserted before four words have been loaded into the receive FIFO.

The register receive buffer queue pointer points to the next entry (see Table 29-1 on page 440)
and the MACB uses this as the address in system memory to write the frame to. Once the frame
has been completely and successfully received and written to system memory, the MACB then
updates the receive buffer descriptor entry with the reason for the address match and marks the
area as being owned by software. Once this is complete an interrupt receive complete is set.
Software is then responsible for handling the data in the buffer and then releasing the buffer by
writing the ownership bit back to 0.

If the MACB is unable to write the data at a rate to match the incoming frame, then an interrupt
receive overrun is set. If there is no receive buffer available, i.e., the next buffer is still owned by
software, the interrupt receive buffer not available is set. If the frame is not successfully
received, a statistic register is incremented and the frame is discarded without informing
software.

32058K AVR32-01/12

454

AT32UC3A

29.7 Ethernet MAC (MACB) User Interface

Table 29-6. Ethernet MAC (MACB) Register Mapping

Offset Register Name Access Reset Value

0x00 Network Control Register NCR Read/Write 0

0x04 Network Configuration Register NCFG Read/Write 0x800

0x08 Network Status Register NSR Read-only -

0x0C Reserved

0x10 Reserved

0x14 Transmit Status Register TSR Read/Write 0x0000_0000

0x18 Receive Buffer Queue Pointer Register RBQP Read/Write 0x0000_0000

0x1C Transmit Buffer Queue Pointer Register TBQP Read/Write 0x0000_0000

0x20 Receive Status Register RSR Read/Write 0x0000_0000

0x24 Interrupt Status Register ISR Read/Write 0x0000_0000

0x28 Interrupt Enable Register IER Write-only -

0x2C Interrupt Disable Register IDR Write-only -

0x30 Interrupt Mask Register IMR Read-only 0x0000_3FFF

0x34 Phy Maintenance Register MAN Read/Write 0x0000_0000

0x38 Pause Time Register PTR Read/Write 0x0000_0000

0x3C Pause Frames Received Register PFR Read/Write 0x0000_0000

0x40 Frames Transmitted Ok Register FTO Read/Write 0x0000_0000

0x44 Single Collision Frames Register SCF Read/Write 0x0000_0000

0x48 Multiple Collision Frames Register MCF Read/Write 0x0000_0000

0x4C Frames Received Ok Register FRO Read/Write 0x0000_0000

0x50 Frame Check Sequence Errors Register FCSE Read/Write 0x0000_0000

0x54 Alignment Errors Register ALE Read/Write 0x0000_0000

0x58 Deferred Transmission Frames Register DTF Read/Write 0x0000_0000

0x5C Late Collisions Register LCOL Read/Write 0x0000_0000

0x60 Excessive Collisions Register EXCOL Read/Write 0x0000_0000

0x64 Transmit Underrun Errors Register TUND Read/Write 0x0000_0000

0x68 Carrier Sense Errors Register CSE Read/Write 0x0000_0000

0x6C Receive Resource Errors Register RRE Read/Write 0x0000_0000

0x70 Receive Overrun Errors Register ROV Read/Write 0x0000_0000

0x74 Receive Symbol Errors Register RSE Read/Write 0x0000_0000

0x78 Excessive Length Errors Register ELE Read/Write 0x0000_0000

0x7C Receive Jabbers Register RJA Read/Write 0x0000_0000

0x80 Undersize Frames Register USF Read/Write 0x0000_0000

0x84 SQE Test Errors Register STE Read/Write 0x0000_0000

0x88 Received Length Field Mismatch Register RLE Read/Write 0x0000_0000

32058K AVR32-01/12

455

AT32UC3A

0x8C Transmitted Pause Frames Register TPF Read/Write 0x0000_0000

0x90 Hash Register Bottom [31:0] Register HRB Read/Write 0x0000_0000

0x94 Hash Register Top [63:32] Register HRT Read/Write 0x0000_0000

0x98 Specific Address 1 Bottom Register SA1B Read/Write 0x0000_0000

0x9C Specific Address 1 Top Register SA1T Read/Write 0x0000_0000

0xA0 Specific Address 2 Bottom Register SA2B Read/Write 0x0000_0000

0xA4 Specific Address 2 Top Register SA2T Read/Write 0x0000_0000

0xA8 Specific Address 3 Bottom Register SA3B Read/Write 0x0000_0000

0xAC Specific Address 3 Top Register SA3T Read/Write 0x0000_0000

0xB0 Specific Address 4 Bottom Register SA4B Read/Write 0x0000_0000

0xB4 Specific Address 4 Top Register SA4T Read/Write 0x0000_0000

0xB8 Type ID Checking Register TID Read/Write 0x0000_0000

0xBC Transmit Pause Quantum Register TPQ Read/Write 0x0000_FFFF

0xC0 User Input/output Register USRIO Read/Write 0x0000_0000

0xC4 Wake on LAN Register WOL Read/Write 0x0000_0000

0xC8 - 0xFC Reserved – – –

Table 29-6. Ethernet MAC (MACB) Register Mapping (Continued)

Offset Register Name Access Reset Value

32058K AVR32-01/12

456

AT32UC3A

29.7.1 Network Control Register
Register Name: NCR

Access Type: Read/Write

• LB: LoopBack
Asserts the loopback signal to the PHY.

• LLB: LoopBack Local
connects txd to rxd, tx_en to rx_dv, forces full duplex and drives rx_clk and tx_clk with pclk divided by 4. rx_clk and tx_clk
may glitch as the MACB is switched into and out of internal loop back. It is important that receive and transmit circuits have
already been disabled when making the switch into and out of internal loop back. This function may not be supported by
some instantiations of the MACB.

• RE: Receive enable
When set, enables the MACB to receive data. When reset, frame reception stops immediately and the receive FIFO is
cleared. The receive queue pointer register is unaffected.

• TE: Transmit enable
When set, enables the Ethernet transmitter to send data. When reset, transmission stops immediately, the transmit FIFO
and control registers are cleared and the transmit queue pointer register resets to point to the start of the transmit descrip-
tor list.

• MPE: Management port enable
Set to one to enable the management port. When zero, forces MDIO to high impedance state and MDC low.

• CLRSTAT: Clear statistics registers
This bit is write only. Writing a one clears the statistics registers.

• INCSTAT: Increment statistics registers
This bit is write only. Writing a one increments all the statistics registers by one for test purposes.

• WESTAT: Write enable for statistics registers
Setting this bit to one makes the statistics registers writable for functional test purposes.

• BP: Back pressure
If set in half duplex mode, forces collisions on all received frames.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – TZQ TPF THALT TSTART BP

7 6 5 4 3 2 1 0
WESTAT INCSTAT CLRSTAT MPE TE RE LLB LB

32058K AVR32-01/12

457

AT32UC3A

• TSTART: Start transmission
Writing one to this bit starts transmission.

• THALT: Transmit halt
Writing one to this bit halts transmission as soon as any ongoing frame transmission ends.

• TPF: Transmit pause frame
Writing one to this bit transmits a pause frame with the pause quantum from the transmit pause quantum register at the
next available transmitter idle time.

• TZQ: Transmit zero quantum pause frame
Writing a one to this bit transmits a pause frame with zero pause quantum at the next available transmitter idle time.

32058K AVR32-01/12

458

AT32UC3A

29.7.2 Network Configuration Register
Register Name: NCFGR

Access Type: Read/Write

• SPD: Speed
Set to 1 to indicate 100 Mbit/s operation, 0 for 10 Mbit/s. The value of this pin is reflected on the speed pin.

• FD: Full Duplex
If set to 1, the transmit block ignores the state of collision and carrier sense and allows receive while transmitting. Also con-
trols the half_duplex pin.

• Bit rate:
If set to 1 to configure the interface for serial operation. Must be set before receive and transmit enable in the network con-
trol register. If set a serial interface is configured with transmit and receive data being driven out on txd[0] and received on
rxd[0] serially. Also the crs and rx_dv are logically ORed together so either may be used as the data valid signal.

• CAF: Copy All Frames
When set to 1, all valid frames are received.

• JFRAME: Jumbo Frames
Set to one to enable jumbo frames of up to 10240 bytes to be accepted.

• NBC: No Broadcast
When set to 1, frames addressed to the broadcast address of all ones are not received.

• MTI: Multicast Hash Enable
When set, multicast frames are received when the 6-bit hash function of the destination address points to a bit that is set in
the hash register.

• UNI: Unicast Hash Enable
When set, unicast frames are received when the 6-bit hash function of the destination address points to a bit that is set in
the hash register.

• BIG: Receive 1536 bytes frames
Setting this bit means the MACB receives frames up to 1536 bytes in length. Normally, the MACB would reject any frame
above 1518 bytes.

• EAE: External address match enable
When set, the eam pin can be used to copy frames to memory.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – IRXFCS EFRHD DRFCS RLCE

15 14 13 12 11 10 9 8
RBOF PAE RTY CLK EAE BIG

7 6 5 4 3 2 1 0
UNI MTI NBC CAF JFRAME Bit rate FD SPD

32058K AVR32-01/12

459

AT32UC3A

• CLK: MDC clock divider
Set according to system clock speed. This determines by what number system clock is divided to generate MDC.
For conformance with 802.3, MDC must not exceed 2.5MHz (MDC is only active during MDIO read and write operations).

• RTY: Retry test
Must be set to zero for normal operation. If set to one, the back off between collisions is always one slot time. Setting this
bit to one helps testing the too many retries condition. Also used in the pause frame tests to reduce the pause counters
decrement time from 512 bit times, to every rx_clk cycle.

• PAE: Pause Enable
When set, transmission pauses when a valid pause frame is received.

• RBOF: Receive Buffer Offset
Indicates the number of bytes by which the received data is offset from the start of the first receive buffer.

• RLCE: Receive Length field Checking Enable
When set, frames with measured lengths shorter than their length fields are discarded. Frames containing a type ID in
bytes 13 and 14 — length/type ID = 0600 — are not be counted as length errors.

• DRFCS: Discard Receive FCS
When set, the FCS field of received frames will not be copied to memory.

• EFRHD:
Enable Frames to be received in half-duplex mode while transmitting.

• IRXFCS: Ignore RX FCS
When set, frames with FCS/CRC errors are not rejected and no FCS error statistics are counted. For normal operation, this
bit must be set to 0.

CLK MDC

00 MCK divided by 8 (MCK up to 20 MHz)

01 MCK divided by 16 (MCK up to 40 MHz)

10 MCK divided by 32 (MCK up to 80 MHz)

11 MCK divided by 64 (MCK up to 160 MHz)

RBOF Offset

00 No offset from start of receive buffer

01 One-byte offset from start of receive buffer

10 Two-byte offset from start of receive buffer

11 Three-byte offset from start of receive buffer

32058K AVR32-01/12

460

AT32UC3A

29.7.3 Network Status Register
Register Name: NSR

Access Type: Read-only

• MDIO
Returns status of the mdio_in pin. Use the PHY maintenance register for reading managed frames rather than this bit.

• IDLE
0 = The PHY logic is running.

1 = The PHY management logic is idle (i.e., has completed).

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
– – – – – IDLE MDIO -

32058K AVR32-01/12

461

AT32UC3A

29.7.4 Transmit Status Register
Register Name: TSR

Access Type: Read/Write

This register, when read, provides details of the status of a transmit. Once read, individual bits may be cleared by writing 1
to them. It is not possible to set a bit to 1 by writing to the register.

• UBR: Used Bit Read
Set when a transmit buffer descriptor is read with its used bit set. Cleared by writing a one to this bit.

• COL: Collision Occurred
Set by the assertion of collision. Cleared by writing a one to this bit.

• RLE: Retry Limit exceeded
Cleared by writing a one to this bit.

• TGO: Transmit Go
If high transmit is active.

• BEX: Buffers exhausted mid frame
If the buffers run out during transmission of a frame, then transmission stops, FCS shall be bad and tx_er asserted. Cleared
by writing a one to this bit.

• COMP: Transmit Complete
Set when a frame has been transmitted. Cleared by writing a one to this bit.

• UND: Transmit Underrun
Set when transmit DMA was not able to read data from memory, either because the bus was not granted in time, because
a not OK hresp(bus error) was returned or because a used bit was read midway through frame transmission. If this
occurs, the transmitter forces bad CRC. Cleared by writing a one to this bit.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
– UND COMP BEX TGO RLE COL UBR

32058K AVR32-01/12

462

AT32UC3A

29.7.5 Receive Buffer Queue Pointer Register
Register Name: RBQP

Access Type: Read/Write

This register points to the entry in the receive buffer queue (descriptor list) currently being used. It is written with the start
location of the receive buffer descriptor list. The lower order bits increment as buffers are used up and wrap to their original
values after either 1024 buffers or when the wrap bit of the entry is set.

Reading this register returns the location of the descriptor currently being accessed. This value increments as buffers are
used. Software should not use this register for determining where to remove received frames from the queue as it con-
stantly changes as new frames are received. Software should instead work its way through the buffer descriptor queue
checking the used bits.

Receive buffer writes also comprise bursts of two words and, as with transmit buffer reads, it is recommended that bit 2 is
always written with zero to prevent a burst crossing a 1K boundary, in violation of the System Bus specification.

• ADDR: Receive buffer queue pointer address
Written with the address of the start of the receive queue, reads as a pointer to the current buffer being used.

31 30 29 28 27 26 25 24
ADDR

23 22 21 20 19 18 17 16
ADDR

15 14 13 12 11 10 9 8
ADDR

7 6 5 4 3 2 1 0
ADDR – –

32058K AVR32-01/12

463

AT32UC3A

29.7.6 Transmit Buffer Queue Pointer Register
Register Name: TBQP

Access Type: Read/Write

This register points to the entry in the transmit buffer queue (descriptor list) currently being used. It is written with the start
location of the transmit buffer descriptor list. The lower order bits increment as buffers are used up and wrap to their original
values after either 1024 buffers or when the wrap bit of the entry is set. This register can only be written when bit 3 in the
transmit status register is low.

As transmit buffer reads consist of bursts of two words, it is recommended that bit 2 is always written with zero to prevent a
burst crossing a 1K boundary, in violation of the System Bus specification.

• ADDR: Transmit buffer queue pointer address
Written with the address of the start of the transmit queue, reads as a pointer to the first buffer of the frame being transmit-
ted or about to be transmitted.

31 30 29 28 27 26 25 24
ADDR

23 22 21 20 19 18 17 16
ADDR

15 14 13 12 11 10 9 8
ADDR

7 6 5 4 3 2 1 0
ADDR – –

32058K AVR32-01/12

464

AT32UC3A

29.7.7 Receive Status Register
Register Name: RSR

Access Type: Read/Write

This register, when read, provides details of the status of a receive. Once read, individual bits may be cleared by writing 1
to them. It is not possible to set a bit to 1 by writing to the register.

• BNA: Buffer Not Available
An attempt was made to get a new buffer and the pointer indicated that it was owned by the processor. The DMA rereads
the pointer each time a new frame starts until a valid pointer is found. This bit is set at each attempt that fails even if it has
not had a successful pointer read since it has been cleared.

Cleared by writing a one to this bit.

• REC: Frame Received
One or more frames have been received and placed in memory. Cleared by writing a one to this bit.

• OVR: Receive Overrun
The DMA block was unable to store the receive frame to memory, either because the bus was not granted in time or
because a not OK hresp(bus error) was returned. The buffer is recovered if this happens.

Cleared by writing a one to this bit.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
– – – – – OVR REC BNA

32058K AVR32-01/12

465

AT32UC3A

29.7.8 Interrupt Status Register
Register Name: ISR

Access Type: Read/Write

• MFD: Management Frame Done
The PHY maintenance register has completed its operation. Cleared on read.

• RCOMP: Receive Complete
A frame has been stored in memory. Cleared on read.

• RXUBR: Receive Used Bit Read
Set when a receive buffer descriptor is read with its used bit set. Cleared on read.

• TXUBR: Transmit Used Bit Read
Set when a transmit buffer descriptor is read with its used bit set. Cleared on read.

• TUND: Ethernet Transmit Buffer Underrun
The transmit DMA did not fetch frame data in time for it to be transmitted or hresp returned not OK. Also set if a used bit
is read mid-frame or when a new transmit queue pointer is written. Cleared on read.

• RLE: Retry Limit Exceeded
Cleared on read.

• TXERR: Transmit Error
Transmit buffers exhausted in mid-frame - transmit error. Cleared on read.

• TCOMP: Transmit Complete
Set when a frame has been transmitted. Cleared on read.

• ROVR: Receive Overrun
Set when the receive overrun status bit gets set. Cleared on read.

• HRESP: Hresp not OK
Set when the DMA block sees a bus error. Cleared on read.

• PFR: Pause Frame Received
Indicates a valid pause has been received. Cleared on a read.

• PTZ: Pause Time Zero
Set when the pause time register, 0x38 decrements to zero. Cleared on a read.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – PTZ PFR HRESP ROVR - –

7 6 5 4 3 2 1 0
TCOMP TXERR RLE TUND TXUBR RXUBR RCOMP MFD

32058K AVR32-01/12

466

AT32UC3A

29.7.9 Interrupt Enable Register
Register Name: IER

32058K AVR32-01/12

467

AT32UC3A

Access Type: Write-only

• MFD: Management Frame sent
Enable management done interrupt.

• RCOMP: Receive Complete
Enable receive complete interrupt.

• RXUBR: Receive Used Bit Read
Enable receive used bit read interrupt.

• TXUBR: Transmit Used Bit Read
Enable transmit used bit read interrupt.

• TUND: Ethernet Transmit Buffer Underrun
Enable transmit underrun interrupt.

• RLE: Retry Limit Exceeded
Enable retry limit exceeded interrupt.

• TXERR: Transmit Error
Enable transmit buffers exhausted in mid-frame interrupt.

• TCOMP: Transmit Complete
Enable transmit complete interrupt.

• ROVR: Receive Overrun
Enable receive overrun interrupt.

• HRESP: Hresp not OK
Enable Hresp not OK interrupt.

• PFR: Pause Frame Received
Enable pause frame received interrupt.

• PTZ: Pause Time Zero
Enable pause time zero interrupt.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – PTZ PFR HRESP ROVR –

7 6 5 4 3 2 1 0
TCOMP TXERR RLE TUND TXUBR RXUBR RCOMP MFD

32058K AVR32-01/12

468

AT32UC3A

29.7.10 Interrupt Disable Register
Register Name: IDR

Access Type: Write-only

• MFD: Management Frame sent
Disable management done interrupt.

• RCOMP: Receive Complete
Disable receive complete interrupt.

• RXUBR: Receive Used Bit Read
Disable receive used bit read interrupt.

• TXUBR: Transmit Used Bit Read
Disable transmit used bit read interrupt.

• TUND: Ethernet Transmit Buffer Underrun
Disable transmit underrun interrupt.

• RLE: Retry Limit Exceeded
Disable retry limit exceeded interrupt.

• TXERR: Transmit Error
Disable transmit buffers exhausted in mid-frame interrupt.

• TCOMP: Transmit Complete
Disable transmit complete interrupt.

• ROVR: Receive Overrun
Disable receive overrun interrupt.

• HRESP: Hresp not OK
Disable Hresp not OK interrupt.

• PFR: Pause Frame Received
Disable pause frame received interrupt.

• PTZ: Pause Time Zero
Disable pause time zero interrupt.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – PTZ PFR HRESP ROVR - –

7 6 5 4 3 2 1 0
TCOMP TXERR RLE TUND TXUBR RXUBR RCOMP MFD

32058K AVR32-01/12

469

AT32UC3A

29.7.11 Interrupt Mask Register
Register Name: IMR

Access Type: Write-only

• MFD: Management Frame sent
Management done interrupt masked.

• RCOMP: Receive Complete
Receive complete interrupt masked.

• RXUBR: Receive Used Bit Read
Receive used bit read interrupt masked.

• TXUBR: Transmit Used Bit Read
Transmit used bit read interrupt masked.

• TUND: Ethernet Transmit Buffer Underrun
Transmit underrun interrupt masked.

• RLE: Retry Limit Exceeded
Retry limit exceeded interrupt masked.

• TXERR: Transmit Error
Transmit buffers exhausted in mid-frame interrupt masked.

• TCOMP: Transmit Complete
Transmit complete interrupt masked.

• ROVR: Receive Overrun
Receive overrun interrupt masked.

• HRESP: Hresp not OK
Hresp not OK interrupt masked.

• PFR: Pause Frame Received
Pause frame received interrupt masked.

• PTZ: Pause Time Zero
Pause time zero interrupt masked.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – PTZ PFR HRESP ROVR - –

7 6 5 4 3 2 1 0
TCOMP TXERR RLE TUND TXUBR RXUBR RCOMP MFD

32058K AVR32-01/12

470

AT32UC3A

29.7.12 PHY Maintenance Register
Register Name: MAN

Access Type: Read/Write

• DATA
For a write operation this is written with the data to be written to the PHY.

After a read operation this contains the data read from the PHY.

• CODE:
Must be written to 10. Reads as written.

• REGA: Register Address
Specifies the register in the PHY to access.

• PHYA: PHY Address

• RW: Read/Write
10 is read; 01 is write. Any other value is an invalid PHY management frame

• SOF: Start of frame
Must be written 01 for a valid frame.

31 30 29 28 27 26 25 24
SOF RW PHYA

23 22 21 20 19 18 17 16
PHYA REGA CODE

15 14 13 12 11 10 9 8
DATA

7 6 5 4 3 2 1 0
DATA

32058K AVR32-01/12

471

AT32UC3A

29.7.13 Pause Time Register
Register Name: PTR

Access Type: Read/Write

• PTIME: Pause Time
Stores the current value of the pause time register which is decremented every 512 bit times.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
PTIME

7 6 5 4 3 2 1 0
PTIME

32058K AVR32-01/12

472

AT32UC3A

29.7.14 Hash Register Bottom
Register Name: HRB

Access Type: Read/Write

• ADDR:
Bits 31:0 of the hash address register. See ”Hash Addressing” on page 447.

31 30 29 28 27 26 25 24
ADDR

23 22 21 20 19 18 17 16
ADDR

15 14 13 12 11 10 9 8
ADDR

7 6 5 4 3 2 1 0
ADDR

32058K AVR32-01/12

473

AT32UC3A

29.7.15 Hash Register Top
Register Name: HRT

Access Type: Read/Write

• ADDR:
Bits 63:32 of the hash address register. See ”Hash Addressing” on page 447.

31 30 29 28 27 26 25 24
ADDR

23 22 21 20 19 18 17 16
ADDR

15 14 13 12 11 10 9 8
ADDR

7 6 5 4 3 2 1 0
ADDR

32058K AVR32-01/12

474

AT32UC3A

29.7.16 Specific Address 1 Bottom Register
Register Name: SA1B

Access Type: Read/Write

• ADDR
Least significant bits of the destination address. Bit zero indicates whether the address is multicast or unicast and corre-
sponds to the least significant bit of the first byte received.

31 30 29 28 27 26 25 24
ADDR

23 22 21 20 19 18 17 16
ADDR

15 14 13 12 11 10 9 8
ADDR

7 6 5 4 3 2 1 0
ADDR

32058K AVR32-01/12

475

AT32UC3A

29.7.17 Specific Address 1 Top Register
Register Name: SA1T

Access Type: Read/Write

• ADDR
The most significant bits of the destination address, that is bits 47 to 32.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
ADDR

7 6 5 4 3 2 1 0
ADDR

32058K AVR32-01/12

476

AT32UC3A

29.7.18 Specific Address 2 Bottom Register
Register Name: SA2B

Access Type: Read/Write

• ADDR
Least significant bits of the destination address. Bit zero indicates whether the address is multicast or unicast and corre-
sponds to the least significant bit of the first byte received.

31 30 29 28 27 26 25 24
ADDR

23 22 21 20 19 18 17 16
ADDR

15 14 13 12 11 10 9 8
ADDR

7 6 5 4 3 2 1 0
ADDR

32058K AVR32-01/12

477

AT32UC3A

29.7.19 Specific Address 2 Top Register
Register Name: SA2T

Access Type: Read/Write

• ADDR
The most significant bits of the destination address, that is bits 47 to 32.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
ADDR

7 6 5 4 3 2 1 0
ADDR

32058K AVR32-01/12

478

AT32UC3A

29.7.20 Specific Address 3 Bottom Register
Register Name: SA3B

Access Type: Read/Write

• ADDR
Least significant bits of the destination address. Bit zero indicates whether the address is multicast or unicast and corre-
sponds to the least significant bit of the first byte received.

31 30 29 28 27 26 25 24
ADDR

23 22 21 20 19 18 17 16
ADDR

15 14 13 12 11 10 9 8
ADDR

7 6 5 4 3 2 1 0
ADDR

32058K AVR32-01/12

479

AT32UC3A

29.7.21 Specific Address 3 Top Register
Register Name: SA3T

Access Type: Read/Write

• ADDR
The most significant bits of the destination address, that is bits 47 to 32.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
ADDR

7 6 5 4 3 2 1 0
ADDR

32058K AVR32-01/12

480

AT32UC3A

29.7.22 Specific Address 4 Bottom Register
Register Name: SA4B

Access Type: Read/Write

• ADDR
Least significant bits of the destination address. Bit zero indicates whether the address is multicast or unicast and corre-
sponds to the least significant bit of the first byte received.

31 30 29 28 27 26 25 24
ADDR

23 22 21 20 19 18 17 16
ADDR

15 14 13 12 11 10 9 8
ADDR

7 6 5 4 3 2 1 0
ADDR

32058K AVR32-01/12

481

AT32UC3A

29.7.23 Specific Address 4 Top Register
Register Name: SA4T

Access Type: Read/Write

• ADDR
The most significant bits of the destination address, that is bits 47 to 32.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
ADDR

7 6 5 4 3 2 1 0
ADDR

32058K AVR32-01/12

482

AT32UC3A

29.7.24 Type ID Checking Register
Register Name: TID

Access Type: Read/Write

• TID: Type ID checking
For use in comparisons with received frames TypeID/Length field.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
TID

7 6 5 4 3 2 1 0
TID

32058K AVR32-01/12

483

AT32UC3A

29.7.25 Transmit Pause Quantum Register
Register Name: TPQ

Access Type: Read/Write

• TPQ: Transmit Pause Quantum
Used in hardware generation of transmitted pause frames as value for pause quantum.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
TPQ

7 6 5 4 3 2 1 0
TPQ

32058K AVR32-01/12

484

AT32UC3A

29.7.26 User Input/Output Register
Register Name: USRIO

Access Type: Read/Write

• RMII
When set, this bit enables the MII operation mode. When reset, it selects the RMII mode.

• EAM
When set, this bit causes a frame to be copied to memory, if this feature is enabled by the EAE bit in NCFGR. Otherwise,
no frame is copied.

• TX_PAUSE
Toggling this bit causes a PAUSE frame to be transmitted.

• TX_PAUSE_ZERO
Selects either zero or the transmit quantum register as the transmitted pause frame quantum.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0

– – – – TX_PAUSE_
ZERO TX_PAUSE EAM RMII

32058K AVR32-01/12

485

AT32UC3A

29.7.27 Wake-on-LAN Register
Register Name: WOL

Access Type: Read/Write

• IP: ARP request IP address
Written to define the least significant 16 bits of the target IP address that is matched to generate a Wake-on-LAN event. A
value of zero does not generate an event, even if this is matched by the received frame.

• MAG: Magic packet event enable
When set, magic packet events causes the wol output to be asserted.

• ARP: ARP request event enable
When set, ARP request events causes the wol output to be asserted.

• SA1: Specific address register 1 event enable
When set, specific address 1 events causes the wol output to be asserted.

• MTI: Multicast hash event enable
When set, multicast hash events causes the wol output to be asserted.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – MTI SA1 ARP MAG

15 14 13 12 11 10 9 8
IP

7 6 5 4 3 2 1 0
IP

32058K AVR32-01/12

486

AT32UC3A

29.7.28 MACB Statistic Registers
These registers reset to zero on a read and stick at all ones when they count to their maximum value. They should be read
frequently enough to prevent loss of data. The receive statistics registers are only incremented when the receive enable bit
is set in the network control register. To write to these registers, bit 7, WESTAT, in the network control register, NCR, must
be set. The statistics register block contains the following registers.

29.7.28.1 Pause Frames Received Register
Register Name: PFR

Access Type: Read/Write

• FROK: Pause Frames received OK
A 16-bit register counting the number of good pause frames received. A good frame has a length of 64 to 1518 (1536 if bit
8, BIG, in network configuration register, NCFGR, is set, 10240 if bit 3, JFRAME in network configuration register, NCFGR,
is set) and has no FCS, alignment or receive symbol errors.

29.7.28.2 Frames Transmitted OK Register
Register Name: FTO

Access Type: Read/Write

• FTOK: Frames Transmitted OK
A 24-bit register counting the number of frames successfully transmitted, i.e., no underrun and not too many retries.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
FROK

7 6 5 4 3 2 1 0
FROK

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
FTOK

15 14 13 12 11 10 9 8
FTOK

7 6 5 4 3 2 1 0
FTOK

32058K AVR32-01/12

487

AT32UC3A

29.7.28.3 Single Collision Frames Register
Register Name: SCF

Access Type: Read/Write

• SCF: Single Collision Frames
A 16-bit register counting the number of frames experiencing a single collision before being successfully transmitted, i.e.,
no underrun.

29.7.28.4 Multicollision Frames Register
Register Name: MCF

Access Type: Read/Write

• MCF: Multicollision Frames
A 16-bit register counting the number of frames experiencing between two and fifteen collisions prior to being successfully
transmitted, i.e., no underrun and not too many retries.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
SCF

7 6 5 4 3 2 1 0
SCF

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
MCF

7 6 5 4 3 2 1 0
MCF

32058K AVR32-01/12

488

AT32UC3A

29.7.28.5 Frames Received OK Register
Register Name: FRO

Access Type: Read/Write

• FROK: Frames Received OK
A 24-bit register counting the number of good frames received, i.e., address recognized and successfully copied to mem-
ory. A good frame is of length 64 to 1518 bytes (1536 if bit 8, BIG, in network configuration register, NCFGR, is set, 10240
if bit 3, JFRAME in network configuration register, NCFGR, is set) and has no FCS, alignment or receive symbol errors.

29.7.28.6 Frames Check Sequence Errors Register
Register Name: FCSE

Access Type: Read/Write

• FCSE: Frame Check Sequence Errors
An 8-bit register counting frames that are an integral number of bytes, have bad CRC and are between 64 and 1518 bytes
in length (1536 if bit 8, BIG, in network configuration register, NCFGR, is set, 10240 if bit 3, JFRAME in network configura-
tion register, NCFGR, is set). This register is also incremented if a symbol error is detected and the frame is of valid length
and has an integral number of bytes.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
FROK

15 14 13 12 11 10 9 8
FROK

7 6 5 4 3 2 1 0
FROK

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
FCSE

32058K AVR32-01/12

489

AT32UC3A

29.7.28.7 Alignment Errors Register
Register Name: ALE

Access Type: Read/Write

• ALE: Alignment Errors
An 8-bit register counting frames that are not an integral number of bytes long and have bad CRC when their length is trun-
cated to an integral number of bytes and are between 64 and 1518 bytes in length (1536 if bit 8, BIG, in network
configuration register, NCFGR, is set, 10240 if bit 3, JFRAME in network configuration register, NCFGR, is set). This regis-
ter is also incremented if a symbol error is detected and the frame is of valid length and does not have an integral number
of bytes.

29.7.28.8 Deferred Transmission Frames Register
Register Name: DTF

Access Type: Read/Write

• DTF: Deferred Transmission Frames
A 16-bit register counting the number of frames experiencing deferral due to carrier sense being active on their first attempt
at transmission. Frames involved in any collision are not counted nor are frames that experienced a transmit underrun.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
ALE

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
DTF

7 6 5 4 3 2 1 0
DTF

32058K AVR32-01/12

490

AT32UC3A

29.7.28.9 Late Collisions Register
Register Name: LCOL

Access Type: Read/Write

• LCOL: Late Collisions
An 8-bit register counting the number of frames that experience a collision after the slot time (512 bits) has expired. A late
collision is counted twice; i.e., both as a collision and a late collision.

29.7.28.10 Excessive Collisions Register
Register Name: EXCOL

Access Type: Read/Write

• EXCOL: Excessive Collisions
An 8-bit register counting the number of frames that failed to be transmitted because they experienced 16 collisions.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
LCOL

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
EXCOL

32058K AVR32-01/12

491

AT32UC3A

29.7.28.11 Transmit Underrun Errors Register
Register Name: TUND

Access Type: Read/Write

• TUND: Transmit Underruns
An 8-bit register counting the number of frames not transmitted due to a transmit DMA underrun. If this register is incre-
mented, then no other statistics register is incremented.

29.7.28.12 Carrier Sense Errors Register
Register Name: CSE

Access Type: Read/Write

• CSE: Carrier Sense Errors
An 8-bit register counting the number of frames transmitted where carrier sense was not seen during transmission or where
carrier sense was deasserted after being asserted in a transmit frame without collision (no underrun). Only incremented in
half-duplex mode. The only effect of a carrier sense error is to increment this register. The behavior of the other statistics
registers is unaffected by the detection of a carrier sense error.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
TUND

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
CSE

32058K AVR32-01/12

492

AT32UC3A

29.7.28.13 Receive Resource Errors Register
Register Name: RRE

Access Type: Read/Write

• RRE: Receive Resource Errors
A 16-bit register counting the number of frames that were address matched but could not be copied to memory because no
receive buffer was available.

29.7.28.14 Receive Overrun Errors Register
Register Name: ROVR

Access Type: Read/Write

• ROVR: Receive Overrun
An 8-bit register counting the number of frames that are address recognized but were not copied to memory due to a
receive DMA overrun.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
RRE

7 6 5 4 3 2 1 0
RRE

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
ROVR

32058K AVR32-01/12

493

AT32UC3A

29.7.28.15 Receive Symbol Errors Register
Register Name: RSE

Access Type: Read/Write

• RSE: Receive Symbol Errors
An 8-bit register counting the number of frames that had rx_er asserted during reception. Receive symbol errors are also
counted as an FCS or alignment error if the frame is between 64 and 1518 bytes in length (1536 if bit 8, BIG, in network
configuration register, NCFGR, is set, 10240 if bit 3, JFRAME in network configuration register, NCFGR, is set). If the
frame is larger, it is recorded as a jabber error.

29.7.28.16 Excessive Length Errors Register
Register Name: ELE

Access Type: Read/Write

• EXL: Excessive Length Errors
An 8-bit register counting the number of frames received exceeding 1518 bytes (1536 if bit 8, BIG, in network configuration
register, NCFGR, is set, 10240 if bit 3, JFRAME in network configuration register, NCFGR, is set) in length but do not have
either a CRC error, an alignment error nor a receive symbol error.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
RSE

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
EXL

32058K AVR32-01/12

494

AT32UC3A

29.7.28.17 Receive Jabbers Register
Register Name: RJA

Access Type: Read/Write

• RJB: Receive Jabbers
An 8-bit register counting the number of frames received exceeding 1518 bytes (1536 if bit 8, BIG, in network configuration
register, NCFGR, is set, 10240 if bit 3, JFRAME in network configuration register, NCFGR, is set) in length and have either
a CRC error, an alignment error or a receive symbol error.

29.7.28.18 Undersize Frames Register
Register Name: USF

Access Type: Read/Write

• USF: Undersize frames
An 8-bit register counting the number of frames received less than 64 bytes in length but do not have either a CRC error, an
alignment error or a receive symbol error.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
RJB

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
USF

32058K AVR32-01/12

495

AT32UC3A

29.7.28.19 SQE Test Errors Register
Register Name: STE

Access Type: Read/Write

• SQER: SQE test errors
An 8-bit register counting the number of frames where col was not asserted within 96 bit times (an interframe gap) of
tx_en being deasserted in half duplex mode.

29.7.28.20 Received Length Field Mismatch Register
Register Name: RLE

Access Type: Read/Write

• RLFM: Receive Length Field Mismatch
An 8-bit register counting the number of frames received that have a measured length shorter than that extracted from its
length field. Checking is enabled through bit 16 of the network configuration register. Frames containing a type ID in bytes
13 and 14 (i.e., length/type ID �0x0600) are not counted as length field errors, neither are excessive length frames.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
SQER

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
RLFM

32058K AVR32-01/12

496

AT32UC3A

29.7.28.21 Transmitted Pause Frames Register
Register Name: TPF

Access Type: Read/Write

• TPF: Transmitted Pause Frames
A 16-bit register counting the number of pause frames transmitted.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
TPF

7 6 5 4 3 2 1 0
TPF

32058K AVR32-01/12

497

AT32UC3A

30. USB On-The-Go Interface (USBB)

Rev: 3.1.1.1

30.1 Features

• USB 2.0 Compliant, Full-/Low-Speed (FS/LS) and On-The-Go (OTG), 12 Mbit/s
• 7 Pipes/Endpoints
• 960 bytes of Embedded Dual-Port RAM (DPRAM) for Pipes/Endpoints
• Up to 2 Memory Banks per Pipe/Endpoint (Not for Control Pipe/Endpoint)
• Flexible Pipe/Endpoint Configuration and Management with Dedicated DMA Channels
• On-Chip Transceivers Including Pull-Ups/Pull-downs.
• On-Chip OTG pad including VBUS analog comparator

30.2 Description

The Universal Serial Bus (USB) MCU device complies with the Universal Serial Bus (USB) 2.0
specification, but it does NOT feature high-speed USB (480 Mbit/s).

Each pipe/endpoint can be configured in one of several transfer types. It can be associated with
one or more banks of a dual-port RAM used to store the current data payload. If several banks
are used (“ping-pong” mode), then one DPRAM bank is read or written by the CPU or the DMA
while the other is read or written by the USB macro core. This feature is mandatory for isochro-
nous pipes/endpoints.

Table 30-1 describes the hardware configuration of the USB MCU device.

The theoretical maximal pipe/endpoint configuration (1600 bytes) exceeds the real DPRAM size
(960 bytes). The user needs to be aware of this when configuring pipes/endpoints. To fully use
the 960 bytes of DPRAM, the user could for example use the configuration described in Table
30-2.

Table 30-1. Description of USB Pipes/Endpoints

Pipe/Endpoint Mnemonic Max. Size Max. Nb. Banks DMA Type

0 PEP0 64 bytes 1 N Control

1 PEP1 bytes Y Isochronous/Bulk/Interrupt

2 PEP2 bytes Y Isochronous/Bulk/Interrupt

3 PEP3 64 bytes Y Bulk/Interrupt

4 PEP4 64 bytes Y Bulk/Interrupt

5 PEP5 bytes Y Isochronous/Bulk/Interrupt

6 PEP6 bytes Y Isochronous/Bulk/Interrupt

Table 30-2. Example of Configuration of Pipes/Endpoints Using the Whole DPRAM

Pipe/Endpoint Mnemonic Size Nb. Banks

0 PEP0 64 bytes 1

1 PEP1 64 bytes 2

2 PEP2 64 bytes 2

3 PEP3 64 bytes 1

32058K AVR32-01/12

498

AT32UC3A

4 PEP4 64 bytes 1

5 PEP5 256 bytes 1

6 PEP6 256 bytes 1

Table 30-2. Example of Configuration of Pipes/Endpoints Using the Whole DPRAM

Pipe/Endpoint Mnemonic Size Nb. Banks

32058K AVR32-01/12

499

AT32UC3A

30.3 Block Diagram

The USB controller provides a hardware device to interface a USB link to a data flow stored in a
dual-port RAM (DPRAM).

The USB controller requires a 48 MHz ± 0.25% reference clock, which is the USB generic clock
generated from one of the power manager oscillators, optionally through one of the power man-
ager PLLs.

The 48 MHz clock is used to generate a 12 MHz full-speed (or 1.5 MHz low-speed) bit clock from
the received USB differential data and to transmit data according to full- or low-speed USB
device tolerance. Clock recovery is achieved by a digital phase-locked loop (a DPLL, not repre-
sented), which complies with the USB jitter specifications.

Figure 30-1. Block Diagram

Interrupt
Controller

USB Interrupts

D-

VBUS

USB_VBOF

USB

GPIO
Controller

USB_ID

D+

User Interface

Power
Manager

USB GCLK @ 48 MHz

PB

DPRAM

USB 2.0
Core

PEP
Allocation

DMA

HSB MUX

Local
HSB

Slave Interface

HSB1

HSB0
Master

Slave

Domain
USB ClockSystem Clock

Domain

32 bits

HSB

32058K AVR32-01/12

500

AT32UC3A

30.4 Application Block Diagram

Depending on the USB operating mode (device-only, reduced-host or OTG mode) and the
power source (bus-powered or self-powered), there are different typical hardware
implementations.

30.4.1 Device Mode

30.4.1.1 Bus-Powered Device

Figure 30-2. Bus-Powered Device Application Block Diagram

30.4.1.2 Self-Powered Device

Figure 30-3. Self-Powered Device Application Block Diagram

USB

USB_ID

D+

D-

USB_VBOF

VBUS

USB
Connector

ID

D+

D-

VBUS

GND

39 Ω ± 1%

3.3 V
Regulator

VDD

39 Ω ± 1%

USB

USB_ID

D+

D-

USB_VBOF

VBUS

USB
Connector

ID

D+

D-

VBUS

GND

39 Ω ± 1%

39 Ω ± 1%

32058K AVR32-01/12

501

AT32UC3A

30.4.2 Host and OTG Modes

Figure 30-4. Host and OTG Application Block Diagram

30.5 I/O Lines Description

Table 30-3. I/O Lines Description

Name Description Type Active Level

USB_VBOF USB VBus On/Off: Bus Power Control Port Output VBUSPO

VBUS VBus: Bus Power Measurement Port Input High

D- Data -: Differential Data Line - Port Input/Output N/A

D+ Data +: Differential Data Line + Port Input/Output N/A

USB_ID USB Identification: Mini Connector Identification Port Input
Low: Mini-A plug

High Z: Mini-B plug

USB

USB_ID

D+

D-

USB_VBOF

VBUS

USB
Connector

ID

D+

D-

VBUS

GND

5 V DC/DC
Generator

VDD

39 Ω ± 1%

39 Ω ± 1%

32058K AVR32-01/12

502

AT32UC3A

30.6 Product Dependencies

30.6.1 I/O Lines

The USB_VBOF and USB_ID pins are multiplexed with GPIO lines and may also be multiplexed
with lines of other peripherals. In order to use them with the USB, the programmer must first pro-
gram the GPIO controller to assign them to their USB peripheral functions. Moreover, if USB_ID
is used, the GPIO controller must be configured to enable the internal pull-up resistor of its pin.

If USB_VBOF or USB_ID is not used by the application, the corresponding pin can be used for
other purposes by the GPIO controller or by other peripherals.

30.6.2 Power Management

The 48 MHz USB clock is generated by a dedicated generic clock from the power manager.
Before using the USB, the programmer must ensure that the USB generic clock (USB GCLK) is
enabled at 48 MHz in the power manager.

30.6.3 Interrupts

The USB interface has an interrupt line connected to the interrupt controller. In order to handle
USB interrupts, the interrupt controller must be programmed first.

32058K AVR32-01/12

503

AT32UC3A

30.7 Functional Description

30.7.1 USB General Operation

30.7.1.1 Introduction

After a hardware reset, the USB controller is disabled. When enabled, the USB controller runs
either in device mode or in host mode according to the ID detection.

If the USB_ID pin is not connected to ground, the ID bit is set by hardware (the internal pull-up
resistor of the USB_ID pin must be enabled by the GPIO controller) and device mode is
engaged.

The ID bit is cleared by hardware when a low level has been detected on the USB_ID pin. Host
mode is then engaged.

30.7.1.2 Power-On and Reset

Figure 30-5 describes the USB controller main states.

Figure 30-5. General States

After a hardware reset, the USB controller is in the Reset state. In this state:

•the macro is disabled (USBE = 0);
•the macro clock is stopped in order to minimize power consumption (FRZCLK = 1);
•the pad is in suspend mode;
•the internal states and registers of the device and host modes are reset;
•the DPRAM is not cleared and is accessible;
•the ID and VBUS read-only bits reflect the states of the USB_ID and VBUS input pins;
•the OTGPADE, VBUSPO, FRZCLK, USBE, UIDE, UIMOD and LS bits can be written by

software, so that the user can program pads and speed before enabling the macro, but their
value is only taken into account once the macro is enabled and unfrozen.

After setting USBE, the USB controller enters the Device or the Host mode (according to the ID
detection) in idle state.

The USB controller can be disabled at any time by clearing USBE. In fact, clearing USBE acts
as a hardware reset, except that the OTGPADE, VBUSPO, FRZCLK, UIDE, UIMOD and LS bits
are not reset.

Device

Reset

USBE = 0
<any
other

state>

USBE = 1
ID = 1

Macro off:
USBE = 0

Clock stopped:
FRZCLK = 1

USBE = 0

Host

USBE = 0

 HW
RESET

USBE = 1
ID = 0

32058K AVR32-01/12

504

AT32UC3A

30.7.1.3 Interrupts

One interrupt vector is assigned to the USB interface. Figure 30-6 shows the structure of the
USB interrupt system.

Figure 30-6. Interrupt System

USBCON.IDTE

USBSTA.IDTI

USBSTA.VBUSTI

USBCON.VBUSTE
USBSTA.SRPI

USBCON.SRPE
USBSTA.VBERRI

USBCON.VBERRE
USBSTA.BCERRI

USBCON.BCERRE
USBSTA.ROLEEXI

USBCON.ROLEEXE
USBSTA.HNPERRI

USBCON.HNPERRE
USBSTA.STOI

USBCON.STOE

USB General
Interrupt

USB Device
Interrupt

USB Host
Interrupt

USB
Interrupt

Asynchronous interrupt source

UDINTE.SUSPE

UDINT.SUSP

UDINT.SOF

UDINTE.SOFE
UDINT.EORST

UDINTE.EORSTE
UDINT.WAKEUP

UDINTE.WAKEUPE
UDINT.EORSM

UDINTE.EORSME
UDINT.UPRSM

UDINTE.UPRSME
UDINT.EPXINT

UDINTE.EPXINTE
UDINT.DMAXINT

UDINTE.DMAXINTE

UHINTE.DCONNIE

UHINT.DCONNI

UHINT.DDISCI

UHINTE.DDISCIE
UHINT.RSTI

UHINTE.RSTIE
UHINT.RSMEDI

UHINTE.RSMEDIE
UHINT.RXRSMI

UHINTE.RXRSMIE
UHINT.HSOFI

UHINTE.HSOFIE
UHINT.HWUPI

UHINTE.HWUPIE
UHINT.PXINT

UHINTE.PXINTE
UHINT.DMAXINT

UHINTE.DMAXINTE

UECONX.TXINE

UESTAX.TXINI

UESTAX.RXOUTI

UECONX.RXOUTE
UESTAX.RXSTPI

UECONX.RXSTPE
UESTAX.UNDERFI

UECONX.UNDERFE
UESTAX.NAKOUTI

UECONX.NAKOUTE
UESTAX.NAKINI

UECONX.NAKINE
UESTAX.OVERFI

UECONX.OVERFE
UESTAX.STALLEDI

UECONX.STALLEDE
UESTAX.CRCERRI

UECONX.CRCERRE
UESTAX.SHORTPACKET

UECONX.SHORTPACKETE
UESTAX.NBUSYBK

UECONX.NBUSYBKE

UPCONX.RXINE

UPSTAX.RXINI

UPSTAX.TXOUTI

UPCONX.TXOUTE
UPSTAX.TXSTPI

UPCONX.TXSTPE
UPSTAX.UNDERFI

UPCONX.UNDERFIE
UPSTAX.PERRI

UPCONX.PERRE
UPSTAX.NAKEDI

UPCONX.NAKEDE
UPSTAX.OVERFI

UPCONX.OVERFIE
UPSTAX.RXSTALLDI

UPCONX.RXSTALLDE
UPSTAX.CRCERRI

UPCONX.CRCERRE
UPSTAX.SHORTPACKETI

UPCONX.SHORTPACKETIE
UPSTAX.NBUSYBK

UPCONX.NBUSYBKE

UDDMAX_CONTROL.EOT_IRQ_EN

UDDMAX_STATUS.EOT_STA

UDDMAX_STATUS.EOCH_BUFF_STA

UDDMAX_CONTROL.EOBUFF_IRQ_EN
UDDMAX_STATUS.DESC_LD_STA

UDDMAX_CONTROL.DESC_LD_IRQ_EN

UHDMAX_CONTROL.EOT_IRQ_EN

UHDMAX_STATUS.EOT_STA

UHDMAX_STATUS.EOCH_BUFF_STA

UHDMAX_CONTROL.EOBUFF_IRQ_EN
UHDMAX_STATUS.DESC_LD_STA

UHDMAX_CONTROL.DESC_LD_IRQ_EN

USB Device
Endpoint X

Interrupt

USB Host
Pipe X

Interrupt

USB Device
DMA Channel X

Interrupt

USB Host
DMA Channel X

Interrupt

32058K AVR32-01/12

505

AT32UC3A

See Section 30.7.2.17 on page 520 and Section 30.7.3.13 on page 528 for further details about
device and host interrupts.

There are two kinds of general interrupts: processing, i.e. their generation is part of the normal
processing, and exception, i.e. errors (not related to CPU exceptions).

The processing general interrupts are:

•the ID Transition interrupt (IDTI);
•the VBus Transition interrupt (VBUSTI);
•the SRP interrupt (SRPI);
•the Role Exchange interrupt (ROLEEXI).

The exception general interrupts are:

•the VBus Error interrupt (VBERRI);
•the B-Connection Error interrupt (BCERRI);
•the HNP Error interrupt (HNPERRI);
•the Suspend Time-Out interrupt (STOI).

30.7.1.4 MCU Power Modes

30.7.1.4.1 Run Mode

In this mode, all MCU clocks can run, including the USB clock.

30.7.1.4.2 Idle Mode

In this mode, the CPU is halted, i.e. the CPU clock is stopped. The Idle mode is entered what-
ever the state of the USB macro. The MCU wakes up on any USB interrupt.

30.7.1.4.3 Frozen Mode

Same as the Idle mode, except that the HSB module is stopped, so the USB DMA, which is an
HSB master, can not be used. Moreover, the USB DMA must be stopped before entering this
sleep mode in order to avoid erratic behavior. The MCU wakes up on any USB interrupt.

30.7.1.4.4 Standby, Stop, DeepStop and Static Modes

Same as the Frozen mode, except that the USB generic clock and other clocks are stopped, so
the USB macro is frozen.

30.7.1.4.5 USB Clock Frozen

In the Run, Idle and Frozen MCU modes, the USB macro can be frozen when the usb line is in
the suspend mode, by setting the FRZCLK bit, what reduces power consumption.

In this case, it is still possible to access the following elements, but only in Run mode:

•the OTGPADE, VBUSPO, FRZCLK, USBE, UIDE, UIMOD and LS bits;
•the DPRAM (through the USB_FIFOX_DATA registers, but not through USB bus transfers

which are frozen).
Moreover, when FRZCLK is set, only the asynchronous interrupt sources may trigger the USB
interrupt:

•the ID Transition interrupt (IDTI);

32058K AVR32-01/12

506

AT32UC3A

•the VBus Transition interrupt (VBUSTI);
•the Wake-Up interrupt (WAKEUP);
•the Host Wake-Up interrupt (HWUPI).

30.7.1.4.6 USB Suspend mode :

In peripheral mode, the UDINT.SUSP bit indicates that the usb line is in the suspend mode. In
this case, the USB Data transceiver is automatically set in suspend mode to reduce the
consumption.

30.7.1.5 Speed Control

30.7.1.5.1 Device Mode

When the USB interface is in device mode, the speed selection (full-/low-speed) depends on
which of D+ and D- is pulled up. The LS bit allows to connect an internal pull-up resistor either
on D+ (full-speed mode) or on D- (low-speed mode). The LS bit should be configured before
attaching the device, what can be done by clearing the DETACH bit.

Figure 30-7. Speed Selection in Device Mode

30.7.1.5.2 Host Mode

When the USB interface is in host mode, internal pull-down resistors are connected on both D+
and D- and the interface detects the speed of the connected device, which is reflected by the
SPEED bit-field.

30.7.1.6 DPRAM Management

Pipes and endpoints can only be allocated in ascending order (from the pipe/endpoint 0 to the
last pipe/endpoint to be allocated). The firmware shall therefore configure them in the same
order.

The allocation of a pipe/endpoint ki starts when its ALLOC bit is set. Then, the hardware allo-
cates a memory area in the DPRAM and inserts it between the ki-1 and ki+1 pipes/endpoints. The
ki+1 pipe/endpoint memory window slides up and its data is lost. Note that the following pipe/end-
point memory windows (from ki+2) do not slide.

R
P

U

UDCON.DETACH

D+

D-

UDCON.LS

VBUS

32058K AVR32-01/12

507

AT32UC3A

Disabling a pipe (PENX = 0) or an endpoint (EPENX = 0) resets neither its ALLOC bit nor its
configuration (PBK/EPBK, PSIZE/EPSIZE, PTOKEN/EPDIR, PTYPE/EPTYPE, PEPNUM, INT-
FRQ). To free its memory, the firmware should clear its ALLOC bit. The ki+1 pipe/endpoint
memory window then slides down and its data is lost. Note that the following pipe/endpoint
memory windows (from ki+2) do not slide.

Figure 30-8 illustrates the allocation and reorganization of the DPRAM in a typical example.

Figure 30-8. Allocation and Reorganization of the DPRAM

• First, the pipes/endpoints 0 to 5 are enabled, configured and allocated in ascending order.
Each pipe/endpoint then owns a memory area in the DPRAM.

• Then, the pipe/endpoint 3 is disabled, but its memory is kept allocated by the controller.
• In order to free its memory, its ALLOC bit is then cleared by the firmware. The pipe/endpoint 4

memory window slides down, but the pipe/endpoint 5 does not move.
• Finally, if the firmware chooses to reconfigure the pipe/endpoint 3 with a larger size, the

controller allocates a memory area after the pipe/endpoint 2 memory area and automatically
slides up the pipe/endpoint 4 memory window. The pipe/endpoint 5 does not move and a
memory conflict appears as the memory windows of the pipes/endpoints 4 and 5 overlap. The
data of these pipes/endpoints is potentially lost.

Note that:

•there is no way the data of the pipe/endpoint 0 can be lost (except if it is de-allocated) as
memory allocation and de-allocation may affect only higher pipes/endpoints;

•deactivating then reactivating a same pipe/endpoint with the same configuration only modifies
temporarily the controller DPRAM pointer and size for this pipe/endpoint, but nothing
changes in the DPRAM, so higher endpoints seem to not have been moved and their data is
preserved as far as nothing has been written or received into them while changing the
allocation state of the first pipe/endpoint;

•when the firmware sets the ALLOC bit, the CFGOK bit is set by hardware only if the
configured size and number of banks are correct compared to their maximal allowed values
for the endpoint and to the maximal FIFO size (i.e. the DPRAM size), so the value of CFGOK
does not consider memory allocation conflicts.

Free Memory

PEP0

PEP1

PEP2

PEP3

PEP4

PEP5

U(P/E)RST.(E)PENX = 1
U(P/E)CFGX.ALLOC = 1

Free Memory

PEP0

PEP1

PEP2

PEP4

PEP5

Free Memory

PEP0

PEP1

PEP2

PEP4

PEP5

Pipe/Endpoint 3
Disabled

Pipe/Endpoint 3
Memory Freed

Free Memory

PEP0

PEP1

PEP2

PEP3 (larger size)

PEP5

Pipe/Endpoint 3
Activated

PEP4 Lost Memory
PEP4 Conflict

U(P/E)RST.(E)PEN3 = 0

PEP3
(ALLOC stays at 1)

U(P/E)CFG3.ALLOC = 0 U(P/E)RST.(E)PEN3 = 1
U(P/E)CFG3.ALLOC = 1

Pipes/Endpoints 0..5
Activated

32058K AVR32-01/12

508

AT32UC3A

30.7.1.7 Pad Suspend

Figure 30-9 shows the pad behavior.

Figure 30-9. Pad Behavior

• In the Idle state, the pad is put in low power consumption mode.
• In the Active state, the pad is working.
Figure 30-10 illustrates the pad events leading to a PAD state change.

Figure 30-10. Pad Events

The Suspend interrupt flag (SUSP) is set and the Wake-Up interrupt flag (WAKEUP) is cleared
when a USB “Suspend” state has been detected on the USB bus. This event automatically puts
the USB pad in the Idle state. The detection of a non-idle event sets WAKEUP, clears SUSP and
wakes up the USB pad.

Moreover, the pad goes to the Idle state if the macro is disabled or if the DETACH bit is set. It
returns to the Active state when USBE = 1 and DETACH = 0.

Idle

Active

 USBE = 1
& DETACH = 0
& Suspend

 USBE = 0
| DETACH = 1
| Suspend

SUSP Suspend detected Cleared by hardware on wake-up

Wake-up detected Cleared by software to acknowledge the interruptWAKEUP

PAD State

ActiveIdleActive

32058K AVR32-01/12

509

AT32UC3A

30.7.1.8 Customizing of OTG Timers

It is possible to refine some OTG timers thanks to the TIMPAGE and TIMVALUE bit-fields, as
shown by Figure 30-4.

TIMPAGE is used to select the OTG timer to access while TIMVALUE indicates the time-out
value of the selected timer.

TIMPAGE and TIMVALUE can be read or written. Before writing them, the firmware should
unlock write accesses by setting the UNLOCK bit. This is not required for read accesses, except
before accessing TIMPAGE if it has to be written in order to read the TIMVALUE bit-field of
another OTG timer.

30.7.1.9 Plug-In Detection

The USB connection is detected from the VBUS pad. Figure 30-11 shows the architecture of the
plug-in detector.

Figure 30-11. Plug-In Detection Input Block Diagram

The control logic of the VBUS pad outputs two signals:

•the Session_valid signal is high when the voltage on the VBUS pad is higher than or equal to
1.4 V;

•the Va_Vbus_valid signal is high when the voltage on the VBUS pad is higher than or equal to
4.4 V.

In device mode, the VBUS bit follows the Session_valid comparator output:

•it is set when the voltage on the VBUS pad is higher than or equal to 1.4 V;

Table 30-4. Customizing of OTG Timers

TIMPAGE

00b:
AWaitVrise Time-Out

([OTG] Chapter 6.6.5.1)

01b:
VbBusPulsing Time-Out

([OTG] Chapter 5.3.4)

10b:
PdTmOutCnt Time-Out
([OTG] Chapter 5.3.2)

11b:
SRPDetTmOut Time-Out

([OTG] Chapter 5.3.3)

T
IM

VA
L

U
E

00b 20 ms 15 ms 93 ms 10 µs

01b 50 ms 23 ms 105 ms 100 µs

10b 70 ms 31 ms 118 ms 1 ms

11b 100 ms 40 ms 131 ms 11 ms

VBUSTI
USBSTA

VBUS VBUS
USBSTA

GND

VDD

Pad Logic

Logic

Session_valid

Va_Vbus_valid

R
P

U
R

P
D

VBus_pulsing

VBus_discharge

32058K AVR32-01/12

510

AT32UC3A

•it is cleared when the voltage on the VBUS pad is lower than 1.4 V.
In host mode, the VBUS bit follows an hysteresis based on Session_valid and Va_Vbus_valid:

•it is set when the voltage on the VBUS pad is higher than or equal to 4.4 V;
•it is cleared when the voltage on the VBUS pad is lower than 1.4 V.

The VBus Transition interrupt (VBUSTI) is raised on each transition of the VBUS bit.

The VBUS bit is effective whether the USB macro is enabled or not.

30.7.1.10 ID Detection

Figure 30-12 shows how the ID transitions are detected.

Figure 30-12. ID Detection Input Block Diagram

The USB mode (device or host) can be either detected from the USB_ID pin or software
selected from the UIMOD bit, according to the UIDE bit. This allows the USB_ID pin to be used
as a general purpose I/O pin even when the USB interface is enabled.

By default, the USB_ID pin is selected (UIDE = 1) and the USB macro is in device mode (ID = 1),
what corresponds to the case where no Mini-A plug is connected, i.e. no plug or a Mini-B plug is
connected and the USB_ID pin is kept high by the internal pull-up resistor from the GPIO con-
troller (which must be enabled if USB_ID is used).

The ID Transition interrupt (IDTI) is raised on each transition of the ID bit, i.e. when a Mini-A plug
(host mode) is connected or disconnected. This does not occur when a Mini-B plug (device
mode) is connected or disconnected.

The ID bit is effective whether the USB macro is enabled or not.

R
P

U

UIMOD
USBCON

USB_ID
ID

USBSTA

VDD

UIDE
USBCON

1

0 IDTI
USBSTA

GPIO Controller

32058K AVR32-01/12

511

AT32UC3A

30.7.2 USB Device Operation

30.7.2.1 Introduction

In device mode, the USB controller supports full- and low-speed data transfers.

In addition to the default control endpoint, six endpoints are provided, which can be configured
with the types isochronous, bulk or interrupt, as described in Table 30-1 on page 497.

The device mode starts in the Idle state, so the pad consumption is reduced to the minimum.

30.7.2.2 Power-On and Reset

Figure 30-13 describes the USB controller device mode main states.

Figure 30-13. Device Mode States

After a hardware reset, the USB controller device mode is in the Reset state. In this state:

•the macro clock is stopped in order to minimize power consumption (FRZCLK = 1);
•the internal registers of the device mode are reset;
•the endpoint banks are de-allocated;
•neither D+ nor D- is pulled up (DETACH = 1).

D+ or D- will be pulled up according to the selected speed as soon as the DETACH bit is cleared
and VBus is present. See Section 30.7.1.5.1 on page 506 for further details.

When the USB macro is enabled (USBE = 1) in device mode (ID = 1), its device mode state
goes to the Idle state with minimal power consumption. This does not require the USB clock to
be activated.

The USB controller device mode can be disabled and reset at any time by disabling the USB
macro (USBE = 0) or when host mode is engaged (ID = 0).

30.7.2.3 USB Reset

The USB bus reset is managed by hardware. It is initiated by a connected host.

When a USB reset is detected on the USB line, the following operations are performed by the
controller:

•all the endpoints are disabled, except the default control endpoint;
•the default control endpoint is reset (see Section 30.7.2.4 on page 512 for more details);
•the data toggle sequence of the default control endpoint is cleared;
•at the end of the reset process, the End of Reset interrupt (EORST) is raised.

Reset

Idle

 HW
RESET

 USBE = 0
| ID = 0

<any
other
state>

 USBE = 0
| ID = 0

 USBE = 1
& ID = 1

32058K AVR32-01/12

512

AT32UC3A

30.7.2.4 Endpoint Reset

An endpoint can be reset at any time by setting its EPRSTX bit in the UERST register. This is
recommended before using an endpoint upon hardware reset or when a USB bus reset has
been received. This resets:

•the internal state machine of this endpoint;
•the receive and transmit bank FIFO counters;
•all the registers of this endpoint (UECFGX, UESTAX, UECONX), except its configuration

(ALLOC, EPBK, EPSIZE, EPDIR, EPTYPE) and its Data Toggle Sequence bit-field (DTSEQ).
Note that the interrupt sources located in the UESTAX register are not cleared when a USB bus
reset has been received.

The endpoint configuration remains active and the endpoint is still enabled.

The endpoint reset may be associated with a clear of the data toggle sequence as an answer to
the CLEAR_FEATURE USB request. This can be achieved by setting the RSTDT bit (by setting
the RSTDTS bit).

In the end, the firmware has to clear the EPRSTX bit to complete the reset operation and to start
using the FIFO.

30.7.2.5 Endpoint Activation

The endpoint is maintained inactive and reset (see Section 30.7.2.4 on page 512 for more
details) as long as it is disabled (EPENX = 0). The Data Toggle Sequence bit-field (DTSEQ) is
also reset.

The algorithm represented on Figure 30-14 must be followed in order to activate an endpoint.

Figure 30-14. Endpoint Activation Algorithm

As long as the endpoint is not correctly configured (CFGOK = 0), the controller does not
acknowledge the packets sent by the host to this endpoint.

The CFGOK bit is set by hardware only if the configured size and number of banks are correct
compared to their maximal allowed values for the endpoint (see Table 30-1 on page 497) and to
the maximal FIFO size (i.e. the DPRAM size).

Endpoint
Activation

CFGOK ==
1?

ERROR

Yes

Endpoint
Activated

Enable the endpoint.EPENX = 1

Test if the endpoint configuration
is correct.

UECFGX
EPTYPE
EPDIR
EPSIZE
EPBK

ALLOC

Configure the endpoint:
- type;
- direction;
- size;
- number of banks.

Allocate the configured DPRAM
banks.

No

32058K AVR32-01/12

513

AT32UC3A

See Section 30.7.1.6 on page 506 for more details about DPRAM management.

30.7.2.6 Address Setup

The USB device address is set up according to the USB protocol:

•after all kinds of resets, the USB device address is 0;
•the host starts a SETUP transaction with a SET_ADDRESS(addr) request;
•the firmware records this address into the UADD bit-field, leaving the ADDEN bit cleared, so

the actual address is still 0;
•the firmware sends a zero-length IN packet from the control endpoint;
•the firmware enables the recorded USB device address by setting ADDEN.

Once the USB device address is configured, the controller filters the packets to only accept
those targeting the address stored in UADD.

UADD and ADDEN shall not be written all at once.

UADD and ADDEN are cleared by hardware:

•on a hardware reset;
•when the USB macro is disabled (USBE = 0);
•when a USB reset is detected.

When UADD or ADDEN is cleared, the default device address 0 is used.

30.7.2.7 Suspend and Wake-Up

When an idle USB bus state has been detected for 3 ms, the controller raises the Suspend inter-
rupt (SUSP). The firmware may then set the FRZCLK bit to reduce power consumption. The
MCU can also enter the Idle or Frozen sleep mode to lower again power consumption.

To recover from the Suspend mode, the firmware should wait for the Wake-Up interrupt
(WAKEUP), which is raised when a non-idle event is detected, then clear FRZCLK.

As the WAKEUP interrupt is raised when a non-idle event is detected, it can occur whether the
controller is in the Suspend mode or not. The SUSP and WAKEUP interrupts are thus indepen-
dent of each other except that one’s flag is cleared by hardware when the other is raised.

30.7.2.8 Detach

The reset value of the DETACH bit is 1.

It is possible to initiate a device re-enumeration simply by setting then clearing DETACH.

DETACH acts on the pull-up connections of the D+ and D- pads. See Section 30.7.1.5.1 on
page 506 for further details.

30.7.2.9 Remote Wake-Up

The Remote Wake-Up request (also known as Upstream Resume) is the only one the device
may send on its own initiative, but the device should have beforehand been allowed to by a
DEVICE_REMOTE_WAKEUP request from the host.

• First, the USB controller must have detected a “Suspend” state on the bus, i.e. the Remote
Wake-Up request can only be sent after a SUSP interrupt has been raised.

32058K AVR32-01/12

514

AT32UC3A

• The firmware may then set the RMWKUP bit to send an upstream resume to the host for a
remote wake-up. This will automatically be done by the controller after 5 ms of inactivity on the
USB bus.

• When the controller sends the upstream resume, the Upstream Resume interrupt (UPRSM) is
raised and SUSP is cleared by hardware.

• RMWKUP is cleared by hardware at the end of the upstream resume.
• If the controller detects a valid “End of Resume” signal from the host, the End of Resume

interrupt (EORSM) is raised.
30.7.2.10 STALL Request

For each endpoint, the STALL management is performed using:

•the STALL Request bit (STALLRQ) to initiate a STALL request;
•the STALLed interrupt (STALLEDI) raised when a STALL handshake has been sent.

To answer the next request with a STALL handshake, STALLRQ has to be set by setting the
STALLRQS bit. All following requests will be discarded (RXOUTI, etc. will not be set) and hand-
shaked with a STALL until the STALLRQ bit is cleared, what is done by hardware when a new
SETUP packet is received (for control endpoints) or when the STALLRQC bit is set.

Each time a STALL handshake is sent, the STALLEDI flag is set by the USB controller and the
EPXINT interrupt is raised.

30.7.2.10.1 Special Considerations for Control Endpoints

If a SETUP packet is received into a control endpoint for which a STALL is requested, the
Received SETUP interrupt (RXSTPI) is raised and STALLRQ and STALLEDI are cleared by
hardware. The SETUP has to be ACKed.

This management simplifies the enumeration process management. If a command is not sup-
ported or contains an error, the firmware requests a STALL and can return to the main task,
waiting for the next SETUP request.

30.7.2.10.2 STALL Handshake and Retry Mechanism

The retry mechanism has priority over the STALL handshake. A STALL handshake is sent if the
STALLRQ bit is set and if there is no retry required.

30.7.2.11 Management of Control Endpoints

30.7.2.11.1 Overview

A SETUP request is always ACKed. When a new SETUP packet is received, the Received
SETUP interrupt (RXSTPI) is raised, but not the Received OUT Data interrupt (RXOUTI).

The FIFOCON and RWALL bits are irrelevant for control endpoints. The firmware shall therefore
never use them on these endpoints. When read, their value is always 0.

Control endpoints are managed using:

•the Received SETUP interrupt (RXSTPI) which is raised when a new SETUP packet is
received and which shall be cleared by firmware to acknowledge the packet and to free the
bank;

32058K AVR32-01/12

515

AT32UC3A

•the Received OUT Data interrupt (RXOUTI) which is raised when a new OUT packet is
received and which shall be cleared by firmware to acknowledge the packet and to free the
bank;

•the Transmitted IN Data interrupt (TXINI) which is raised when the current bank is ready to
accept a new IN packet and which shall be cleared by firmware to send the packet.

30.7.2.11.2 Control Write

Figure 30-15 shows a control write transaction. During the status stage, the controller will not
necessarily send a NAK on the first IN token:

•if the firmware knows the exact number of descriptor bytes that must be read, it can then
anticipate the status stage and send a zero-length packet after the next IN token;

•or it can read the bytes and wait for the NAKed IN interrupt (NAKINI) which tells that all the
bytes have been sent by the host and that the transaction is now in the status stage.

Figure 30-15. Control Write

30.7.2.11.3 Control Read

Figure 30-16 shows a control read transaction. The USB controller has to manage the simulta-
neous write requests from the CPU and the USB host.

Figure 30-16. Control Read

A NAK handshake is always generated on the first status stage command.

When the controller detects the status stage, all the data written by the CPU is lost and clearing
TXINI has no effect.

The firmware checks if the transmission or the reception is complete.

SETUP

RXSTPI

RXOUTI

TXINI

USB Bus

HW SW

OUT

HW SW

OUT

HW SW

IN IN

NAK

SW

DATASETUP STATUS

SETUP

RXSTPI

RXOUTI

TXINI

USB Bus

HW SW

IN

HW SW

IN OUT OUT

NAK

SW

SW

HW

Wr Enable
HOST

Wr Enable
CPU

DATASETUP STATUS

32058K AVR32-01/12

516

AT32UC3A

The OUT retry is always ACKed. This reception sets RXOUTI and TXINI. Handle this with the
following software algorithm:

set TXINI

wait for RXOUTI OR TXINI

if RXOUTI, then clear flag and return

if TXINI, then continue

Once the OUT status stage has been received, the USB controller waits for a SETUP request.
The SETUP request has priority over any other request and has to be ACKed. This means that
any other flag should be cleared and the FIFO reset when a SETUP is received.

The firmware has to take care of the fact that the byte counter is reset when a zero-length OUT
packet is received.

30.7.2.12 Management of IN Endpoints

30.7.2.12.1 Overview

IN packets are sent by the USB device controller upon IN requests from the host. All the data
can be written by the firmware which acknowledges or not the bank when it is full.

The endpoint must be configured first.

The TXINI bit is set by hardware at the same time as FIFOCON when the current bank is free.
This triggers an EPXINT interrupt if TXINE = 1.

TXINI shall be cleared by software (by setting the TXINIC bit) to acknowledge the interrupt, what
has no effect on the endpoint FIFO.

The firmware then writes into the FIFO and clears the FIFOCON bit to allow the USB controller
to send the data. If the IN endpoint is composed of multiple banks, this also switches to the next
bank. The TXINI and FIFOCON bits are updated by hardware in accordance with the status of
the next bank.

TXINI shall always be cleared before clearing FIFOCON.

The RWALL bit is set by hardware when the current bank is not full, i.e. the software can write
further data into the FIFO.

Figure 30-17. Example of an IN Endpoint with 1 Data Bank

IN DATA
(bank 0) ACK

TXINI

FIFOCON

HW

write data to CPU
BANK 0

SW

SW SW

SW

IN
NAK

write data to CPU
BANK 0

32058K AVR32-01/12

517

AT32UC3A

Figure 30-18. Example of an IN Endpoint with 2 Data Banks

30.7.2.12.2 Detailed Description

The data is written by the firmware, following the next flow:

•when the bank is empty, TXINI and FIFOCON are set, what triggers an EPXINT interrupt if
TXINE = 1;

•the firmware acknowledges the interrupt by clearing TXINI;
•the firmware writes the data into the current bank by using the USB Pipe/Endpoint X FIFO

Data register (USB_FIFOX_DATA), until all the data frame is written or the bank is full (in
which case RWALL is cleared by hardware and BYCT reaches the endpoint size);

•the firmware allows the controller to send the bank and switches to the next bank (if any) by
clearing FIFOCON.

If the endpoint uses several banks, the current one can be written by the firmware while the pre-
vious one is being read by the host. Then, when the firmware clears FIFOCON, the following
bank may already be free and TXINI is set immediately.

An “Abort” stage can be produced when a zero-length OUT packet is received during an IN
stage of a control or isochronous IN transaction. The KILLBK bit is used to kill the last written
bank. The best way to manage this abort is to apply the algorithm represented on Figure 30-19.

IN DATA
(bank 0) ACK

TXINI

FIFOCON write data to CPU
BANK 0

SW

SW SW

SW

IN DATA
(bank 1) ACK

write data to CPU
BANK 1

SW

HW

write data to CPU
BANK0

32058K AVR32-01/12

518

AT32UC3A

Figure 30-19. Abort Algorithm

30.7.2.13 Management of OUT Endpoints

30.7.2.13.1 Overview

OUT packets are sent by the host. All the data can be read by the firmware which acknowledges
or not the bank when it is empty.

The endpoint must be configured first.

The RXOUTI bit is set by hardware at the same time as FIFOCON when the current bank is full.
This triggers an EPXINT interrupt if RXOUTE = 1.

RXOUTI shall be cleared by software (by setting the RXOUTIC bit) to acknowledge the interrupt,
what has no effect on the endpoint FIFO.

The firmware then reads from the FIFO and clears the FIFOCON bit to free the bank. If the OUT
endpoint is composed of multiple banks, this also switches to the next bank. The RXOUTI and
FIFOCON bits are updated by hardware in accordance with the status of the next bank.

RXOUTI shall always be cleared before clearing FIFOCON.

The RWALL bit is set by hardware when the current bank is not empty, i.e. the software can read
further data from the FIFO.

Endpoint
Abort

Abort Done

Abort is based on the fact
that no bank is busy, i.e. that
nothing has to be sent.

Disable the TXINI interrupt.

EPRSTX = 1

NBUSYBK
== 0?

Yes

TXINEC = 1

No

KILLBKS = 1

KILLBK
== 1? Yes

Kill the last written bank.

Wait for the end of the
procedure.

No

32058K AVR32-01/12

519

AT32UC3A

Figure 30-20. Example of an OUT Endpoint with 1 Data Bank

Figure 30-21. Example of an OUT Endpoint with 2 Data Banks

30.7.2.13.2 Detailed Description

The data is read by the firmware, following the next flow:

•when the bank is full, RXOUTI and FIFOCON are set, what triggers an EPXINT interrupt if
RXOUTE = 1;

•the firmware acknowledges the interrupt by clearing RXOUTI;
•the firmware can read the byte count of the current bank from BYCT to know how many bytes

to read, rather than polling RWALL;
•the firmware reads the data from the current bank by using the USB Pipe/Endpoint X FIFO

Data register (USB_FIFOX_DATA), until all the expected data frame is read or the bank is
empty (in which case RWALL is cleared by hardware and BYCT reaches 0);

•the firmware frees the bank and switches to the next bank (if any) by clearing FIFOCON.
If the endpoint uses several banks, the current one can be read by the firmware while the follow-
ing one is being written by the host. Then, when the firmware clears FIFOCON, the following
bank may already be ready and RXOUTI is set immediately.

30.7.2.14 Underflow

This error exists only for isochronous IN/OUT endpoints. It raises the Underflow interrupt
(UNDERFI), what triggers an EPXINT interrupt if UNDERFE = 1.

An underflow can occur during IN stage if the host attempts to read from an empty bank. A zero-
length packet is then automatically sent by the USB controller.

OUT DATA
(bank 0) ACK

RXOUTI

FIFOCON

HW

OUT DATA
(bank 0) ACK

HW

SW

SW

SW

read data from CPU
BANK 0

read data from CPU
BANK 0

NAK

OUT DATA
(bank 0) ACK

RXOUTI

FIFOCON

HW

OUT DATA
(bank 1) ACK

SW

SWread data from CPU
BANK 0

HW
SW

read data from CPU
BANK 1

32058K AVR32-01/12

520

AT32UC3A

An underflow can not occur during OUT stage on a CPU action, since the firmware may read
only if the bank is not empty (RXOUTI = 1 or RWALL = 1).

An underflow can also occur during OUT stage if the host sends a packet while the bank is
already full. Typically, the CPU is not fast enough. The packet is lost.

An underflow can not occur during IN stage on a CPU action, since the firmware may write only
if the bank is not full (TXINI = 1 or RWALL = 1).

30.7.2.15 Overflow

This error exists for all endpoint types. It raises the Overflow interrupt (OVERFI), what triggers
an EPXINT interrupt if OVERFE = 1.

An overflow can occur during OUT stage if the host attempts to write into a bank that is too small
for the packet. The packet is acknowledged and the Received OUT Data interrupt (RXOUTI) is
raised as if no overflow had occurred. The bank is filled with all the first bytes of the packet that
fit in.

An overflow can not occur during IN stage on a CPU action, since the firmware may write only if
the bank is not full (TXINI = 1 or RWALL = 1).

30.7.2.16 CRC Error

This error exists only for isochronous OUT endpoints. It raises the CRC Error interrupt
(CRCERRI), what triggers an EPXINT interrupt if CRCERRE = 1.

A CRC error can occur during OUT stage if the USB controller detects a corrupted received
packet. The OUT packet is stored in the bank as if no CRC error had occurred (RXOUTI is
raised).

30.7.2.17 Interrupts

See the structure of the USB device interrupt system on Figure 30-6 on page 504.

There are two kinds of device interrupts: processing, i.e. their generation is part of the normal
processing, and exception, i.e. errors (not related to CPU exceptions).

30.7.2.17.1 Global Interrupts

The processing device global interrupts are:

•the Suspend interrupt (SUSP);
•the Start of Frame interrupt (SOF) with no frame number CRC error (FNCERR = 0);
•the End of Reset interrupt (EORST);
•the Wake-Up interrupt (WAKEUP);
•the End of Resume interrupt (EORSM);
•the Upstream Resume interrupt (UPRSM);
•the Endpoint X interrupt (EPXINT);
•the DMA Channel X interrupt (DMAXINT).

The exception device global interrupts are:

•the Start of Frame interrupt (SOF) with a frame number CRC error (FNCERR = 1).

32058K AVR32-01/12

521

AT32UC3A

30.7.2.17.2 Endpoint Interrupts

The processing device endpoint interrupts are:

•the Transmitted IN Data interrupt (TXINI);
•the Received OUT Data interrupt (RXOUTI);
•the Received SETUP interrupt (RXSTPI);
•the Short Packet interrupt (SHORTPACKET);
•the Number of Busy Banks interrupt (NBUSYBK).

The exception device endpoint interrupts are:

•the Underflow interrupt (UNDERFI);
•the NAKed OUT interrupt (NAKOUTI);
•the NAKed IN interrupt (NAKINI);
•the Overflow interrupt (OVERFI);
•the STALLed interrupt (STALLEDI);
•the CRC Error interrupt (CRCERRI);

30.7.2.17.3 DMA Interrupts

The processing device DMA interrupts are:

•the End of USB Transfer Status interrupt (EOT_STA);
•the End of Channel Buffer Status interrupt (EOCH_BUFF_STA);
•the Descriptor Loaded Status interrupt (DESC_LD_STA).

There is no exception device DMA interrupt.

32058K AVR32-01/12

522

AT32UC3A

30.7.3 USB Host Operation

30.7.3.1 Description of Pipes

For the USB controller in host mode, the term “pipe” is used instead of “endpoint” (used in
device mode). A host pipe corresponds to a device endpoint, as described by the Figure 30-22
from the USB specification.

Figure 30-22. USB Communication Flow

In host mode, the USB controller associates a pipe to a device endpoint, considering the device
configuration descriptors.

30.7.3.2 Power-On and Reset

Figure 30-23 describes the USB controller host mode main states.

Figure 30-23. Host Mode States

After a hardware reset, the USB controller host mode is in the Reset state.

When the USB macro is enabled (USBE = 1) in host mode (ID = 0), its host mode state goes to
the Idle state. In this state, the controller waits for device connection with minimal power con-
sumption. The USB pad should be in the Idle state. Once a device is connected, the macro
enters the Ready state, what does not require the USB clock to be activated.

Ready

Idle

Device
Disconnection

<any
other

state>

Device
Connection

Macro off
Clock stopped

Device
Disconnection

SuspendSOFE = 1

SOFE = 0

32058K AVR32-01/12

523

AT32UC3A

The controller enters the Suspend state when the USB bus is in a “Suspend” state, i.e. when the
host mode does not generate the “Start of Frame”. In this state, the USB consumption is mini-
mal. The host mode exits the Suspend state when starting to generate the SOF over the USB
line.

30.7.3.3 Device Detection

A device is detected by the USB controller host mode when D+ or D- is no longer tied low, i.e.
when the device D+ or D- pull-up resistor is connected. To enable this detection, the host con-
troller has to provide the VBus power supply to the device by setting the VBUSRQ bit (by setting
the VBUSRQS bit).

The device disconnection is detected by the host controller when both D+ and D- are pulled
down.

30.7.3.4 USB Reset

The USB controller sends a USB bus reset when the firmware sets the RESET bit. The USB
Reset Sent interrupt (RSTI) is raised when the USB reset has been sent. In this case, all the
pipes are disabled and de-allocated.

If the bus was previously in a “Suspend” state (SOFE = 0), the USB controller automatically
switches it to the “Resume” state, the Host Wake-Up interrupt (HWUPI) is raised and the SOFE
bit is set by hardware in order to generate SOFs immediately after the USB reset.

30.7.3.5 Pipe Reset

A pipe can be reset at any time by setting its PRSTX bit in the UPRST register. This is recom-
mended before using a pipe upon hardware reset or when a USB bus reset has been sent. This
resets:

•the internal state machine of this pipe;
•the receive and transmit bank FIFO counters;
•all the registers of this pipe (UPCFGX, UPSTAX, UPCONX), except its configuration (ALLOC,

PBK, PSIZE, PTOKEN, PTYPE, PEPNUM, INTFRQ) and its Data Toggle Sequence bit-field
(DTSEQ).

The pipe configuration remains active and the pipe is still enabled.

The pipe reset may be associated with a clear of the data toggle sequence. This can be
achieved by setting the RSTDT bit (by setting the RSTDTS bit).

In the end, the firmware has to clear the PRSTX bit to complete the reset operation and to start
using the FIFO.

30.7.3.6 Pipe Activation

The pipe is maintained inactive and reset (see Section 30.7.3.5 on page 523 for more details) as
long as it is disabled (PENX = 0). The Data Toggle Sequence bit-field (DTSEQ) is also reset.

The algorithm represented on Figure 30-24 must be followed in order to activate a pipe.

32058K AVR32-01/12

524

AT32UC3A

Figure 30-24. Pipe Activation Algorithm

As long as the pipe is not correctly configured (CFGOK = 0), the controller can not send packets
to the device through this pipe.

The CFGOK bit is set by hardware only if the configured size and number of banks are correct
compared to their maximal allowed values for the pipe (see Table 30-1 on page 497) and to the
maximal FIFO size (i.e. the DPRAM size).

See Section 30.7.1.6 on page 506 for more details about DPRAM management.

Once the pipe is correctly configured (CFGOK = 1), only the PTOKEN and INTFRQ bit-fields can
be modified by software. INTFRQ is meaningless for non-interrupt pipes.

When starting an enumeration, the firmware gets the device descriptor by sending a
GET_DESCRIPTOR USB request. This descriptor contains the maximal packet size of the
device default control endpoint (bMaxPacketSize0) and the firmware re-configures the size of
the default control pipe with this size parameter.

30.7.3.7 Address Setup

Once the device has answered the first host requests with the default device address 0, the host
assigns a new address to the device. The host controller has to send a USB reset to the device
and to send a SET_ADDRESS(addr) SETUP request with the new address to be used by the
device. Once this SETUP transaction is over, the firmware writes the new address into the
HADDR bit-field. All following requests, on all pipes, will be performed using this new address.

When the host controller sends a USB reset, the HADDR bit-field is reset by hardware and the
following host requests will be performed using the default device address 0.

30.7.3.8 Remote Wake-Up

The controller host mode enters the Suspend state when the SOFE bit is cleared. No more
“Start of Frame” is sent on the USB bus and the USB device enters the Suspend state 3 ms
later.

The device awakes the host by sending an Upstream Resume (Remote Wake-Up feature).
When the host controller detects a non-idle state on the USB bus, it raises the Host Wake-Up

Pipe
Activation

CFGOK ==
1?

ERROR

Yes

Pipe Activated

Enable the pipe.PENX = 1

Test if the pipe configuration is
correct.

UPCFGX
INTFRQ
PEPNUM
PTYPE

PTOKEN
PSIZE
PBK

ALLOC

Configure the pipe:
- interrupt request frequency;
- endpoint number;
- type;
- token;
- size;
- number of banks.

Allocate the configured DPRAM
banks.

No

32058K AVR32-01/12

525

AT32UC3A

interrupt (HWUPI). If the non-idle bus state corresponds to an Upstream Resume (K state), the
Upstream Resume Received interrupt (RXRSMI) is raised. The firmware has to generate a
Downstream Resume within 1 ms and for at least 20 ms by setting the RESUME bit. It is manda-
tory to set SOFE before setting RESUME to enter the Ready state, else RESUME will have no
effect.

30.7.3.9 Management of Control Pipes

A control transaction is composed of three stages:

•SETUP;
•Data (IN or OUT);
•Status (OUT or IN).

The firmware has to change the pipe token according to each stage.

For the control pipe, and only for it, each token is assigned a specific initial data toggle
sequence:

•SETUP: Data0;
•IN: Data1;
•OUT: Data1.

30.7.3.10 Management of IN Pipes

IN packets are sent by the USB device controller upon IN requests from the host. All the data
can be read by the firmware which acknowledges or not the bank when it is empty.

The pipe must be configured first.

When the host requires data from the device, the firmware has to select beforehand the IN
request mode with the INMODE bit:

•when INMODE is cleared, the USB controller will perform (INRQ + 1) IN requests before
freezing the pipe;

•when INMODE is set, the USB controller will perform IN requests endlessly when the pipe is
not frozen by the firmware.

The generation of IN requests starts when the pipe is unfrozen (PFREEZE = 0).

The RXINI bit is set by hardware at the same time as FIFOCON when the current bank is full.
This triggers a PXINT interrupt if RXINE = 1.

RXINI shall be cleared by software (by setting the RXINIC bit) to acknowledge the interrupt, what
has no effect on the pipe FIFO.

The firmware then reads from the FIFO and clears the FIFOCON bit to free the bank. If the IN
pipe is composed of multiple banks, this also switches to the next bank. The RXINI and FIFO-
CON bits are updated by hardware in accordance with the status of the next bank.

RXINI shall always be cleared before clearing FIFOCON.

The RWALL bit is set by hardware when the current bank is not empty, i.e. the software can read
further data from the FIFO.

32058K AVR32-01/12

526

AT32UC3A

Figure 30-25. Example of an IN Pipe with 1 Data Bank

Figure 30-26. Example of an IN Pipe with 2 Data Banks

30.7.3.11 Management of OUT Pipes

OUT packets are sent by the host. All the data can be written by the firmware which acknowl-
edges or not the bank when it is full.

The pipe must be configured and unfrozen first.

The TXOUTI bit is set by hardware at the same time as FIFOCON when the current bank is free.
This triggers a PXINT interrupt if TXOUTE = 1.

TXOUTI shall be cleared by software (by setting the TXOUTIC bit) to acknowledge the interrupt,
what has no effect on the pipe FIFO.

The firmware then writes into the FIFO and clears the FIFOCON bit to allow the USB controller
to send the data. If the OUT pipe is composed of multiple banks, this also switches to the next
bank. The TXOUTI and FIFOCON bits are updated by hardware in accordance with the status of
the next bank.

TXOUTI shall always be cleared before clearing FIFOCON.

The RWALL bit is set by hardware when the current bank is not full, i.e. the software can write
further data into the FIFO.

Note that if the firmware decides to switch to the Suspend state (by clearing the SOFE bit) while
a bank is ready to be sent, the USB controller automatically exits this state and the bank is sent.

IN DATA
(bank 0) ACK

RXINI

FIFOCON

HW

IN DATA
(bank 0) ACK

HW

SW

SW

SW

read data from CPU
BANK 0

read data from CPU
BANK 0

IN DATA
(bank 0) ACK

RXINI

FIFOCON

HW

IN DATA
(bank 1) ACK

SW

SWread data from CPU
BANK 0

HW

SW

read data from CPU
BANK 1

32058K AVR32-01/12

527

AT32UC3A

Figure 30-27. Example of an OUT Pipe with 1 Data Bank

Figure 30-28. Example of an OUT Pipe with 2 Data Banks and no Bank Switching Delay

Figure 30-29. Example of an OUT Pipe with 2 Data Banks and a Bank Switching Delay

30.7.3.12 CRC Error

This error exists only for isochronous IN pipes. It raises the CRC Error interrupt (CRCERRI),
what triggers a PXINT interrupt if CRCERRE = 1.

A CRC error can occur during IN stage if the USB controller detects a corrupted received packet.
The IN packet is stored in the bank as if no CRC error had occurred (RXINI is raised).

OUT DATA
(bank 0) ACK

TXOUTI

FIFOCON

HW

write data to CPU
BANK 0

SW

SW SW

SW

OUT

write data to CPU
BANK 0

OUT DATA
(bank 0) ACK

TXOUTI

FIFOCON write data to CPU
BANK 0

SW

SW SW

SW
write data to CPU

BANK 1

SW

HW

write data to CPU
BANK0

OUT DATA
(bank 1) ACK

OUT DATA
(bank 0) ACK

TXOUTI

FIFOCON write data to CPU
BANK 0

SW

SW SW

SW

OUT DATA
(bank 1) ACK

write data to CPU
BANK 1

SW

HW

write data to CPU
BANK0

32058K AVR32-01/12

528

AT32UC3A

30.7.3.13 Interrupts

See the structure of the USB host interrupt system on Figure 30-6 on page 504.

There are two kinds of host interrupts: processing, i.e. their generation is part of the normal pro-
cessing, and exception, i.e. errors (not related to CPU exceptions).

30.7.3.13.1 Global Interrupts

The processing host global interrupts are:

•the Device Connection interrupt (DCONNI);
•the Device Disconnection interrupt (DDISCI);
•the USB Reset Sent interrupt (RSTI);
•the Downstream Resume Sent interrupt (RSMEDI);
•the Upstream Resume Received interrupt (RXRSMI);
•the Host Start of Frame interrupt (HSOFI);
•the Host Wake-Up interrupt (HWUPI);
•the Pipe X interrupt (PXINT);
•the DMA Channel X interrupt (DMAXINT).

There is no exception host global interrupt.

30.7.3.13.2 Pipe Interrupts

The processing host pipe interrupts are:

•the Received IN Data interrupt (RXINI);
•the Transmitted OUT Data interrupt (TXOUTI);
•the Transmitted SETUP interrupt (TXSTPI);
•the Short Packet interrupt (SHORTPACKETI);
•the Number of Busy Banks interrupt (NBUSYBK).

The exception host pipe interrupts are:

•the Underflow interrupt (UNDERFI);
•the Pipe Error interrupt (PERRI);
•the NAKed interrupt (NAKEDI);
•the Overflow interrupt (OVERFI);
•the Received STALLed interrupt (RXSTALLDI);
•the CRC Error interrupt (CRCERRI).

30.7.3.13.3 DMA Interrupts

The processing host DMA interrupts are:

•the End of USB Transfer Status interrupt (EOT_STA);
•the End of Channel Buffer Status interrupt (EOCH_BUFF_STA);
•the Descriptor Loaded Status interrupt (DESC_LD_STA).

There is no exception host DMA interrupt.

32058K AVR32-01/12

529

AT32UC3A

30.7.4 USB DMA Operation

USB packets of any length may be transferred when required by the USB controller. These
transfers always feature sequential addressing. These two characteristics mean that in case of
high USB controller throughput, both HSB ports will benefit from “incrementing burst of unspeci-
fied length” since the average access latency of HSB slaves can then be reduced.

The DMA uses word “incrementing burst of unspecified length” of up to 256 beats for both data
transfers and channel descriptor loading. A burst may last on the HSB busses for the duration of
a whole USB packet transfer, unless otherwise broken by the HSB arbitration or the HSB 1 kbyte
boundary crossing.

Packet data HSB bursts may be locked on a DMA buffer basis for drastic overall HSB bus band-
width performance boost with paged memories. This is because these memories row (or bank)
changes, which are very clock-cycle consuming, will then likely not occur or occur once instead
of dozens of times during a single big USB packet DMA transfer in case other HSB masters
address the memory. This means up to 128 words single cycle unbroken HSB bursts for bulk
pipes/endpoints and 256 words single cycle unbroken bursts for isochronous pipes/endpoints.
This maximal burst length is then controlled by the lowest programmed USB pipe/endpoint size
(PSIZE/EPSIZE) and DMA channel byte length (CH_BYTE_LENGTH).

The USB controller average throughput may be up to nearly 1.5 Mbyte/s. Its average access
latency decreases as burst length increases due to the 0 wait-state side effect of unchanged
pipe/endpoint. Word access allows reducing the HSB bandwidth required for the USB by 4 com-
pared to native byte access. If at least 0 wait-state word burst capability is also provided by the
other DMA HSB bus slaves, each of both DMA HSB busses need less than 1.1% bandwidth
allocation for full USB bandwidth usage at 33 MHz, and less than 0.6% at 66 MHz.

Figure 30-30. Example of DMA Chained List

Data Buffer 1

Data Buffer 2

Data Buffer 3

Memory Area

Transfer Descriptor

Next Descriptor Address

HSB Address

Control

Transfer Descriptor

Transfer Descriptor

USB DMA Channel X Registers
(Current Transfer Descriptor)

Next Descriptor Address

HSB Address

Control

NULL
Status

Next Descriptor Address

HSB Address

Control Next Descriptor Address

HSB Address

Control

32058K AVR32-01/12

530

AT32UC3A

30.8 USB User Interface

Table 30-5. USB PB Memory Map

Offset Register Name Access Reset Value

0x0000 Device General Control Register UDCON Read/Write 0x00000100

0x0004 Device Global Interrupt Register UDINT Read-Only 0x00000000

0x0008 Device Global Interrupt Clear Register UDINTCLR Write-Only 0x00000000

0x000C Device Global Interrupt Set Register UDINTSET Write-Only 0x00000000

0x0010 Device Global Interrupt Enable Register UDINTE Read-Only 0x00000000

0x0014 Device Global Interrupt Enable Clear Register UDINTECLR Write-Only 0x00000000

0x0018 Device Global Interrupt Enable Set Register UDINTESET Write-Only 0x00000000

0x001C Endpoint Enable/Reset Register UERST Read/Write 0x00000000

0x0020 Device Frame Number Register UDFNUM Read-Only 0x00000000

0x0024 - 0x00FC Reserved – – –

0x0100 Endpoint 0 Configuration Register UECFG0 Read/Write 0x00000000

0x0104 Endpoint 1 Configuration Register UECFG1 Read/Write 0x00000000

0x0108 Endpoint 2 Configuration Register UECFG2 Read/Write 0x00000000

0x010C Endpoint 3 Configuration Register UECFG3 Read/Write 0x00000000

0x0110 Endpoint 4 Configuration Register UECFG4 Read/Write 0x00000000

0x0114 Endpoint 5 Configuration Register UECFG5 Read/Write 0x00000000

0x0118 Endpoint 6 Configuration Register UECFG6 Read/Write 0x00000000

+0x004 - 0x012C Reserved – – –

0x0130 Endpoint 0 Status Register UESTA0 Read-Only 0x00000100

0x0134 Endpoint 1 Status Register UESTA1 Read-Only 0x00000100

0x0138 Endpoint 2 Status Register UESTA2 Read-Only 0x00000100

0x013C Endpoint 3 Status Register UESTA3 Read-Only 0x00000100

0x0140 Endpoint 4 Status Register UESTA4 Read-Only 0x00000100

0x0144 Endpoint 5 Status Register UESTA5 Read-Only 0x00000100

0x0148 Endpoint 6 Status Register UESTA6 Read-Only 0x00000100

+0x004 - 0x015C Reserved – – –

0x0160 Endpoint 0 Status Clear Register UESTA0CLR Write-Only 0x00000000

0x0164 Endpoint 1 Status Clear Register UESTA1CLR Write-Only 0x00000000

0x0168 Endpoint 2 Status Clear Register UESTA2CLR Write-Only 0x00000000

0x016C Endpoint 3 Status Clear Register UESTA3CLR Write-Only 0x00000000

0x0170 Endpoint 4 Status Clear Register UESTA4CLR Write-Only 0x00000000

0x0174 Endpoint 5 Status Clear Register UESTA5CLR Write-Only 0x00000000

0x0178 Endpoint 6 Status Clear Register UESTA6CLR Write-Only 0x00000000

+0x04 - 0x018C Reserved – – –

0x0190 Endpoint 0 Status Set Register UESTA0SET Write-Only 0x00000000

32058K AVR32-01/12

531

AT32UC3A

0x0194 Endpoint 1 Status Set Register UESTA1SET Write-Only 0x00000000

0x0198 Endpoint 2 Status Set Register UESTA2SET Write-Only 0x00000000

0x019C Endpoint 3 Status Set Register UESTA3SET Write-Only 0x00000000

0x01A0 Endpoint 4 Status Set Register UESTA4SET Write-Only 0x00000000

0x01A4 Endpoint 5 Status Set Register UESTA5SET Write-Only 0x00000000

0x01A8 Endpoint 6 Status Set Register UESTA6SET Write-Only 0x00000000

+0x04 - 0x01BC Reserved – – –

0x01C0 Endpoint 0 Control Register UECON0 Read-Only 0x00000000

0x01C4 Endpoint 1 Control Register UECON1 Read-Only 0x00000000

0x01C8 Endpoint 2 Control Register UECON2 Read-Only 0x00000000

0x01CC Endpoint 3 Control Register UECON3 Read-Only 0x00000000

0x01D0 Endpoint 4 Control Register UECON4 Read-Only 0x00000000

0x01D4 Endpoint 5 Control Register UECON5 Read-Only 0x00000000

0x01D8 Endpoint 6 Control Register UECON6 Read-Only 0x00000000

+0x04 - 0x01EC Reserved – – –

0x01F0 Endpoint 0 Control Set Register UECON0SET Write-Only 0x00000000

0x01F4 Endpoint 1 Control Set Register UECON1SET Write-Only 0x00000000

0x01F8 Endpoint 2 Control Set Register UECON2SET Write-Only 0x00000000

0x01FC Endpoint 3 Control Set Register UECON3SET Write-Only 0x00000000

0x0200 Endpoint 4 Control Set Register UECON4SET Write-Only 0x00000000

0x0204 Endpoint 5 Control Set Register UECON5SET Write-Only 0x00000000

0x0208 Endpoint 6 Control Set Register UECON6SET Write-Only 0x00000000

+0x04 - 0x021C Reserved – – –

0x0220 Endpoint 0 Control Clear Register UECON0CLR Write-Only 0x00000000

0x0224 Endpoint 1 Control Clear Register UECON1CLR Write-Only 0x00000000

0x0228 Endpoint 2 Control Clear Register UECON2CLR Write-Only 0x00000000

0x022C Endpoint 3 Control Clear Register UECON3CLR Write-Only 0x00000000

0x0230 Endpoint 4 Control Clear Register UECON4CLR Write-Only 0x00000000

0x0234 Endpoint 5 Control Clear Register UECON5CLR Write-Only 0x00000000

0x0238 Endpoint 6 Control Clear Register UECON6CLR Write-Only 0x00000000

+0x04 - 0x030C Reserved – – –

0x0310 Device DMA Channel 1 Next Descriptor
Address Register

UDDMA1_
NEXTDESC Read/Write 0x00000000

0x0314 Device DMA Channel 1 HSB Address Register UDDMA1_
ADDR Read/Write 0x00000000

0x0318 Device DMA Channel 1 Control Register UDDMA1_
CONTROL Read/Write 0x00000000

Table 30-5. USB PB Memory Map

Offset Register Name Access Reset Value

32058K AVR32-01/12

532

AT32UC3A

0x031C Device DMA Channel 1 Status Register UDDMA1_
STATUS Read/Write 0x00000000

0x0320 Device DMA Channel 2 Next Descriptor
Address Register

UDDMA2_
NEXTDESC Read/Write 0x00000000

0x0324 Device DMA Channel 2 HSB Address Register UDDMA2_
ADDR Read/Write 0x00000000

0x0328 Device DMA Channel 2 Control Register UDDMA2_
CONTROL Read/Write 0x00000000

0x032C Device DMA Channel 2 Status Register UDDMA2_
STATUS Read/Write 0x00000000

0x0330 Device DMA Channel 3 Next Descriptor
Address Register

UDDMA3_
NEXTDESC Read/Write 0x00000000

0x0334 Device DMA Channel 3 HSB Address Register UDDMA3_
ADDR Read/Write 0x00000000

0x0338 Device DMA Channel 3 Control Register UDDMA3_
CONTROL Read/Write 0x00000000

0x033C Device DMA Channel 3 Status Register UDDMA3_
STATUS Read/Write 0x00000000

0x0340 Device DMA Channel 4 Next Descriptor
Address Register

UDDMA4_
NEXTDESC Read/Write 0x00000000

0x0344 Device DMA Channel 4 HSB Address Register UDDMA4_
ADDR Read/Write 0x00000000

0x0348 Device DMA Channel 4 Control Register UDDMA4_
CONTROL Read/Write 0x00000000

0x034C Device DMA Channel 4 Status Register UDDMA4_
STATUS Read/Write 0x00000000

0x0350 Device DMA Channel 5 Next Descriptor
Address Register

UDDMA5_
NEXTDESC Read/Write 0x00000000

0x0354 Device DMA Channel 5 HSB Address Register UDDMA5_
ADDR Read/Write 0x00000000

0x0358 Device DMA Channel 5 Control Register UDDMA5_
CONTROL Read/Write 0x00000000

0x035C Device DMA Channel 5 Status Register UDDMA5_
STATUS Read/Write 0x00000000

0x0360 Device DMA Channel 6 Next Descriptor
Address Register

UDDMA6_
NEXTDESC Read/Write 0x00000000

0x0364 Device DMA Channel 6 HSB Address Register UDDMA6_
ADDR Read/Write 0x00000000

0x0368 Device DMA Channel 6 Control Register UDDMA6_
CONTROL Read/Write 0x00000000

0x036C Device DMA Channel 6 Status Register UDDMA6_
STATUS Read/Write 0x00000000

0x0370 - 0x03FC Reserved – – –

Table 30-5. USB PB Memory Map

Offset Register Name Access Reset Value

32058K AVR32-01/12

533

AT32UC3A

0x0400 Host General Control Register UHCON Read/Write 0x00000000

0x0404 Host Global Interrupt Register UHINT Read-Only 0x00000000

0x0408 Host Global Interrupt Clear Register UHINTCLR Write-Only 0x00000000

0x040C Host Global Interrupt Set Register UHINTSET Write-Only 0x00000000

0x0410 Host Global Interrupt Enable Register UHINTE Read-Only 0x00000000

0x0414 Host Global Interrupt Enable Clear Register UHINTECLR Write-Only 0x00000000

0x0418 Host Global Interrupt Enable Set Register UHINTESET Write-Only 0x00000000

0x0041C Pipe Enable/Reset Register UPRST Read/Write 0x00000000

0x0420 Host Frame Number Register UHFNUM Read/Write 0x00000000

0x0424 Host Address 1 Register UHADDR1 Read/Write 0x00000000

0x0428 Host Address 2 Register UHADDR2 Read/Write 0x00000000

+0x04 - 0x04FC Reserved – – –

0x0500 Pipe 0 Configuration Register UPCFG0 Read/Write 0x00000000

0x0504 Pipe 1 Configuration Register UPCFG1 Read/Write 0x00000000

0x0508 Pipe 2 Configuration Register UPCFG2 Read/Write 0x00000000

0x050C Pipe 3 Configuration Register UPCFG3 Read/Write 0x00000000

0x0510 Pipe 4 Configuration Register UPCFG4 Read/Write 0x00000000

0x0514 Pipe 5 Configuration Register UPCFG5 Read/Write 0x00000000

0x0518 Pipe 6 Configuration Register UPCFG6 Read/Write 0x00000000

+0x04 - 0x052C Reserved – – –

0x0530 Pipe 0 Status Register UPSTA0 Read-Only 0x00000000

0x0534 Pipe 1 Status Register UPSTA1 Read-Only 0x00000000

0x0538 Pipe 2 Status Register UPSTA2 Read-Only 0x00000000

0x053C Pipe 3 Status Register UPSTA3 Read-Only 0x00000000

0x0540 Pipe 4 Status Register UPSTA4 Read-Only 0x00000000

0x0544 Pipe 5 Status Register UPSTA5 Read-Only 0x00000000

0x0548 Pipe 6 Status Register UPSTA6 Read-Only 0x00000000

+0x04 - 0x055C Reserved – – –

0x0560 Pipe 0 Status Clear Register UPSTA0CLR Write-Only 0x00000000

0x0564 Pipe 1 Status Clear Register UPSTA1CLR Write-Only 0x00000000

0x0568 Pipe 2 Status Clear Register UPSTA2CLR Write-Only 0x00000000

0x056C Pipe 3 Status Clear Register UPSTA3CLR Write-Only 0x00000000

0x0570 Pipe 4 Status Clear Register UPSTA4CLR Write-Only 0x00000000

0x0574 Pipe 5 Status Clear Register UPSTA5CLR Write-Only 0x00000000

0x0578 Pipe 6 Status Clear Register UPSTA6CLR Write-Only 0x00000000

+0x04 - 0x058C Reserved – – –

Table 30-5. USB PB Memory Map

Offset Register Name Access Reset Value

32058K AVR32-01/12

534

AT32UC3A

0x0590 Pipe 0 Status Set Register UPSTA0SET Write-Only 0x00000000

0x0594 Pipe 1 Status Set Register UPSTA1SET Write-Only 0x00000000

0x0598 Pipe 2 Status Set Register UPSTA2SET Write-Only 0x00000000

0x059C Pipe 3 Status Set Register UPSTA3SET Write-Only 0x00000000

0x05A0 Pipe 4 Status Set Register UPSTA4SET Write-Only 0x00000000

0x05A4 Pipe 5 Status Set Register UPSTA5SET Write-Only 0x00000000

0x05A8 Pipe 6 Status Set Register UPSTA6SET Write-Only 0x00000000

+0x04 - 0x05BC Reserved – – –

0x05C0 Pipe 0 Control Register UPCON0 Read-Only 0x00000000

0x05C4 Pipe 1 Control Register UPCON1 Read-Only 0x00000000

0x05C8 Pipe 2 Control Register UPCON2 Read-Only 0x00000000

0x05CC Pipe 3 Control Register UPCON3 Read-Only 0x00000000

0x05D0 Pipe 4 Control Register UPCON4 Read-Only 0x00000000

0x05D4 Pipe 5 Control Register UPCON5 Read-Only 0x00000000

0x05D8 Pipe 6 Control Register UPCON6 Read-Only 0x00000000

+0x04 - 0x05EC Reserved – – –

0x05F0 Pipe 0 Control Set Register UPCON0SET Write-Only 0x00000000

0x05F4 Pipe 1 Control Set Register UPCON1SET Write-Only 0x00000000

0x05F8 Pipe 2 Control Set Register UPCON2SET Write-Only 0x00000000

0x05FC Pipe 3 Control Set Register UPCON3SET Write-Only 0x00000000

0x0600 Pipe 4 Control Set Register UPCON4SET Write-Only 0x00000000

0x0604 Pipe 5 Control Set Register UPCON5SET Write-Only 0x00000000

0x0608 Pipe 6 Control Set Register UPCON6SET Write-Only 0x00000000

+0x04 - 0x061C Reserved – – –

0x0620 Pipe 0 Control Clear Register UPCON0CLR Write-Only 0x00000000

0x0624 Pipe 1 Control Clear Register UPCON1CLR Write-Only 0x00000000

0x0628 Pipe 2 Control Clear Register UPCON2CLR Write-Only 0x00000000

0x062C Pipe 3 Control Clear Register UPCON3CLR Write-Only 0x00000000

0x0630 Pipe 4 Control Clear Register UPCON4CLR Write-Only 0x00000000

0x0634 Pipe 5 Control Clear Register UPCON5CLR Write-Only 0x00000000

0x0638 Pipe 6 Control Clear Register UPCON6CLR Write-Only 0x00000000

+0x04 - 0x064C Reserved – – –

0x0650 Pipe 0 IN Request Register UPINRQ0 Read/Write 0x00000000

0x0654 Pipe 1 IN Request Register UPINRQ1 Read/Write 0x00000000

0x0658 Pipe 2 IN Request Register UPINRQ2 Read/Write 0x00000000

0x065C Pipe 3 IN Request Register UPINRQ3 Read/Write 0x00000000

Table 30-5. USB PB Memory Map

Offset Register Name Access Reset Value

32058K AVR32-01/12

535

AT32UC3A

0x0660 Pipe 4 IN Request Register UPINRQ4 Read/Write 0x00000000

0x0664 Pipe 5 IN Request Register UPINRQ5 Read/Write 0x00000000

0x0668 Pipe 6 IN Request Register UPINRQ6 Read/Write 0x00000000

0x066C - 0x067C Reserved – – –

0x0680 Pipe 0 Error Register UPERR0 Read/Write 0x00000000

0x0684 Pipe 1 Error Register UPERR1 Read/Write 0x00000000

0x0688 Pipe 2 Error Register UPERR2 Read/Write 0x00000000

0x068C Pipe 3 Error Register UPERR3 Read/Write 0x00000000

0x0690 Pipe 4 Error Register UPERR4 Read/Write 0x00000000

0x0694 Pipe 5 Error Register UPERR5 Read/Write 0x00000000

0x0698 Pipe 6 Error Register UPERR6 Read/Write 0x00000000

+0x04 - 0x070C Reserved – – –

0x0710 Host DMA Channel 1 Next Descriptor Address
Register

UHDMA1_
NEXTDESC Read/Write 0x00000000

0x0714 Host DMA Channel 1 HSB Address Register UHDMA1_
ADDR Read/Write 0x00000000

0x0718 Host DMA Channel 1 Control Register UHDMA1_
CONTROL Read/Write 0x00000000

0x071C Host DMA Channel 1 Status Register UHDMA1_
STATUS Read/Write 0x00000000

0x0720 Host DMA Channel 2 Next Descriptor Address
Register

UHDMA2_
NEXTDESC Read/Write 0x00000000

0x0724 Host DMA Channel 2 HSB Address Register UHDMA2_
ADDR Read/Write 0x00000000

0x0728 Host DMA Channel 2 Control Register UHDMA2_
CONTROL Read/Write 0x00000000

0x072C Host DMA Channel 2 Status Register UHDMA2_
STATUS Read/Write 0x00000000

0x0730 Host DMA Channel 3 Next Descriptor Address
Register

UHDMA3_
NEXTDESC Read/Write 0x00000000

0x0734 Host DMA Channel 3 HSB Address Register UHDMA3_
ADDR Read/Write 0x00000000

0x0738 Host DMA Channel 3 Control Register UHDMA3_
CONTROL Read/Write 0x00000000

0x073C Host DMA Channel 3Status Register UHDMA3_
STATUS Read/Write 0x00000000

0x0740 Host DMA Channel 4 Next Descriptor Address
Register

UHDMA4_
NEXTDESC Read/Write 0x00000000

0x0744 Host DMA Channel 4 HSB Address Register UHDMA4_
ADDR Read/Write 0x00000000

Table 30-5. USB PB Memory Map

Offset Register Name Access Reset Value

32058K AVR32-01/12

536

AT32UC3A

0x0748 Host DMA Channel 4 Control Register UHDMA4_
CONTROL Read/Write 0x00000000

0x074C Host DMA Channel 4 Status Register UHDMA4_
STATUS Read/Write 0x00000000

0x0750 Host DMA Channel 5 Next Descriptor Address
Register

UHDMA5_
NEXTDESC Read/Write 0x00000000

0x0754 Host DMA Channel 5 HSB Address Register UHDMA5_
ADDR Read/Write 0x00000000

0x0758 Host DMA Channel 5 Control Register UHDMA5_
CONTROL Read/Write 0x00000000

0x075C Host DMA Channel 5 Status Register UHDMA5_
STATUS Read/Write 0x00000000

0x0760 Host DMA Channel 6 Next Descriptor Address
Register

UHDMA6_
NEXTDESC Read/Write 0x00000000

0x0764 Host DMA Channel 6 HSB Address Register UHDMA6_
ADDR Read/Write 0x00000000

0x0768 Host DMA Channel 6 Control Register UHDMA6_
CONTROL Read/Write 0x00000000

0x076C Host DMA Channel 6 Status Register UHDMA6_
STATUS Read/Write 0x00000000

0x0770 - 0x07FC Reserved – – –

0x0800 General Control Register USBCON Read/Write 0x03004000

0x0804 General Status Register USBSTA Read-Only 0x00000400

0x0808 General Status Clear Register USBSTACLR Write-Only 0x00000000

0x080C General Status Set Register USBSTASET Write-Only 0x00000000

0x0810-0x0814 Reserved – – –

0x0818 IP Version Register UVERS Read-Only 0x00000311

0x081C IP Features Register UFEATURES Read-Only 0x00012467

0x0820 IP PB Address Size Register UADDRSIZE Read-Only 0x00001000

0x0824 IP Name Register 1 UNAME1 Read-Only
0x48555342

(“HUSB”)

0x0828 IP Name Register 2 UNAME2 Read-Only
0x004F5447

(“\0OTG“)

0x082C USB Finite State Machine Status Register USBFSM Read-Only 0x00000009

0x0830 - 0x0BFC Reserved – – –

Table 30-5. USB PB Memory Map

Offset Register Name Access Reset Value

32058K AVR32-01/12

537

AT32UC3A

In the following subsections, the bit and bit-field access types use the following flags:

•“r”: readable;
•“w”: writable;
•“u”: may be updated by hardware.

Table 30-6. USB HSB Memory Map

Offset Register Name Access Reset Value

0x00000 -
0x0FFFC Pipe/Endpoint 0 FIFO Data Register USB_

FIFO0_DATA Read/Write Undefined

0x10000 -
0x1FFFC Pipe/Endpoint 1 FIFO Data Register USB_

FIFO1_DATA Read/Write Undefined

0x20000 -
0x2FFFC Pipe/Endpoint 2 FIFO Data Register USB_

FIFO2_DATA Read/Write Undefined

0x30000 -
0x3FFFC Pipe/Endpoint 3 FIFO Data Register USB_

FIFO3_DATA Read/Write Undefined

0x40000 -
0x4FFFC Pipe/Endpoint 4 FIFO Data Register USB_

FIFO4_DATA Read/Write Undefined

0x50000 -
0x5FFFC Pipe/Endpoint 5 FIFO Data Register USB_

FIFO5_DATA Read/Write Undefined

0x60000 -
0x6FFFC Pipe/Endpoint 6 FIFO Data Register USB_

FIFO6_DATA Read/Write Undefined

+0x00004 -
0xFFFFC Reserved – – –

32058K AVR32-01/12

538

AT32UC3A

30.8.1 USB General Registers

30.8.1.1 USB General Control Register (USBCON)

Offset: 0x0800

Register Name: USBCON

Access Type: Read/Write

Reset Value: 0x03004000

• IDTE: ID Transition Interrupt Enable

Set to enable the ID Transition interrupt (IDTI).

Clear to disable the ID Transition interrupt (IDTI).

• VBUSTE: VBus Transition Interrupt Enable

Set to enable the VBus Transition interrupt (VBUSTI).

Clear to disable the VBus Transition interrupt (VBUSTI).

• SRPE: SRP Interrupt Enable

Set to enable the SRP interrupt (SRPI).

Clear to disable the SRP interrupt (SRPI).

• VBERRE: VBus Error Interrupt Enable

Set to enable the VBus Error interrupt (VBERRI).

Clear to disable the VBus Error interrupt (VBERRI).

• BCERRE: B-Connection Error Interrupt Enable

Set to enable the B-Connection Error interrupt (BCERRI).

Clear to disable the B-Connection Error interrupt (BCERRI).

• ROLEEXE: Role Exchange Interrupt Enable

Set to enable the Role Exchange interrupt (ROLEEXI).

31 30 29 28 27 26 25 24
– – – – – – UIMOD UIDE

rw rw
1 1

23 22 21 20 19 18 17 16
– UNLOCK TIMPAGE – – TIMVALUE

rw rw rw
0 0 0 0 0

15 14 13 12 11 10 9 8
USBE FRZCLK VBUSPO OTGPADE HNPREQ SRPREQ SRPSEL VBUSHWC

rw rw rw rw rwu rwu rw rw
0 1 0 0 0 0 0 0

7 6 5 4 3 2 1 0
STOE HNPERRE ROLEEXE BCERRE VBERRE SRPE VBUSTE IDTE

rw rw rw rw rw rw rw rw
0 0 0 0 0 0 0 0

32058K AVR32-01/12

539

AT32UC3A

Clear to disable the Role Exchange interrupt (ROLEEXI).

• HNPERRE: HNP Error Interrupt Enable

Set to enable the HNP Error interrupt (HNPERRI).

Clear to disable the HNP Error interrupt (HNPERRI).

• STOE: Suspend Time-Out Interrupt Enable

Set to enable the Suspend Time-Out interrupt (STOI).

Clear to disable the Suspend Time-Out interrupt (STOI).

• VBUSHWC: VBus Hardware Control

Set to disable the hardware control over the USB_VBOF output pin.

Clear to enable the hardware control over the USB_VBOF output pin.

If cleared, then the USB macro considers VBus problems and resets the USB_VBOF output pin in that event.

• SRPSEL: SRP Selection

Set to choose VBus pulsing as SRP method.

Clear to choose data line pulsing as SRP method.

• SRPREQ: SRP Request

Set to initiate an SRP when the controller is in device mode.

Cleared by hardware when the controller is initiating an SRP.

• HNPREQ: HNP Request

When the controller is in device mode:

Set to initiate an HNP.

Cleared by hardware when the controller is initiating an HNP.

When the controller is in host mode:

Set to accept an HNP.

Clear otherwise.

• OTGPADE: OTG Pad Enable

Set to enable the OTG pad.

Clear to disable the OTG pad.

Note that this bit can be set/cleared even if USBE = 0 or FRZCLK = 1. Disabling the USB controller (by clearing the USBE
bit) does not reset this bit.

• VBUSPO: VBus Polarity

When 0, the USB_VBOF output signal is in its default mode (active high).

When 1, the USB_VBOF output signal is inverted (active low).

To be generic. May be useful to control an external VBus power module.

Note that this bit can be set/cleared even if USBE = 0 or FRZCLK = 1. Disabling the USB controller (by clearing the USBE
bit) does not reset this bit.

32058K AVR32-01/12

540

AT32UC3A

• FRZCLK: Freeze USB Clock

Set to disable the clock inputs (the resume detection is still active). This reduces power consumption. Unless explicitly
stated, all registers then become read-only.

Clear to enable the clock inputs.

Note that this bit can be set/cleared even if USBE = 0 or FRZCLK = 1. Disabling the USB controller (by clearing the USBE
bit) does not reset this bit, but this freezes the clock inputs whatever its value.

• USBE: USB Macro Enable

Set to enable the USB controller.

Clear to disable and reset the USB controller, to disable the USB transceiver and to disable the USB controller clock inputs.
Unless explicitly stated, all registers then become read-only and are reset.

Note that this bit can be set/cleared even if USBE = 0 or FRZCLK = 1.

• TIMVALUE: Timer Value

Set to initialize the new value of the special timer register selected by TIMPAGE.

• TIMPAGE: Timer Page

Write the page value to access a special timer register.

• UNLOCK: Timer Access Unlock

Set to unlock the TIMPAGE and TIMVALUE fields before writing them.

Reset to lock the TIMPAGE and TIMVALUE fields.

Note that the TIMPAGE and TIMVALUE fields can always be read, whatever the value of UNLOCK.

• UIDE: USB_ID Pin Enable

Set to select the USB mode (device/host) from the USB_ID input pin.

Clear to select the USB mode (device/host) with the UIMOD bit.

Note that this bit can be set/cleared even if USBE = 0 or FRZCLK = 1. Disabling the USB controller (by clearing the USBE
bit) does not reset this bit.

• UIMOD: USB Macro Mode

This bit has no effect when UIDE = 1 (USB_ID input pin activated).

Set to select the USB device mode.

Clear to select the USB host mode.

Note that this bit can be set/cleared even if USBE = 0 or FRZCLK = 1. Disabling the USB controller (by clearing the USBE
bit) does not reset this bit.

32058K AVR32-01/12

541

AT32UC3A

30.8.1.2 USB General Status Register (USBSTA)

Offset: 0x0804

Register Name: USBSTA

Access Type: Read-Only

Reset Value: 0x00000400

• IDTI: ID Transition Interrupt Flag

Asynchronous interrupt.

Set by hardware when a transition (high to low, low to high) has been detected on the USB_ID input pin. This triggers a
USB interrupt if IDTE = 1.

Shall be cleared by software (by setting the IDTIC bit) to acknowledge the interrupt (USB clock inputs must be enabled
before).

Note that this interrupt is generated even if the clock is frozen by the FRZCLK bit.

• VBUSTI: VBus Transition Interrupt Flag

Asynchronous interrupt.

Set by hardware when a transition (high to low, low to high) has been detected on the VBUS pad. This triggers a USB inter-
rupt if VBUSTE = 1.

Shall be cleared by software (by setting the VBUSTIC bit) to acknowledge the interrupt (USB clock inputs must be enabled
before).

Note that this interrupt is generated even if the clock is frozen by the FRZCLK bit.

• SRPI: SRP Interrupt Flag

Shall only be used in host mode.

Set by hardware when an SRP has been detected. This triggers a USB interrupt if SRPE = 1.

Shall be cleared by software (by setting the SRPIC bit) to acknowledge the interrupt.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – SPEED VBUS ID VBUSRQ –

ru ru ru ru
0 0 0 1 0

7 6 5 4 3 2 1 0
STOI HNPERRI ROLEEXI BCERRI VBERRI SRPI VBUSTI IDTI

ru ru ru ru ru ru ru ru
0 0 0 0 0 0 0 0

32058K AVR32-01/12

542

AT32UC3A

• VBERRI: VBus Error Interrupt Flag

In host mode, set by hardware when a VBus drop has been detected. This triggers a USB interrupt if VBERRE = 1.

Shall be cleared by software (by setting the VBERRIC bit) to acknowledge the interrupt.

Note that if a VBus problem occurs, then the VBERRI interrupt is generated even if the USB macro does not go to an error
state because of VBUSHWC = 1.

• BCERRI: B-Connection Error Interrupt Flag

In host mode, set by hardware when an error occurs during the B-connection. This triggers a USB interrupt if BCERRE = 1.

Shall be cleared by software (by setting the BCERRIC bit) to acknowledge the interrupt.

• ROLEEXI: Role Exchange Interrupt Flag

Set by hardware when the USB controller has successfully switched its mode because of an HNP negotiation (host to
device or device to host). This triggers a USB interrupt if ROLEEXE = 1.

Shall be cleared by software (by setting the ROLEEXIC bit) to acknowledge the interrupt.

• HNPERRI: HNP Error Interrupt Flag

In device mode, set by hardware when an error has been detected during an HNP negotiation. This triggers a USB interrupt
if HNPERRE = 1.

Shall be cleared by software (by setting the HNPERRIC bit) to acknowledge the interrupt.

• STOI: Suspend Time-Out Interrupt Flag

In host mode, set by hardware when a time-out error (more than 200ms) has been detected after a suspend. This triggers
a USB interrupt if STOE = 1.

Shall be cleared by software (by setting the STOIC bit) to acknowledge the interrupt.

• VBUSRQ: VBus Request

In host mode, set by software (by setting the VBUSRQS bit) to assert the USB_VBOF output pin in order to enable the
VBus power supply generation.

Cleared by software by setting the VBUSRQC bit.

Cleared by hardware when a VBus error occurs when VBUSHWC = 0.

• ID: USB_ID Pin State

Set/cleared by hardware and reflects the state of the USB_ID input pin, even if USBE = 0.

• VBUS: VBus Level

Set/cleared by hardware and reflects the level of the VBus line, even if USBE = 0.

This bit can be used in device mode to monitor the USB bus connection state of the application.

• SPEED: Speed Status

Set by hardware according to the controller speed mode:

Shall only be used in host mode.

SPEED Speed Status

0 0 FULL-SPEED mode

1 0 LOW-SPEED mode

X 1 Reserved

32058K AVR32-01/12

543

AT32UC3A

30.8.1.3 USB General Status Clear Register (USBSTACLR)

Offset: 0x0808

Register Name: USBSTACLR

Access Type: Write-Only

Read Value: 0x00000000

• IDTIC: ID Transition Interrupt Flag Clear

Set to clear IDTI.

Clearing has no effect.

Always read as 0.

• VBUSTIC: VBus Transition Interrupt Flag Clear

Set to clear VBUSTI.

Clearing has no effect.

Always read as 0.

• SRPIC: SRP Interrupt Flag Clear

Set to clear SRPI.

Clearing has no effect.

Always read as 0.

• VBERRIC: VBus Error Interrupt Flag Clear

Set to clear VBERRI.

Clearing has no effect.

Always read as 0.

• BCERRIC: B-Connection Error Interrupt Flag Clear

Set to clear BCERRI.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – VBUSRQC –

w
0

7 6 5 4 3 2 1 0
STOIC HNPERRIC ROLEEXIC BCERRIC VBERRIC SRPIC VBUSTIC IDTIC

w w w w w w w w
0 0 0 0 0 0 0 0

32058K AVR32-01/12

544

AT32UC3A

Clearing has no effect.

Always read as 0.

• ROLEEXIC: Role Exchange Interrupt Flag Clear

Set to clear ROLEEXI.

Clearing has no effect.

Always read as 0.

• HNPERRIC: HNP Error Interrupt Flag Clear

Set to clear HNPERRI.

Clearing has no effect.

Always read as 0.

• STOIC: Suspend Time-Out Interrupt Flag Clear

Set to clear STOI.

Clearing has no effect.

Always read as 0.

• VBUSRQC: VBus Request Clear

Set to clear VBUSRQ.

Clearing has no effect.

Always read as 0.

32058K AVR32-01/12

545

AT32UC3A

30.8.1.4 USB General Status Set Register (USBSTASET)

Offset: 0x080C

Register Name: USBSTASET

Access Type: Write-Only

Read Value: 0x00000000

• IDTIS: ID Transition Interrupt Flag Set

Set to set IDTI, what may be useful for test or debug purposes.

Clearing has no effect.

Always read as 0.

• VBUSTIS: VBus Transition Interrupt Flag Set

Set to set VBUSTI, what may be useful for test or debug purposes.

Clearing has no effect.

Always read as 0.

• SRPIS: SRP Interrupt Flag Set

Set to set SRPI, what may be useful for test or debug purposes.

Clearing has no effect.

Always read as 0.

• VBERRIS: VBus Error Interrupt Flag Set

Set to set VBERRI, what may be useful for test or debug purposes.

Clearing has no effect.

Always read as 0.

• BCERRIS: B-Connection Error Interrupt Flag Set

Set to set BCERRI, what may be useful for test or debug purposes.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – VBUSRQS –

w
0

7 6 5 4 3 2 1 0
STOIS HNPERRIS ROLEEXIS BCERRIS VBERRIS SRPIS VBUSTIS IDTIS

w w w w w w w w
0 0 0 0 0 0 0 0

32058K AVR32-01/12

546

AT32UC3A

Clearing has no effect.

Always read as 0.

• ROLEEXIS: Role Exchange Interrupt Flag Set

Set to set ROLEEXI, what may be useful for test or debug purposes.

Clearing has no effect.

Always read as 0.

• HNPERRIS: HNP Error Interrupt Flag Set

Set to set HNPERRI, what may be useful for test or debug purposes.

Clearing has no effect.

Always read as 0.

• STOIS: Suspend Time-Out Interrupt Flag Set

Set to set STOI, what may be useful for test or debug purposes.

Clearing has no effect.

Always read as 0.

• VBUSRQS: VBus Request Set

Set to set VBUSRQ.

Clearing has no effect.

Always read as 0.

32058K AVR32-01/12

547

AT32UC3A

30.8.1.5 USB IP Version Register (UVERS)

Offset: 0x0818

Register Name: UVERS

Access Type: Read-Only

Read Value: 0x00000260

• VERSION_NUM: IP Version Number

This field indicates the version number of the USB macro IP, encoded with 1 version digit per nibble, e.g. 0x0260 for ver-
sion 2.6.0.

• METAL_FIX_NUM: Number of Metal Fixes

This field indicates the number of metal fixes of the USB macro IP.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – METAL_FIX_NUM

r
0 0 0

15 14 13 12 11 10 9 8
VERSION_NUM

r
0 2

7 6 5 4 3 2 1 0
VERSION_NUM

r
6 0

32058K AVR32-01/12

548

AT32UC3A

30.8.1.6 USB IP Features Register (UFEATURES)

Offset: 0x081C

Register Name: UFEATURES

Access Type: Read-Only

Read Value: 0x00012467

• EPT_NBR_MAX: Maximal Number of Pipes/Endpoints

This field indicates the number of hardware-implemented pipes/endpoints:

• DMA_CHANNEL_NBR: Number of DMA Channels

This field indicates the number of hardware-implemented DMA channels:

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
BYTE_WRITE

_DPRAM FIFO_MAX_SIZE DMA_FIFO_WORD_DEPTH

r r r
0 0 1 0 0 1 0 0

7 6 5 4 3 2 1 0
DMA_BUFFER

_SIZE DMA_CHANNEL_NBR EPT_NBR_MAX

r r r
0 1 1 0 0 1 1 1

EPT_NBR_MAX Maximal Number of Pipes/Endpoints

0 0 0 0 16

0 0 0 1 1

0 0 1 0 2

...

1 1 1 1 15

DMA_CHANNEL_NBR Number of DMA Channels

0 0 0 Reserved

0 0 1 1

0 1 0 2

...

1 1 1 7

32058K AVR32-01/12

549

AT32UC3A

• DMA_BUFFER_SIZE: DMA Buffer Size

This field indicates the size of the DMA buffer:

• DMA_FIFO_WORD_DEPTH: DMA FIFO Depth in Words

This field indicates the DMA FIFO depth controller in words:

• FIFO_MAX_SIZE: Maximal FIFO Size

This field indicates the maximal FIFO size, i.e. the DPRAM size:

• BYTE_WRITE_DPRAM: DPRAM Byte-Write Capability

This field indicates whether the DPRAM is byte-write capable:

DMA_BUFFER_SIZE DMA Buffer Size

0 16 bits

1 24 bits

DMA_FIFO_WORD_DEPTH DMA FIFO Depth in Words

0 0 0 0 16

0 0 0 1 1

0 0 1 0 2

...

1 1 1 1 15

FIFO_MAX_SIZE Maximal FIFO Size

0 0 0 < 256 bytes

0 0 1 < 512 bytes

0 1 0 < 1024 bytes

0 1 1 < 2048 bytes

1 0 0 < 4096 bytes

1 0 1 < 8192 bytes

1 1 0 < 16384 bytes

1 1 1 >= 16384 bytes

BYTE_WRITE_DPRAM DPRAM Byte-Write Capability

0 DPRAM byte write lanes have shadow logic implemented in the USB macro IP interface.

1 DPRAM is natively byte-write capable.

32058K AVR32-01/12

550

AT32UC3A

30.8.1.7 USB IP PB Address Size Register (UADDRSIZE)

Offset: 0x0820

Register Name: UADDRSIZE

Access Type: Read-Only

Read Value: 0x00001000

• UADDRSIZE: IP PB Address Size

This field indicates the size of the PB address space reserved for the USB macro IP interface (2 at the power of the number
of bits reserved to encode the PB addresses of the USB macro IP interface relatively to its base address).

31 30 29 28 27 26 25 24
UADDRSIZE

r
0 0 0 0 0 0 0 0

23 22 21 20 19 18 17 16
UADDRSIZE

r
0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8
UADDRSIZE

r
0 0 0 1 0 0 0 0

7 6 5 4 3 2 1 0
UADDRSIZE

r
0 0 0 0 0 0 0 0

32058K AVR32-01/12

551

AT32UC3A

30.8.1.8 USB IP Name Register 1 (UNAME1)

Offset: 0x0824

Register Name: UNAME1

Access Type: Read-Only

Read Value: 0x48555342 (“HUSB”)

• UNAME1: IP Name Part 1

This field indicates the 1st part of the ASCII-encoded name of the USB macro IP.

31 30 29 28 27 26 25 24
UNAME1

r
“H”

23 22 21 20 19 18 17 16
UNAME1

r
“U”

15 14 13 12 11 10 9 8
UNAME1

r
“S”

7 6 5 4 3 2 1 0
UNAME1

r
“B”

32058K AVR32-01/12

552

AT32UC3A

30.8.1.9 USB IP Name Register 2 (UNAME2)

Offset: 0x0828

Register Name: UNAME2

Access Type: Read-Only

Read Value: 0x004F5447 (“\0OTG“)

• UNAME2: IP Name Part 2

This field indicates the 2nd part of the ASCII-encoded name of the USB macro IP.

31 30 29 28 27 26 25 24
UNAME2

r
“\0“

23 22 21 20 19 18 17 16
UNAME2

r
“O“

15 14 13 12 11 10 9 8
UNAME2

r
“T“

7 6 5 4 3 2 1 0
UNAME2

r
“G“

32058K AVR32-01/12

553

AT32UC3A

30.8.1.10 USB Finite State Machine Status Register (USBFSM)

Offset: 0x082C

Register Name: USBFSM

Access Type: Read-Only

Read Value: 0x00000009

• DRDSTATE

This field indicates the state of the USB controller.

Refer to the OTG specification for more details.

31 30 29 28 27 26 25 24
- - - - - - - -

0 0 0 0 0 0 0 0

23 22 21 20 19 18 17 16
- - - - - - - -

0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8
- - - - - - - -

0 0 0 0 0 0 0 0

7 6 5 4 3 2 1 0
- - - - DRDSTATE

r
0 0 0 0 1 0 0 1

USBFSM Description

0 a_idle state : this is the start state for A-devices (when the ID pin is 0)

1 a_wait_vrise : In this state, the A-device waits for the voltage on VBus to rise above the A-
device VBus Valid threshold (4.4 V).

2 a_wait_bcon : In this state, the A-device waits for the B-device to signal a connection.

3 a_host : In this state, the A-device that operates in Host mode is operational.

4 a_suspend : The A-device operating as a host is in the suspend mode.

5 a_peripheral : The A-device operates as a peripheral.

6 a_wait_vfall : In this state, the A-device waits for the voltage on VBus to drop below the A-
device Session Valid threshold (1.4 V).

7 a_vbus_err : In this state, the A-device waits for recovery of the overcurrent condition that
caused it to enter this state.

8 a_wait_discharge : In this state, the A-device waits for the data usb line to discharge (100
us).

9 b_idle : this is the start state for B-device (when the ID pin is 1).

10 b_peripheral : In this state, the B-device acts as the peripheral.

32058K AVR32-01/12

554

AT32UC3A

11 b_wait_begin_hnp : In this state, the B-device is in suspend mode and waits until 3 ms
before initiating the HNP protocol if requested.

12 b_wait_discharge : In this state, the B-device waits for the data usb line to discharge (100
us) before becoming Host.

13 b_wait_acon : In this state, the B-device waits for the A-device to signal a connect before
becoming B-Host.

14 b_host : In this state, the B-device acts as the Host.

15 b_srp_init : In this state, the B-device attempts to start a session using the SRP protocol.

USBFSM Description

32058K AVR32-01/12

555

AT32UC3A

30.8.2 USB Device Registers

30.8.2.1 USB Device General Control Register (UDCON)

Offset: 0x0000

Register Name: UDCON

Access Type: Read/Write

Reset Value: 0x00000100

• UADD: USB Address

Set to configure the device address.

Cleared by hardware upon receiving a USB reset.

• ADDEN: Address Enable

Set to activate the UADD field (USB address).

Cleared by hardware upon receiving a USB reset.

Clearing by software has no effect.

• DETACH: Detach

Set to physically detach the device (disconnect internal pull-up resistor from D+ and D-).

Clear to reconnect the device.

• RMWKUP: Remote Wake-Up

Set to send an upstream resume to the host for a remote wake-up.

Cleared by hardware upon receiving a USB reset or once the upstream resume has been sent.

Clearing by software has no effect.

• LS: Low-Speed Mode Force

Set to force the low-speed mode.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – LS – – RMWKUP DETACH

rw rwu rw
0 0 1

7 6 5 4 3 2 1 0
ADDEN UADD

rwu rwu
0 0 0 0 0 0 0 0

32058K AVR32-01/12

556

AT32UC3A

Clear to unforce the low-speed mode. Then, the full-speed mode is active.

Note that this bit can be set/cleared even if USBE = 0 or FRZCLK = 1. Disabling the USB controller (by clearing the USBE
bit) does not reset this bit.

32058K AVR32-01/12

557

AT32UC3A

30.8.2.2 USB Device Global Interrupt Register (UDINT)

Offset: 0x0004

Register Name: UDINT

Access Type: Read-Only

Reset Value: 0x00000000

• SUSP: Suspend Interrupt Flag

Set by hardware when a USB “Suspend” idle bus state has been detected for 3 frame periods (J state for 3 ms). This trig-
gers a USB interrupt if SUSPE = 1.

Shall be cleared by software (by setting the SUSPC bit) to acknowledge the interrupt.

Cleared by hardware when a Wake-Up interrupt (WAKEUP) is raised.

• SOF: Start of Frame Interrupt Flag

Set by hardware when a USB “Start of Frame” PID (SOF) has been detected (every 1 ms). This triggers a USB interrupt if
SOFE = 1. The FNUM field is updated.

Shall be cleared by software (by setting the SOFC bit) to acknowledge the interrupt.

• EORST: End of Reset Interrupt Flag

Set by hardware when a USB “End of Reset” has been detected. This triggers a USB interrupt if EORSTE = 1.

Shall be cleared by software (by setting the EORSTC bit) to acknowledge the interrupt.

• WAKEUP: Wake-Up Interrupt Flag

Asynchronous interrupt.

Set by hardware when the USB controller is reactivated by a filtered non-idle signal from the lines (not by an upstream
resume). This triggers an interrupt if WAKEUPE = 1.

Shall be cleared by software (by setting the WAKEUPC bit) to acknowledge the interrupt (USB clock inputs must be
enabled before).

Cleared by hardware when a Suspend interrupt (SUSP) is raised.

31 30 29 28 27 26 25 24
DMA6INT DMA5INT DMA4INT DMA3INT DMA2INT DMA1INT –

ru ru ru ru ru ru
0 0 0 0 0 0

23 22 21 20 19 18 17 16
– – – EP6INT EP5INT EP4INT

ru ru ru
0 0 0

15 14 13 12 11 10 9 8
EP3INT EP2INT EP1INT EP0INT – – – –

ru ru ru ru
0 0 0 0

7 6 5 4 3 2 1 0
– UPRSM EORSM WAKEUP EORST SOF – SUSP

ru ru ru ru ru ru
0 0 0 0 0 0

32058K AVR32-01/12

558

AT32UC3A

Note that this interrupt is generated even if the clock is frozen by the FRZCLK bit.

• EORSM: End of Resume Interrupt Flag

Set by hardware when the USB controller detects a valid “End of Resume” signal initiated by the host. This triggers a USB
interrupt if EORSME = 1.

Shall be cleared by software (by setting the EORSMC bit) to acknowledge the interrupt.

• UPRSM: Upstream Resume Interrupt Flag

Set by hardware when the USB controller sends a resume signal called “Upstream Resume”. This triggers a USB interrupt
if UPRSME = 1.

Shall be cleared by software (by setting the UPRSMC bit) to acknowledge the interrupt (USB clock inputs must be enabled
before).

• EPXINT, X in [0..6]: Endpoint X Interrupt Flag

Set by hardware when an interrupt is triggered by the endpoint X (UESTAX, UECONX). This triggers a USB interrupt if
EPXINTE = 1.

Cleared by hardware when the interrupt source is serviced.

• DMAXINT, X in [1..6]: DMA Channel X Interrupt Flag

Set by hardware when an interrupt is triggered by the DMA channel X. This triggers a USB interrupt if DMAXINTE = 1.

Cleared by hardware when the UDDMAX_STATUS interrupt source is cleared.

32058K AVR32-01/12

559

AT32UC3A

30.8.2.3 USB Device Global Interrupt Clear Register (UDINTCLR)

Offset: 0x0008

Register Name: UDINTCLR

Access Type: Write-Only

Read Value: 0x00000000

• SUSPC: Suspend Interrupt Flag Clear

Set to clear SUSP.

Clearing has no effect.

Always read as 0.

• SOFC: Start of Frame Interrupt Flag Clear

Set to clear SOF.

Clearing has no effect.

Always read as 0.

• EORSTC: End of Reset Interrupt Flag Clear

Set to clear EORST.

Clearing has no effect.

Always read as 0.

• WAKEUPC: Wake-Up Interrupt Flag Clear

Set to clear WAKEUP.

Clearing has no effect.

Always read as 0.

• EORSMC: End of Resume Interrupt Flag Clear

Set to clear EORSM.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
– UPRSMC EORSMC WAKEUPC EORSTC SOFC – SUSPC

w w w w w w
0 0 0 0 0 0

32058K AVR32-01/12

560

AT32UC3A

Clearing has no effect.

Always read as 0.

• UPRSMC: Upstream Resume Interrupt Flag Clear

Set to clear UPRSM.

Clearing has no effect.

Always read as 0.

32058K AVR32-01/12

561

AT32UC3A

30.8.2.4 USB Device Global Interrupt Set Register (UDINTSET)

Offset: 0x000C

Register Name: UDINTSET

Access Type: Write-Only

Read Value: 0x00000000

• SUSPS: Suspend Interrupt Flag Set

Set to set SUSP, what may be useful for test or debug purposes.

Clearing has no effect.

Always read as 0.

• SOFS: Start of Frame Interrupt Flag Set

Set to set SOF, what may be useful for test or debug purposes.

Clearing has no effect.

Always read as 0.

• EORSTS: End of Reset Interrupt Flag Set

Set to set EORST, what may be useful for test or debug purposes.

Clearing has no effect.

Always read as 0.

• WAKEUPS: Wake-Up Interrupt Flag Set

Set to set WAKEUP, what may be useful for test or debug purposes.

Clearing has no effect.

Always read as 0.

• EORSMS: End of Resume Interrupt Flag Set

Set to set EORSM, what may be useful for test or debug purposes.

31 30 29 28 27 26 25 24
DMA7INTS DMA5INTS DMA4INTS DMA3INTS DMA2INTS DMA1INTS –

w w w w w w
0 0 0 0 0 0

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
– UPRSMS EORSMS WAKEUPS EORSTS SOFS – SUSPS

w w w w w w
0 0 0 0 0 0

32058K AVR32-01/12

562

AT32UC3A

Clearing has no effect.

Always read as 0.

• UPRSMS: Upstream Resume Interrupt Flag Set

Set to set UPRSM, what may be useful for test or debug purposes.

Clearing has no effect.

Always read as 0.

• DMAXINTS, X in [1..6]: DMA Channel X Interrupt Flag Set

Set to set DMAXINT, what may be useful for test or debug purposes.

Clearing has no effect.

Always read as 0.

32058K AVR32-01/12

563

AT32UC3A

30.8.2.5 USB Device Global Interrupt Enable Register (UDINTE)

Offset: 0x0010

Register Name: UDINTE

Access Type: Read-Only

Reset Value: 0x00000000

• SUSPE: Suspend Interrupt Enable

Set by software (by setting the SUSPES bit) to enable the Suspend interrupt (SUSP).

Clear by software (by setting the SUSPEC bit) to disable the Suspend interrupt (SUSP).

• SOFE: Start of Frame Interrupt Enable

Set by software (by setting the SOFES bit) to enable the Start of Frame interrupt (SOF).

Clear by software (by setting the SOFEC bit) to disable the Start of Frame interrupt (SOF).

• EORSTE: End of Reset Interrupt Enable

Set by software (by setting the EORSTES bit) to enable the End of Reset interrupt (EORST).

Clear by software (by setting the EORSTEC bit) to disable the End of Reset interrupt (EORST).

• WAKEUPE: Wake-Up Interrupt Enable

Set by software (by setting the WAKEUPES bit) to enable the Wake-Up interrupt (WAKEUP).

Clear by software (by setting the WAKEUPEC bit) to disable the Wake-Up interrupt (WAKEUP).

• EORSME: End of Resume Interrupt Enable

Set by software (by setting the EORSMES bit) to enable the End of Resume interrupt (EORSM).

Clear by software (by setting the EORSMEC bit) to disable the End of Resume interrupt (EORSM).

• UPRSME: Upstream Resume Interrupt Enable

Set by software (by setting the UPRSMES bit) to enable the Upstream Resume interrupt (UPRSM).

Clear by software (by setting the UPRSMEC bit) to disable the Upstream Resume interrupt (UPRSM).

31 30 29 28 27 26 25 24
DMA6INTE DMA5INTE DMA4INTE DMA3INTE DMA2INTE DMA1INTE –

r r r r r r
0 0 0 0 0 0

23 22 21 20 19 18 17 16
– – – EP6INTE EP5INTE EP4INTE

r r r
0 0 0

15 14 13 12 11 10 9 8
EP3INTE EP2INTE EP1INTE EP0INTE – – – –

r r r r
0 0 0 0

7 6 5 4 3 2 1 0
– UPRSME EORSME WAKEUPE EORSTE SOFE – SUSPE

r r r r r r
0 0 0 0 0 0

32058K AVR32-01/12

564

AT32UC3A

• EPXINTE, X in [0..6]: Endpoint X Interrupt Enable

Set by software (by setting the EPXINTES bit) to enable the Endpoint X interrupt (EPXINT).

Clear by software (by setting the EPXINTEC bit) to disable the Endpoint X interrupt (EPXINT).

• DMAXINTE, X in [1..6]: DMA Channel X Interrupt Enable

Set by software (by setting the DMAXINTES bit) to enable the DMA Channel X interrupt (DMAXINT).

Clear by software (by setting the DMAXINTEC bit) to disable the DMA Channel X interrupt (DMAXINT).

32058K AVR32-01/12

565

AT32UC3A

30.8.2.6 USB Device Global Interrupt Enable Clear Register (UDINTECLR)

Offset: 0x0014

Register Name: UDINTECLR

Access Type: Write-Only

Read Value: 0x00000000

• SUSPEC: Suspend Interrupt Enable Clear

Set to clear SUSPE.

Clearing has no effect.

Always read as 0.

• SOFEC: Start of Frame Interrupt Enable Clear

Set to clear SOFE.

Clearing has no effect.

Always read as 0.

• EORSTEC: End of Reset Interrupt Enable Clear

Set to clear EORSTE.

Clearing has no effect.

Always read as 0.

• WAKEUPEC: Wake-Up Interrupt Enable Clear

Set to clear WAKEUPE.

Clearing has no effect.

Always read as 0.

• EORSMEC: End of Resume Interrupt Enable Clear

Set to clear EORSME.

31 30 29 28 27 26 25 24
– DMA6INTEC DMA5INTEC DMA4INTEC DMA3INTEC DMA2INTEC DMA1INTEC –

w w w w w w
0 0 0 0 0 0

23 22 21 20 19 18 17 16
– – – – – EP6INTEC EP5INTEC EP4INTEC

w w w
0 0 0

15 14 13 12 11 10 9 8
EP3INTEC EP2INTEC EP1INTEC EP0INTEC – – – –

w w w w
0 0 0 0

7 6 5 4 3 2 1 0
– UPRSMEC EORSMEC WAKEUPEC EORSTEC SOFEC – SUSPEC

w w w w w w
0 0 0 0 0 0

32058K AVR32-01/12

566

AT32UC3A

Clearing has no effect.

Always read as 0.

• UPRSMEC: Upstream Resume Interrupt Enable Clear

Set to clear UPRSME.

Clearing has no effect.

Always read as 0.

• EPXINTEC, X in [0..6]: Endpoint X Interrupt Enable Clear

Set to clear EPXINTE.

Clearing has no effect.

Always read as 0.

• DMAXINTEC, X in [1..6]: DMA Channel X Interrupt Enable Clear

Set to clear DMAXINTE.

Clearing has no effect.

Always read as 0.

32058K AVR32-01/12

567

AT32UC3A

30.8.2.7 USB Device Global Interrupt Enable Set Register (UDINTESET)

Offset: 0x0018

Register Name: UDINTESET

Access Type: Write-Only

Read Value: 0x00000000

• SUSPES: Suspend Interrupt Enable Set

Set to set SUSPE.

Clearing has no effect.

Always read as 0.

• SOFES: Start of Frame Interrupt Enable Set

Set to set SOFE.

Clearing has no effect.

Always read as 0.

• EORSTES: End of Reset Interrupt Enable Set

Set to set EORSTE.

Clearing has no effect.

Always read as 0.

• WAKEUPES: Wake-Up Interrupt Enable Set

Set to set WAKEUPE.

Clearing has no effect.

Always read as 0.

• EORSMES: End of Resume Interrupt Enable Set

Set to set EORSME.

31 30 29 28 27 26 25 24
– DMA6INTES DMA5INTES DMA4INTES DMA3INTES DMA2INTES DMA1INTES –

w w w w w w
0 0 0 0 0 0

23 22 21 20 19 18 17 16
– – – – – EP6INTES EP5INTES EP4INTES

w w w
0 0 0

15 14 13 12 11 10 9 8
EP3INTES EP2INTES EP1INTES EP0INTES – – – –

w w w w
0 0 0 0

7 6 5 4 3 2 1 0
– UPRSMES EORSMES WAKEUPES EORSTES SOFES – SUSPES

w w w w w w
0 0 0 0 0 0

32058K AVR32-01/12

568

AT32UC3A

Clearing has no effect.

Always read as 0.

• UPRSMES: Upstream Resume Interrupt Enable Set

Set to set UPRSME.

Clearing has no effect.

Always read as 0.

• EPXINTES, X in [0..6]: Endpoint X Interrupt Enable Set

Set to set EPXINTE.

Clearing has no effect.

Always read as 0.

• DMAXINTES, X in [1..6]: DMA Channel X Interrupt Enable Set

Set to set DMAXINTE.

Clearing has no effect.

Always read as 0.

32058K AVR32-01/12

569

AT32UC3A

30.8.2.8 USB Device Frame Number Register (UDFNUM)

Offset: 0x0020

Register Name: UDFNUM

Access Type: Read-Only

Reset Value: 0x00000000

• FNUM: Frame Number

Set by hardware. These bits are the 11-bit frame number information. They are provided in the last received SOF packet.

Cleared by hardware upon receiving a USB reset.

Note that FNUM is updated even if a corrupted SOF is received.

• FNCERR: Frame Number CRC Error

Set by hardware when a corrupted frame number is received. This bit and the SOF interrupt flag are updated at the same
time.

Cleared by hardware upon receiving a USB reset.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
FNCERR – FNUM

ru ru
0 0 0 0 0 0 0

7 6 5 4 3 2 1 0
FNUM – – –

ru
0 0 0 0 0

32058K AVR32-01/12

570

AT32UC3A

30.8.2.9 USB Endpoint Enable/Reset Register (UERST)

Offset: 0x001C

Register Name: UERST

Access Type: Read/Write

Reset Value: 0x00000000

• EPENX, X in [0..6]: Endpoint X Enable

Set to enable the endpoint X.

Clear to disable the endpoint X, what forces the endpoint X state to inactive (no answer to USB requests) and resets the
endpoint X registers (UECFGX, UESTAX, UECONX) but not the endpoint configuration (ALLOC, EPBK, EPSIZE, EPDIR,
EPTYPE).

• EPRSTX, X in [0..6]: Endpoint X Reset

Set by software to reset the endpoint X FIFO prior to any other operation, upon hardware reset or when a USB bus reset
has been received. This resets the endpoint X registers (UECFGX, UESTAX, UECONX) but not the endpoint configuration
(ALLOC, EPBK, EPSIZE, EPDIR, EPTYPE).

All the endpoint mechanism (FIFO counter, reception, transmission, etc.) is reset apart from the Data Toggle Sequence
field (DTSEQ) which can be cleared by setting the RSTDT bit (by setting the RSTDTS bit).

The endpoint configuration remains active and the endpoint is still enabled.

Then, clear by software to complete the reset operation and to start using the FIFO.

Cleared by hardware upon receiving a USB reset.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– EPRST6 EPRST5 EPRST4 EPRST3 EPRST2 EPRST1 EPRST0

rwu rwu rwu rwu rwu rwu rwu
0 0 0 0 0 0 0

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
– EPEN6 EPEN5 EPEN4 EPEN3 EPEN2 EPEN1 EPEN0

rw rw rw rw rw rw rw
0 0 0 0 0 0 0

32058K AVR32-01/12

571

AT32UC3A

30.8.2.10 USB Endpoint X Configuration Register (UECFGX)

Offset: 0x0100 + X . 0x04

Register Name: UECFGX, X in [0..6]

Access Type: Read/Write

Reset Value: 0x00000000

• ALLOC: Endpoint Memory Allocate

Set to allocate the endpoint memory.

Clear to free the endpoint memory.

Cleared by hardware upon receiving a USB reset (except for the endpoint 0).

Note that after setting this bit, the user should check the CFGOK bit to know whether the allocation of this endpoint is
correct.

• EPBK: Endpoint Banks

Set to select the number of banks for the endpoint:

For control endpoints, a single-bank endpoint (00b) should be selected.

Cleared by hardware upon receiving a USB reset (except for the endpoint 0).

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – EPTYPE – AUTOSW EPDIR

rwu rwu rwu
0 0 0 0

7 6 5 4 3 2 1 0
– EPSIZE EPBK ALLOC –

rwu rwu rwu
0 0 0 0 0 0

EPBK Endpoint Banks

0 0 1 (single-bank endpoint)

0 1 2 (double-bank endpoint)

1 0 3 (triple-bank endpoint)

1 1 Reserved

32058K AVR32-01/12

572

AT32UC3A

• EPSIZE: Endpoint Size

Set to select the size of each endpoint bank:

Cleared by hardware upon receiving a USB reset (except for the endpoint 0).

• EPDIR: Endpoint Direction

Set to select the endpoint direction:

Cleared by hardware upon receiving a USB reset.

• AUTOSW: Automatic Switch

Set to automatically switch bank when it is ready.

Clear to disable the automatic bank switching.

Cleared by hardware upon receiving a USB reset.

• EPTYPE: Endpoint Type

Set to select the endpoint type:

Cleared by hardware upon receiving a USB reset.

EPSIZE Endpoint Size

0 0 0 8 bytes

0 0 1 16 bytes

0 1 0 32 bytes

0 1 1 64 bytes

1 0 0 128 bytes

1 0 1 256 bytes

1 1 0 512 bytes

1 1 1 1024 bytes

EPDIR Endpoint Direction

0 OUT

1 IN (not for control endpoints)

EPTYPE Endpoint Type

0 0 Control

0 1 Isochronous

1 0 Bulk

1 1 Interrupt

32058K AVR32-01/12

573

AT32UC3A

30.8.2.11 USB Endpoint X Status Register (UESTAX)

Offset: 0x0130 + X . 0x04

Register Name: UESTAX, X in [0..6]

Access Type: Read-Only

Reset Value: 0x00000100

• TXINI: Transmitted IN Data Interrupt Flag

For control endpoints:

Set by hardware when the current bank is ready to accept a new IN packet. This triggers an EPXINT interrupt if
TXINE = 1.

Shall be cleared by software (by setting the TXINIC bit) to acknowledge the interrupt and to send the packet.

For isochronous, bulk and interrupt IN endpoints:

Set by hardware at the same time as FIFOCON when the current bank is free. This triggers an EPXINT interrupt if
TXINE = 1.

Shall be cleared by software (by setting the TXINIC bit) to acknowledge the interrupt, what has no effect on the end-
point FIFO.

The software then writes into the FIFO and clears the FIFOCON bit to allow the USB controller to send the data. If
the IN endpoint is composed of multiple banks, this also switches to the next bank. The TXINI and FIFOCON bits are
updated by hardware in accordance with the status of the next bank.

TXINI shall always be cleared before clearing FIFOCON.

This bit is inactive (cleared) for isochronous, bulk and interrupt OUT endpoints.

• RXOUTI: Received OUT Data Interrupt Flag

For control endpoints:

Set by hardware when the current bank contains a bulk OUT packet (data or status stage). This triggers an EPXINT
interrupt if RXOUTE = 1.

31 30 29 28 27 26 25 24
– BYCT

ru
0 0 0 0 0 0 0

23 22 21 20 19 18 17 16
BYCT – CFGOK CTRLDIR RWALL

ru ru ru ru
0 0 0 0 0 0 0

15 14 13 12 11 10 9 8
CURRBK NBUSYBK – – DTSEQ

ru ru ru
0 0 0 0 0 1

7 6 5 4 3 2 1 0
SHORT
PACKET

STALLEDI/
CRCERRI OVERFI NAKINI NAKOUTI RXSTPI/

UNDERFI RXOUTI TXINI

ru ru ru ru ru ru ru ru
0 0 0 0 0 0 0 0

32058K AVR32-01/12

574

AT32UC3A

Shall be cleared by software (by setting the RXOUTIC bit) to acknowledge the interrupt and to free the bank.

For isochronous, bulk and interrupt OUT endpoints:

Set by hardware at the same time as FIFOCON when the current bank is full. This triggers an EPXINT interrupt if
RXOUTE = 1.

Shall be cleared by software (by setting the RXOUTIC bit) to acknowledge the interrupt, what has no effect on the
endpoint FIFO.

The software then reads from the FIFO and clears the FIFOCON bit to free the bank. If the OUT endpoint is com-
posed of multiple banks, this also switches to the next bank. The RXOUTI and FIFOCON bits are updated by
hardware in accordance with the status of the next bank.

RXOUTI shall always be cleared before clearing FIFOCON.

This bit is inactive (cleared) for isochronous, bulk and interrupt IN endpoints.

• RXSTPI: Received SETUP Interrupt Flag

For control endpoints, set by hardware to signal that the current bank contains a new valid SETUP packet. This triggers an
EPXINT interrupt if RXSTPE = 1.

Shall be cleared by software (by setting the RXSTPIC bit) to acknowledge the interrupt and to free the bank.

This bit is inactive (cleared) for bulk and interrupt IN/OUT endpoints and it means UNDERFI for isochronous IN/OUT
endpoints.

• UNDERFI: Underflow Interrupt Flag

For isochronous IN/OUT endpoints, set by hardware when an underflow error occurs. This triggers an EPXINT interrupt if
UNDERFE = 1.

An underflow can occur during IN stage if the host attempts to read from an empty bank. A zero-length packet is then auto-
matically sent by the USB controller.

An underflow can also occur during OUT stage if the host sends a packet while the bank is already full. Typically, the CPU
is not fast enough. The packet is lost.

Shall be cleared by software (by setting the UNDERFIC bit) to acknowledge the interrupt.

This bit is inactive (cleared) for bulk and interrupt IN/OUT endpoints and it means RXSTPI for control endpoints.

• NAKOUTI: NAKed OUT Interrupt Flag

Set by hardware when a NAK handshake has been sent in response to an OUT request from the host. This triggers an
EPXINT interrupt if NAKOUTE = 1.

Shall be cleared by software (by setting the NAKOUTIC bit) to acknowledge the interrupt.

• NAKINI: NAKed IN Interrupt Flag

Set by hardware when a NAK handshake has been sent in response to an IN request from the host. This triggers an EPX-
INT interrupt if NAKINE = 1.

Shall be cleared by software (by setting the NAKINIC bit) to acknowledge the interrupt.

• OVERFI: Overflow Interrupt Flag

Set by hardware when an overflow error occurs. This triggers an EPXINT interrupt if OVERFE = 1.

For all endpoint types, an overflow can occur during OUT stage if the host attempts to write into a bank that is too small for
the packet. The packet is acknowledged and the Received OUT Data interrupt (RXOUTI) is raised as if no overflow had
occurred. The bank is filled with all the first bytes of the packet that fit in.

32058K AVR32-01/12

575

AT32UC3A

Shall be cleared by software (by setting the OVERFIC bit) to acknowledge the interrupt.

• STALLEDI: STALLed Interrupt Flag

Set by hardware to signal that a STALL handshake has been sent. To do that, the software has to set the STALLRQ bit (by
setting the STALLRQS bit). This triggers an EPXINT interrupt if STALLEDE = 1.

Shall be cleared by software (by setting the STALLEDIC bit) to acknowledge the interrupt.

• CRCERRI: CRC Error Interrupt Flag

Set by hardware to signal that a CRC error has been detected in an isochronous OUT endpoint. The OUT packet is stored
in the bank as if no CRC error had occurred. This triggers an EPXINT interrupt if CRCERRE = 1.

Shall be cleared by software (by setting the CRCERRIC bit) to acknowledge the interrupt.

• SHORTPACKET: Short Packet Interrupt Flag

For non-control OUT endpoints, set by hardware when a short packet has been received.

For non-control IN endpoints, set by hardware when a short packet is transmitted upon ending a DMA transfer, thus signal-
ing an end of isochronous frame or a bulk or interrupt end of transfer, this only if the End of DMA Buffer Output Enable bit
(DMAEND_EN) and the Automatic Switch bit (AUTOSW) are set.

This triggers an EPXINT interrupt if SHORTPACKETE = 1.

Shall be cleared by software (by setting the SHORTPACKETC bit) to acknowledge the interrupt.

• DTSEQ: Data Toggle Sequence

Set by hardware to indicate the PID of the current bank:

For IN transfers, it indicates the data toggle sequence that will be used for the next packet to be sent. This is not relative to
the current bank.

For OUT transfers, this value indicates the last data toggle sequence received on the current bank.

Note that by default DTSEQ = 01b, as if the last data toggle sequence was Data1, so the next sent or expected data toggle
sequence should be Data0.

• NBUSYBK: Number of Busy Banks

Set by hardware to indicate the number of busy banks:

For IN endpoints, it indicates the number of banks filled by the user and ready for IN transfer. When all banks are free, this
triggers an EPXINT interrupt if NBUSYBKE = 1.

DTSEQ Data Toggle Sequence

0 0 Data0

0 1 Data1

1 X Reserved

NBUSYBK Number of Busy Banks

0 0 0 (all banks free)

0 1 1

1 0 2

1 1 3

32058K AVR32-01/12

576

AT32UC3A

For OUT endpoints, it indicates the number of banks filled by OUT transactions from the host. When all banks are busy,
this triggers an EPXINT interrupt if NBUSYBKE = 1.

Note that when the FIFOCON bit is cleared (by setting the FIFOCONC bit) to validate a new bank, this field is updated 2 or
3 clock cycles later to calculate the address of the next bank.

An EPXINT interrupt is triggered if :

- for IN endpoint, NBUSYBKE=1 and all the banks are free.

- for OUT endpoint, NBUSYBKE=1 and all the banks are busy.

• CURRBK: Current Bank

For non-control endpoints, set by hardware to indicate the current bank:

Note that this field may be updated 1 clock cycle after the RWALL bit changes, so the user should not poll this field as an
interrupt flag.

• RWALL: Read/Write Allowed

For IN endpoints, set by hardware when the current bank is not full, i.e. the software can write further data into the FIFO.

For OUT endpoints, set by hardware when the current bank is not empty, i.e. the software can read further data from the
FIFO.

Never set if STALLRQ = 1 or in case of error.

Cleared by hardware otherwise.

This bit shall not be used for control endpoints.

• CTRLDIR: Control Direction

Set by hardware after a SETUP packet to indicate the direction of the following packet:

Can not be set or cleared by software.

• CFGOK: Configuration OK Status

This bit is updated when the ALLOC bit is set.

Set by hardware if the endpoint X number of banks (EPBK) and size (EPSIZE) are correct compared to the maximal
allowed number of banks and size for this endpoint and to the maximal FIFO size (i.e. the DPRAM size).

If this bit is cleared by hardware, the user should reprogram the UECFGX register with correct EPBK and EPSIZE values.

• BYCT: Byte Count

Set by the hardware to indicate the byte count of the FIFO.

CURRBK Current Bank

0 0 Bank0

0 1 Bank1

1 0 Bank2

1 1 Reserved

CTRLDIR Control Direction

0 OUT

1 IN

32058K AVR32-01/12

577

AT32UC3A

For IN endpoints, incremented after each byte written by the software into the endpoint and decremented after each byte
sent to the host.

For OUT endpoints, incremented after each byte received from the host and decremented after each byte read by the soft-
ware from the endpoint.

Note that this field may be updated 1 clock cycle after the RWALL bit changes, so the user should not poll this field as an
interrupt flag.

32058K AVR32-01/12

578

AT32UC3A

30.8.2.12 USB Endpoint X Status Clear Register (UESTAXCLR)

Offset: 0x0160 + X . 0x04

Register Name: UESTAXCLR, X in [0..6]

Access Type: Write-Only

Read Value: 0x00000000

• TXINIC: Transmitted IN Data Interrupt Flag Clear

Set to clear TXINI.

Clearing has no effect.

Always read as 0.

• RXOUTIC: Received OUT Data Interrupt Flag Clear

Set to clear RXOUTI.

Clearing has no effect.

Always read as 0.

• RXSTPIC: Received SETUP Interrupt Flag Clear

Set to clear RXSTPI.

Clearing has no effect.

Always read as 0.

• UNDERFIC: Underflow Interrupt Flag Clear

Set to clear UNDERFI.

Clearing has no effect.

Always read as 0.

• NAKOUTIC: NAKed OUT Interrupt Flag Clear

Set to clear NAKOUTI.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
SHORT

PACKETC
STALLEDIC/
CRCERRIC OVERFIC NAKINIC NAKOUTIC RXSTPIC/

UNDERFIC RXOUTIC TXINIC

w w w w w w w w
0 0 0 0 0 0 0 0

32058K AVR32-01/12

579

AT32UC3A

Clearing has no effect.

Always read as 0.

• NAKINIC: NAKed IN Interrupt Flag Clear

Set to clear NAKINI.

Clearing has no effect.

Always read as 0.

• OVERFIC: Overflow Interrupt Flag Clear

Set to clear OVERFI.

Clearing has no effect.

Always read as 0.

• STALLEDIC: STALLed Interrupt Flag Clear

Set to clear STALLEDI.

Clearing has no effect.

Always read as 0.

• CRCERRIC: CRC Error Interrupt Flag Clear

Set to clear CRCERRI.

Clearing has no effect.

Always read as 0.

• SHORTPACKETC: Short Packet Interrupt Flag Clear

Set to clear SHORTPACKET.

Clearing has no effect.

Always read as 0.

32058K AVR32-01/12

580

AT32UC3A

30.8.2.13 USB Endpoint X Status Set Register (UESTAXSET)

Offset: 0x0190 + X . 0x04

Register Name: UESTAXSET, X in [0..6]

Access Type: Write-Only

Read Value: 0x00000000

• TXINIS: Transmitted IN Data Interrupt Flag Set

Set to set TXINI, what may be useful for test or debug purposes.

Clearing has no effect.

Always read as 0.

• RXOUTIS: Received OUT Data Interrupt Flag Set

Set to set RXOUTI, what may be useful for test or debug purposes.

Clearing has no effect.

Always read as 0.

• RXSTPIS: Received SETUP Interrupt Flag Set

Set to set RXSTPI, what may be useful for test or debug purposes.

Clearing has no effect.

Always read as 0.

• UNDERFIS: Underflow Interrupt Flag Set

Set to set UNDERFI, what may be useful for test or debug purposes.

Clearing has no effect.

Always read as 0.

• NAKOUTIS: NAKed OUT Interrupt Flag Set

Set to set NAKOUTI, what may be useful for test or debug purposes.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – NBUSYBKS – – –

w
0

7 6 5 4 3 2 1 0
SHORT

PACKETS
STALLEDIS/
CRCERRIS OVERFIS NAKINIS NAKOUTIS RXSTPIS/

UNDERFIS RXOUTIS TXINIS

w w w w w w w w
0 0 0 0 0 0 0 0

32058K AVR32-01/12

581

AT32UC3A

Clearing has no effect.

Always read as 0.

• NAKINIS: NAKed IN Interrupt Flag Set

Set to set NAKINI, what may be useful for test or debug purposes.

Clearing has no effect.

Always read as 0.

• OVERFIS: Overflow Interrupt Flag Set

Set to set OVERFI, what may be useful for test or debug purposes.

Clearing has no effect.

Always read as 0.

• STALLEDIS: STALLed Interrupt Flag Set

Set to set STALLEDI, what may be useful for test or debug purposes.

Clearing has no effect.

Always read as 0.

• CRCERRIS: CRC Error Interrupt Flag Set

Set to set CRCERRI, what may be useful for test or debug purposes.

Clearing has no effect.

Always read as 0.

• SHORTPACKETS: Short Packet Interrupt Flag Set

Set to set SHORTPACKET, what may be useful for test or debug purposes.

Clearing has no effect.

Always read as 0.

• NBUSYBKS: Number of Busy Banks Interrupt Flag Set

Set to force the Number of Busy Banks interrupt flag (NBUSYBK), what may be useful for test or debug purposes.

Set again to unforce the Number of Busy Banks interrupt flag (NBUSYBK).

Clearing has no effect.

Always read as 0.

32058K AVR32-01/12

582

AT32UC3A

30.8.2.14 USB Endpoint X Control Register (UECONX)

Offset: 0x01C0 + X . 0x04

Register Name: UECONX, X in [0..6]

Access Type: Read-Only

Reset Value: 0x00000000

• TXINE: Transmitted IN Data Interrupt Enable

Set by software (by setting the TXINES bit) to enable the Transmitted IN Data interrupt (TXINI).

Clear by software (by setting the TXINEC bit) to disable the Transmitted IN Data interrupt (TXINI).

• RXOUTE: Received OUT Data Interrupt Enable

Set by software (by setting the RXOUTES bit) to enable the Received OUT Data interrupt (RXOUT).

Clear by software (by setting the RXOUTEC bit) to disable the Received OUT Data interrupt (RXOUT).

• RXSTPE: Received SETUP Interrupt Enable

Set by software (by setting the RXSTPES bit) to enable the Received SETUP interrupt (RXSTPI).

Clear by software (by setting the RXSTPEC bit) to disable the Received SETUP interrupt (RXSTPI).

• UNDERFE: Underflow Interrupt Enable

Set by software (by setting the UNDERFES bit) to enable the Underflow interrupt (UNDERFI).

Clear by software (by setting the UNDERFEC bit) to disable the Underflow interrupt (UNDERFI).

• NAKOUTE: NAKed OUT Interrupt Enable

Set by software (by setting the NAKOUTES bit) to enable the NAKed OUT interrupt (NAKOUTI).

Clear by software (by setting the NAKOUTEC bit) to disable the NAKed OUT interrupt (NAKOUTI).

• NAKINE: NAKed IN Interrupt Enable

Set by software (by setting the NAKINES bit) to enable the NAKed IN interrupt (NAKINI).

Clear by software (by setting the NAKINEC bit) to disable the NAKed IN interrupt (NAKINI).

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – STALLRQ RSTDT – EPDISHDMA

ru ru r
0 0 0

15 14 13 12 11 10 9 8
– FIFOCON KILLBK NBUSYBKE – – – –

ru ru r
0 0 0

7 6 5 4 3 2 1 0
SHORT

PACKETE
STALLEDE/
CRCERRE OVERFE NAKINE NAKOUTE RXSTPE/

UNDERFE RXOUTE TXINE

r r r r r r r r
0 0 0 0 0 0 0 0

32058K AVR32-01/12

583

AT32UC3A

• OVERFE: Overflow Interrupt Enable

Set by software (by setting the OVERFES bit) to enable the Overflow interrupt (OVERFI).

Clear by software (by setting the OVERFEC bit) to disable the Overflow interrupt (OVERFI).

• STALLEDE: STALLed Interrupt Enable

Set by software (by setting the STALLEDES bit) to enable the STALLed interrupt (STALLEDI).

Clear by software (by setting the STALLEDEC bit) to disable the STALLed interrupt (STALLEDI).

• CRCERRE: CRC Error Interrupt Enable

Set by software (by setting the CRCERRES bit) to enable the CRC Error interrupt (CRCERRI).

Clear by software (by setting the CRCERREC bit) to disable the CRC Error interrupt (CRCERRI).

• SHORTPACKETE: Short Packet Interrupt Enable

Set by software (by setting the SHORTPACKETES bit) to enable the Short Packet interrupt (SHORTPACKET).

Clear by software (by setting the SHORTPACKETEC bit) to disable the Short Packet interrupt (SHORTPACKET).

• NBUSYBKE: Number of Busy Banks Interrupt Enable

Set by software (by setting the NBUSYBKES bit) to enable the Number of Busy Banks interrupt (NBUSYBK).

Clear by software (by setting the NBUSYBKEC bit) to disable the Number of Busy Banks interrupt (NBUSYBK).

• KILLBK: Kill IN Bank

Set by software (by setting the KILLBKS bit) to kill the last written bank.

Cleared by hardware when the bank is killed.

Caution: The bank is really cleared when the “kill packet” procedure is accepted by the USB macro core. This bit is auto-
matically cleared after the end of the procedure:

– The bank is really cleared or the bank is sent (IN transfer): NBUSYBK is decremented.
– The bank is not cleared but sent (IN transfer): NBUSYBK is decremented.
– The bank is not cleared because it was empty.

The software shall wait for this bit to be cleared before trying to kill another packet.

Note that this kill request is refused if at the same time an IN token is coming and the last bank is the current one being sent
on the USB line. If at least 2 banks are ready to be sent, there is no problem to kill a packet even if an IN token is coming.
Indeed, in this case, the current bank is sent (IN transfer) while the last bank is killed.

• FIFOCON: FIFO Control

For control endpoints:

The FIFOCON and RWALL bits are irrelevant. The software shall therefore never use them on these endpoints.
When read, their value is always 0.

For IN endpoints:

Set by hardware when the current bank is free, at the same time as TXINI.

Clear by software (by setting the FIFOCONC bit) to send the FIFO data and to switch to the next bank.

For OUT endpoints:

Set by hardware when the current bank is full, at the same time as RXOUTI.

32058K AVR32-01/12

584

AT32UC3A

Clear by software (by setting the FIFOCONC bit) to free the current bank and to switch to the next bank.

• EPDISHDMA: Endpoint Interrupts Disable HDMA Request Enable

Set by software (by setting the EPDISHDMAS bit) to pause the on-going DMA channel X transfer on any Endpoint X inter-
rupt (EPXINT), whatever the state of the Endpoint X Interrupt Enable bit (EPXINTE).

The software then has to acknowledge or to disable the interrupt source (e.g. RXOUTI) or to clear the EPDISHDMA bit (by
setting the EPDISHDMAC bit) in order to complete the DMA transfer.

In ping-pong mode, if the interrupt is associated to a new system-bank packet (e.g. Bank1) and the current DMA transfer is
running on the previous packet (Bank0), then the previous-packet DMA transfer completes normally, but the new-packet
DMA transfer will not start (not requested).

If the interrupt is not associated to a new system-bank packet (NAKINI, NAKOUTI, etc.), then the request cancellation may
occur at any time and may immediately pause the current DMA transfer.

This may be used for example to identify erroneous packets, to prevent them from being transferred into a buffer, to com-
plete a DMA transfer by software after reception of a short packet, etc.

• RSTDT: Reset Data Toggle

Set by software (by setting the RSTDTS bit) to clear the data toggle sequence, i.e. to set to Data0 the data toggle sequence
of the next sent (IN endpoints) or received (OUT endpoints) packet.

Cleared by hardware instantaneously.

The software does not have to wait for this bit to be cleared.

• STALLRQ: STALL Request

Set by software (by setting the STALLRQS bit) to request to send a STALL handshake to the host.

Cleared by hardware when a new SETUP packet is received.

Can also be cleared by software by setting the STALLRQC bit.

32058K AVR32-01/12

585

AT32UC3A

30.8.2.15 USB Endpoint X Control Clear Register (UECONXCLR)

Offset: 0x0220 + X . 0x04

Register Name: UECONXCLR, X in [0..6]

Access Type: Write-Only

Read Value: 0x00000000

• TXINEC: Transmitted IN Data Interrupt Enable Clear

Set to clear TXINE.

Clearing has no effect.

Always read as 0.

• RXOUTEC: Received OUT Data Interrupt Enable Clear

Set to clear RXOUTE.

Clearing has no effect.

Always read as 0.

• RXSTPEC: Received SETUP Interrupt Enable Clear

Set to clear RXSTPE.

Clearing has no effect.

Always read as 0.

• UNDERFEC: Underflow Interrupt Enable Clear

Set to clear UNDERFE.

Clearing has no effect.

Always read as 0.

• NAKOUTEC: NAKed OUT Interrupt Enable Clear

Set to clear NAKOUTE.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – STALLRQC – – EPDISHDMAC

w w
0 0

15 14 13 12 11 10 9 8
– FIFOCONC – NBUSYBKEC – – – –

w w
0 0

7 6 5 4 3 2 1 0
SHORT

PACKETEC
STALLEDEC/
CRCERREC OVERFEC NAKINEC NAKOUTEC RXSTPEC/

UNDERFEC RXOUTEC TXINEC

w w w w w w w w
0 0 0 0 0 0 0 0

32058K AVR32-01/12

586

AT32UC3A

Clearing has no effect.

Always read as 0.

• NAKINEC: NAKed IN Interrupt Enable Clear

Set to clear NAKINE.

Clearing has no effect.

Always read as 0.

• OVERFEC: Overflow Interrupt Enable Clear

Set to clear OVERFE.

Clearing has no effect.

Always read as 0.

• STALLEDEC: STALLed Interrupt Enable Clear

Set to clear STALLEDE.

Clearing has no effect.

Always read as 0.

• CRCERREC: CRC Error Interrupt Enable Clear

Set to clear CRCERRE.

Clearing has no effect.

Always read as 0.

• SHORTPACKETEC: Short Packet Interrupt Enable Clear

Set to clear SHORTPACKETE.

Clearing has no effect.

Always read as 0.

• NBUSYBKEC: Number of Busy Banks Interrupt Enable Clear

Set to clear NBUSYBKE.

Clearing has no effect.

Always read as 0.

• FIFOCONC: FIFO Control Clear

Set to clear FIFOCON.

Clearing has no effect.

Always read as 0.

• EPDISHDMAC: Endpoint Interrupts Disable HDMA Request Enable Clear

Set to clear EPDISHDMA.

Clearing has no effect.

Always read as 0.

32058K AVR32-01/12

587

AT32UC3A

• STALLRQC: STALL Request Clear

Set to clear STALLRQ.

Clearing has no effect.

Always read as 0.

32058K AVR32-01/12

588

AT32UC3A

30.8.2.16 USB Endpoint X Control Set Register (UECONXSET)

Offset: 0x01F0 + X . 0x04

Register Name: UECONXSET, X in [0..6]

Access Type: Write-Only

Read Value: 0x00000000

• TXINES: Transmitted IN Data Interrupt Enable Set

Set to set TXINE.

Clearing has no effect.

Always read as 0.

• RXOUTES: Received OUT Data Interrupt Enable Set

Set to set RXOUTE.

Clearing has no effect.

Always read as 0.

• RXSTPES: Received SETUP Interrupt Enable Set

Set to set RXSTPE.

Clearing has no effect.

Always read as 0.

• UNDERFES: Underflow Interrupt Enable Set

Set to set UNDERFE.

Clearing has no effect.

Always read as 0.

• NAKOUTES: NAKed OUT Interrupt Enable Set

Set to set NAKOUTE.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – STALLRQS RSTDTS – EPDISHDMAS

w w
0 0

15 14 13 12 11 10 9 8
– – KILLBKS NBUSYBKES – – – –

w w
0 0

7 6 5 4 3 2 1 0
SHORT

PACKETES
STALLEDES/
CRCERRES OVERFES NAKINES NAKOUTES RXSTPES/

UNDERFES RXOUTES TXINES

w w w w w w w w
0 0 0 0 0 0 0 0

32058K AVR32-01/12

589

AT32UC3A

Clearing has no effect.

Always read as 0.

• NAKINES: NAKed IN Interrupt Enable Set

Set to set NAKINE.

Clearing has no effect.

Always read as 0.

• OVERFES: Overflow Interrupt Enable Set

Set to set OVERFE.

Clearing has no effect.

Always read as 0.

• STALLEDES: STALLed Interrupt Enable Set

Set to set STALLEDE.

Clearing has no effect.

Always read as 0.

• CRCERRES: CRC Error Interrupt Enable Set

Set to set CRCERRE.

Clearing has no effect.

Always read as 0.

• SHORTPACKETES: Short Packet Interrupt Enable Set

Set to set SHORTPACKETE.

Clearing has no effect.

Always read as 0.

• NBUSYBKES: Number of Busy Banks Interrupt Enable Set

Set to set NBUSYBKE.

Clearing has no effect.

Always read as 0.

• KILLBKS: Kill IN Bank Set

Set to set KILLBK.

Clearing has no effect.

Always read as 0.

• EPDISHDMAS: Endpoint Interrupts Disable HDMA Request Enable Set

Set to set EPDISHDMA.

Clearing has no effect.

32058K AVR32-01/12

590

AT32UC3A

Always read as 0.

• RSTDTS: Reset Data Toggle Set

Set to set RSTDT.

Clearing has no effect.

Always read as 0.

• STALLRQS: STALL Request Set

Set to set STALLRQ.

Clearing has no effect.

Always read as 0.

32058K AVR32-01/12

591

AT32UC3A

30.8.2.17 USB Device DMA Channel X Next Descriptor Address Register (UDDMAX_NEXTDESC)

Offset: 0x0310 + (X - 1) . 0x10

Register Name: UDDMAX_NEXTDESC, X in [1..6]

Access Type: Read/Write

Reset Value: 0x00000000

• NXT_DESC_ADDR: Next Descriptor Address

This field contains the bits 31:4 of the 16-byte aligned address of the next channel descriptor to be processed.

Note that this field is written either by software or by descriptor loading.

31 30 29 28 27 26 25 24
NXT_DESC_ADDR

rwu
0 0 0 0 0 0 0 0

23 22 21 20 19 18 17 16
NXT_DESC_ADDR

rwu
0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8
NXT_DESC_ADDR

rwu
0 0 0 0 0 0 0 0

7 6 5 4 3 2 1 0
NXT_DESC_ADDR – – – –

rwu
0 0 0 0

32058K AVR32-01/12

592

AT32UC3A

30.8.2.18 USB Device DMA Channel X HSB Address Register (UDDMAX_ADDR)

Offset: 0x0314 + (X - 1) . 0x10

Register Name: UDDMAX_ADDR, X in [1..6]

Access Type: Read/Write

Reset Value: 0x00000000

• HSB_ADDR: HSB Address

This field determines the HSB bus current address of a channel transfer.

The address set on the HSB address bus is HSB_ADDR rounded down to the nearest word-aligned address, i.e.
HSB_ADDR[1:0] is considered as 00b since only word accesses are performed.

Channel HSB start and end addresses may be aligned on any byte boundary.

The software may write this field only when the Channel Enabled bit (CH_EN) of the UDDMAX_STATUS register is clear.

This field is updated at the end of the address phase of the current access to the HSB bus. It is incremented of the HSB
access byte-width.

The HSB access width is 4 bytes, or less at packet start or end if the start or end address is not aligned on a word
boundary.

The packet start address is either the channel start address or the next channel address to be accessed in the channel
buffer.

The packet end address is either the channel end address or the latest channel address accessed in the channel buffer.

The channel start address is written by software or loaded from the descriptor, whereas the channel end address is either
determined by the end of buffer or the end of USB transfer if the Buffer Close Input Enable bit (BUFF_CLOSE_IN_EN) is
set.

31 30 29 28 27 26 25 24
HSB_ADDR

rwu
0 0 0 0 0 0 0 0

23 22 21 20 19 18 17 16
HSB_ADDR

rwu
0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8
HSB_ADDR

rwu
0 0 0 0 0 0 0 0

7 6 5 4 3 2 1 0
HSB_ADDR

rwu
0 0 0 0 0 0 0 0

32058K AVR32-01/12

593

AT32UC3A

30.8.2.19 USB Device DMA Channel X Control Register (UDDMAX_CONTROL)

Offset: 0x0318 + (X - 1) . 0x10

Register Name: UDDMAX_CONTROL, X in [1..6]

Access Type: Read/Write

Reset Value: 0x00000000

• CH_EN: Channel Enable

Set this bit to enable this channel data transfer.

Clear this bit to disable the channel data transfer.

This may be used to start or resume any requested transfer.

This bit is cleared by hardware when the HSB source channel is disabled at end of dma buffer.

• LD_NXT_CH_DESC_EN: Load Next Channel Descriptor Enable

Set this bit to allow automatic next descriptor loading at the end of the channel transfer.

Clear this bit to disable this feature.

If set, the dma channel controller loads the next descriptor when the UDDMAX_STATUS.CH_EN bit is reset due to soft-
ware of hardware event (for example at the end of the current transfer).

• BUFF_CLOSE_IN_EN: Buffer Close Input Enable

Set this bit to automatically closed the current dma transfer at the end of the usb OUT data transfer (received short packet).

Clear this bit to disable this feature.

• DMAEND_EN: End of DMA Buffer Output Enable

Set this bit to properly complete the usb transfer at the end of the dma transfer.

For IN endpoint, it means that a short packet (or a Zero Length Packet) will be sent to the usb line to properly closed the
usb transfer at the end of the dma transfer.

For OUT endpoint, it means that all the banks will be properly released. (NBUSYBK=0) at the end of the dma transfer.

31 30 29 28 27 26 25 24
CH_BYTE_LENGTH

rwu
0 0 0 0 0 0 0 0

23 22 21 20 19 18 17 16
CH_BYTE_LENGTH

rwu
0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
BURST_LOCK

_EN
DESC_LD_

IRQ_EN
EOBUFF_
IRQ_EN EOT_IRQ_EN DMAEND_EN BUFF_CLOSE

_IN_EN
LD_NXT_CH_

DESC_EN CH_EN

rwu rwu rwu rwu rwu rwu rwu rwu
0 0 0 0 0 0 0 0

32058K AVR32-01/12

594

AT32UC3A

• EOT_IRQ_EN: End of USB Transfer Interrupt Enable

Set this bit to enable the end of usb OUT data transfer interrupt.

This interrupt is generated only if the BUFF_CLOSE_IN_EN bit is set.

Clear this bit to disable this interrupt.

• EOBUFF_IRQ_EN: End of Buffer Interrupt Enable

Set this bit to enable the end of buffer interrupt.

This interrupt is generated when the channel byte count reaches zero.

Clear this bit to disable this interrupt.

• DESC_LD_IRQ_EN: Descriptor Loaded Interrupt Enable

Set this bit to enable the Descripor Loaded interrupt.

This interrupt is generated when a Descriptor has been loaded from the system bus.

Clear this bit to disable this interrupt.

• BURST_LOCK_EN: Burst Lock Enable

Set this bit to lock the HSB data burst for maximum optimization of HSB busses bandwidth usage and maximization of fly-
by duration.

If clear, the DMA never locks HSB access.

• CH_BYTE_LENGTH: Channel Byte Length

This field determines the total number of bytes to be transferred for this buffer.

The maximum channel transfer size 64 kB is reached when this field is 0 (default value).

If the transfer size is unknown, the transfer end is controlled by the peripheral and this field should be set to 0.

This field can be written by software or descriptor loading only after the UDDMAX_STATUS.CH_EN bit has been cleared,
otherwise this field is ignored.

32058K AVR32-01/12

595

AT32UC3A

30.8.2.20 USB Device DMA Channel X Status Register (UDDMAX_STATUS)

Offset: 0x031C + (X - 1) . 0x10

Register Name: UDDMAX_STATUS, X in [1..6]

Access Type: Read/Write

Reset Value: 0x00000000

• CH_EN: Channel Enabled

If set, the DMA channel is currently enabled.

If cleared, the DMA channel does no longer transfer data.

• CH_ACTIVE: Channel Active

If set, the DMA channel is currently trying to source USB data.

If cleared, the DMA channel is no longer trying to source USB data.

When a USB data transfer is completed, this bit is automatically reset.

• EOT_STA: End of USB Transfer Status

Set by hardware when the completion of the usb data transfer has closed the dma transfer. It is valid only if
BUFF_CLOSE_EN=1.

This bit is automatically cleared when read by software.

• EOCH_BUFF_STA: End of Channel Buffer Status

Set by hardware when the Channel Byte Count downcounts to zero.

This bit is automatically cleared when read by software.

• DESC_LD_STA: Descriptor Loaded Status

Set by hardware when a Descriptor has been loaded from the HSB bus.

This bit is automatically cleared when read by software.

31 30 29 28 27 26 25 24
CH_BYTE_CNT

ru
0 0 0 0 0 0 0 0

23 22 21 20 19 18 17 16
CH_BYTE_CNT

ru
0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0

– DESC_LD_
STA

EOCH_BUFF_
STA EOT_STA – – CH_ACTIVE CH_EN

ru ru ru rwu rwu
0 0 0 0 0

32058K AVR32-01/12

596

AT32UC3A

• CH_BYTE_CNT: Channel Byte Count

This field gives the current number of bytes still to be transferred for this buffer.

This field is decremented at each dma access.

This field is reliable (stable) only if the CH_EN flag is 0.

32058K AVR32-01/12

597

AT32UC3A

30.8.3 USB Host Registers

30.8.3.1 USB Host General Control Register (UHCON)

Offset: 0x0400

Register Name: UHCON

Access Type: Read/Write

Reset Value: 0x00000000

• SOFE: Start of Frame Generation Enable

Set this bit to generate SOF on the USB bus in full speed mode and keep alive in low speed mode.

Clear this bit to disable the SOF generation and to leave the USB bus in idle state.

This bit is set by hardware when a USB reset is requested or an upstream resume interrupt is detected (UHINT.TXRSMI).

• RESET: Send USB Reset

Set this bit to generate a USB Reset on the USB bus.

Cleared by hardware when the USB Reset has been sent.

It may be useful to clear this bit by software when a device disconnection is detected (UHINT.DDISCI is set) whereas a
USB Reset is being sent.

• RESUME: Send USB Resume

Set this bit to generate a USB Resume on the USB bus.

Cleared by hardware when the USB Resume has been sent or when a USB reset is requested. Clearing by software has
no effect. This bit should be set only when the start of frame generation is enable. (SOFE bit set).

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – RESUME RESET SOFE

rwu rwu rwu
0 0 0

7 6 5 4 3 2 1 0
– – – – – – – –

32058K AVR32-01/12

598

AT32UC3A

30.8.3.2 USB Host Global Interrupt Register (UHINT)

Offset: 0x0404

Register Name: UHINT

Access Type: Read-Only

Reset Value: 0x00000000

• DCONNI: Device Connection Interrupt Flag

Set by hardware when a new device has been connected to the USB bus.

Shall be cleared by software (by setting the DCONNIC bit).

• DDISCI: Device Disconnection Interrupt Flag

Set by hardware when the device has been removed from the USB bus.

Shall be cleared by software (by setting the DDISCIC bit).

• RSTI: USB Reset Sent Interrupt Flag

Set by hardware when a USB Reset has been sent to the device.

Shall be cleared by software (by setting the RSTIC bit).

• RSMEDI: Downstream Resume Sent Interrupt Flag

Set by hardware when a Downstream Resume has been sent to the Device.

Shall be cleared by software (by setting the RSMEDIC bit).

• RXRSMI: Upstream Resume Received Interrupt Flag

Set by hardware when an Upstream Resume has been received from the Device.

Shall be cleared by software (by setting the RXRSMIC bit).

• HSOFI: Host Start of Frame Interrupt Flag

Set by hardware when a SOF is issued by the Host controller. This triggers a USB interrupt when HSOFE is set. When
using the host controller in low speed mode, this bit is also set when a keep-alive is sent.

Shall be cleared by software (by setting the HSOFIC bit).

31 30 29 28 27 26 25 24
– DMA6INT DMA5INT DMA4INT DMA3INT DMA2INT DMA1INT –

r r r r r r
0 0 0 0 0 0

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– P6INT P5INT P4INT P3INT P2INT P1INT P0INT

r r r r r r r
0 0 0 0 0 0 0

7 6 5 4 3 2 1 0
– HWUPI HSOFI RXRSMI RSMEDI RSTI DDISCI DCONNI

r r r r r r r
0 0 0 0 0 0 0

32058K AVR32-01/12

599

AT32UC3A

• HWUPI: Host Wake-Up Interrupt Flag

Asynchronous interrupt.

Set by hardware in the following cases :

– The Host controller is in the suspend mode (SOFE=0) and an upstream resume from
the Peripheral is detected.

– The Host controller is in the suspend mode (SOFE=0) and a Peripheral disconnection
is detected.

– The Host controller is in the Idle state (VBUSRQ=0, no VBus is generated), and an
OTG SRP event initiated by the Peripheral is detected.

Note that this interrupt is generated even if the clock is frozen by the FRZCLK bit.

• PXINT, X in [0..6]: Pipe X Interrupt Flag

Set by hardware when an interrupt is triggered by the endpoint X (UPSTAX). This triggers a USB interrupt if the corre-
sponding pipe interrupt enable bit is set (UHINTE register). Cleared by hardware when the interrupt source is served.

• DMAXINT, X in [1..6]: DMA Channel X Interrupt Flag

Set by hardware when an interrupt is triggered by the DMA channel X. This triggers a USB interrupt if the corresponding
DMAXINTE is set (UHINTE register).

Cleared by hardware when the UHDMAX_STATUS interrupt source is cleared.

32058K AVR32-01/12

600

AT32UC3A

30.8.3.3 USB Host Global Interrupt Clear Register (UHINTCLR)

Offset: 0x0408

Register Name: UHINTCLR

Access Type: Write-Only

Read Value: 0x00000000

• DCONNIC: Device Connection Interrupt Flag Clear

Set to clear DCONNI.

Clearing has no effect.

Always read as 0.

• DDISCIC: Device Disconnection Interrupt Flag Clear

Set to clear DDISCI.

Clearing has no effect.

Always read as 0.

• RSTIC: USB Reset Sent Interrupt Flag Clear

Set to clear RSTI.

Clearing has no effect.

Always read as 0.

• RSMEDIC: Downstream Resume Sent Interrupt Flag Clear

Set to clear RSMEDI.

Clearing has no effect.

Always read as 0.

• RXRSMIC: Upstream Resume Received Interrupt Flag Clear

Set to clear RXRSMI.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
– HWUPIC HSOFIC RXRSMIC RSMEDIC RSTIC DDISCIC DCONNIC

w w w w w w w
0 0 0 0 0 0 0

32058K AVR32-01/12

601

AT32UC3A

Clearing has no effect.

Always read as 0.

• HSOFIC: Host Start of Frame Interrupt Flag Clear

Set to clear HSOFI.

Clearing has no effect.

Always read as 0.

• HWUPIC: Host Wake-Up Interrupt Flag Clear

Set to clear HWUPI.

Clearing has no effect.

Always read as 0.

32058K AVR32-01/12

602

AT32UC3A

30.8.3.4 USB Host Global Interrupt Set Register (UHINTSET)

Offset: 0x040C

Register Name: UHINTSET

Access Type: Write-Only

Read Value: 0x00000000

• DCONNIS: Device Connection Interrupt Flag Set

Set to set DCONNI, what may be useful for test or debug purposes.

Clearing has no effect.

Always read as 0.

• DDISCIS: Device Disconnection Interrupt Flag Set

Set to set DDISCI, what may be useful for test or debug purposes.

Clearing has no effect.

Always read as 0.

• RSTIS: USB Reset Sent Interrupt Flag Set

Set to set RSTI, what may be useful for test or debug purposes.

Clearing has no effect.

Always read as 0.

• RSMEDIS: Downstream Resume Sent Interrupt Flag Set

Set to set RSMEDI, what may be useful for test or debug purposes.

Clearing has no effect.

Always read as 0.

• RXRSMIS: Upstream Resume Received Interrupt Flag Set

Set to set RXRSMI, what may be useful for test or debug purposes.

31 30 29 28 27 26 25 24
– DMA6INTS DMA5INTS DMA4INTS DMA3INTS DMA2INTS DMA1INTS –

w w w w w w
0 0 0 0 0 0

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
– HWUPIS HSOFIS RXRSMIS RSMEDIS RSTIS DDISCIS DCONNIS

w w w w w w w
0 0 0 0 0 0 0

32058K AVR32-01/12

603

AT32UC3A

Clearing has no effect.

Always read as 0.

• HSOFIS: Host Start of Frame Interrupt Flag Set

Set to set HSOFI, what may be useful for test or debug purposes.

Clearing has no effect.

Always read as 0.

• HWUPIS: Host Wake-Up Interrupt Flag Set

Set to set HWUPI, what may be useful for test or debug purposes.

Clearing has no effect.

Always read as 0.

• DMAXINTS, X in [1..6]: DMA Channel X Interrupt Flag Set

Set to set DMAXINT, what may be useful for test or debug purposes.

Clearing has no effect.

Always read as 0.

32058K AVR32-01/12

604

AT32UC3A

30.8.3.5 USB Host Global Interrupt Enable Register (UHINTE)

Offset: 0x0410

Register Name: UHINTE

Access Type: Read-Only

Reset Value: 0x00000000

• DCONNIE: Device Connection Interrupt Enable

Set by software (by setting the DCONNIES bit) to enable the Device Connection interrupt (DCONNI).

Clear by software (by setting the DCONNIEC bit) to disable the Device Connection interrupt (DCONNI).

• DDISCIE: Device Disconnection Interrupt Enable

Set by software (by setting the DDISCIES bit) to enable the Device Disconnection interrupt (DDISCI).

Clear by software (by setting the DDISCIEC bit) to disable the Device Disconnection interrupt (DDISCI).

• RSTIE: USB Reset Sent Interrupt Enable

Set by software (by setting the RSTIES bit) to enable the USB Reset Sent interrupt (RSTI).

Clear by software (by setting the RSTIEC bit) to disable the USB Reset Sent interrupt (RSTI).

• RSMEDIE: Downstream Resume Sent Interrupt Enable

Set by software (by setting the RSMEDIES bit) to enable the Downstream Resume interrupt (RSMEDI).

Clear by software (by setting the RSMEDIEC bit) to disable the Downstream Resume interrupt (RSMEDI).

• RXRSMIE: Upstream Resume Received Interrupt Enable

Set by software (by setting the RXRSMIES bit) to enable the Upstream Resume Received interrupt (RXRSMI).

Clear by software (by setting the RXRSMIEC bit) to disable the Downstream Resume interrupt (RXRSMI).

• HSOFIE: Host Start of Frame Interrupt Enable

Set by software (by setting the HSOFIES bit) to enable the Host Start of Frame interrupt (HSOFI).

Clear by software (by setting the HSOFIEC bit) to disable the Host Start of Frame interrupt (HSOFI).

31 30 29 28 27 26 25 24
– DMA6INTE DMA5INTE DMA4INTE DMA3INTE DMA2INTE DMA1INTE –

r r r r r r
0 0 0 0 0 0

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– P6INTE P5INTE P4INTE P3INTE P2INTE P1INTE P0INTE

r r r r r r r
0 0 0 0 0 0 0

7 6 5 4 3 2 1 0
– HWUPIE HSOFIE RXRSMIE RSMEDIE RSTIE DDISCIE DCONNIE

r r r r r r r
0 0 0 0 0 0 0

32058K AVR32-01/12

605

AT32UC3A

• HWUPIE: Host Wake-Up Interrupt Enable

Set by software (by setting the HWUPIES bit) to enable the Host Wake-up Interrupt (HWUPI).

Clear by software (by setting the HWUPIEC bit) to disable the Host Wake-up Interrupt (HWUPI).

• PXINTE, X in [0..6]: Pipe X Interrupt Enable

Set by software (by setting the PXINTES bit) to enable the Pipe X Interrupt (PXINT).

Clear by software (by setting the PXINTEC bit) to disable the Pipe X Interrupt (PXINT).

• DMAXINTE, X in [1..6]: DMA Channel X Interrupt Enable

Set by software (by setting the DMAXINTES bit) to enable the DMA Channel X Interrupt (DMAXINT).

Clear by software (by setting the DMAXINTEC bit) to disable the DMA Channel X Interrupt (DMAXINT).

32058K AVR32-01/12

606

AT32UC3A

30.8.3.6 USB Host Global Interrupt Enable Clear Register (UHINTECLR)

Offset: 0x0414

Register Name: UHINTECLR

Access Type: Write-Only

Read Value: 0x00000000

• DCONNIEC: Device Connection Interrupt Enable Clear

Set to clear DCONNIE.

Clearing has no effect.

Always read as 0.

• DDISCIEC: Device Disconnection Interrupt Enable Clear

Set to clear DDISCIEC.

Clearing has no effect.

Always read as 0.

• RSTIEC: USB Reset Sent Interrupt Enable Clear

Set to clear RSTIEC.

Clearing has no effect.

Always read as 0.

• RSMEDIEC: Downstream Resume Sent Interrupt Enable Clear

Set to clear RSMEDIEC.

Clearing has no effect.

Always read as 0.

• RXRSMIEC: Upstream Resume Received Interrupt Enable Clear

Set to clear RSTIEC.

31 30 29 28 27 26 25 24
– DMA6INTEC DMA5INTEC DMA4INTEC DMA3INTEC DMA2INTEC DMA1INTEC –

w w w w w w
0 0 0 0 0 0

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– P6INTEC P5INTEC P4INTEC P3INTEC P2INTEC P1INTEC P0INTEC

w w w w w w w
0 0 0 0 0 0 0

7 6 5 4 3 2 1 0
– HWUPIEC HSOFIEC RXRSMIEC RSMEDIEC RSTIEC DDISCIEC DCONNIEC

w w w w w w w
0 0 0 0 0 0 0

32058K AVR32-01/12

607

AT32UC3A

Clearing has no effect.

Always read as 0.

• HSOFIEC: Host Start of Frame Interrupt Enable Clear

Set to clear HSOFIEC.

Clearing has no effect.

Always read as 0.

• HWUPIEC: Host Wake-Up Interrupt Enable Clear

Set to clear HWUPIEC.

Clearing has no effect.

Always read as 0.

• PXINTEC, X in [0..6]: Pipe X Interrupt Enable Clear

Set to clear PXINTEC.

Clearing has no effect.

Always read as 0.

• DMAXINTEC, X in [1..6]: DMA Channel X Interrupt Enable Clear

Set to clear DMAXINTEC.

Clearing has no effect.

Always read as 0.

32058K AVR32-01/12

608

AT32UC3A

30.8.3.7 USB Host Global Interrupt Enable Set Register (UHINTESET)

Offset: 0x0418

Register Name: UHINTESET

Access Type: Write-Only

Read Value: 0x00000000

• DCONNIES: Device Connection Interrupt Enable Set

Set to set DCONNIE.

Clearing has no effect.

Always read as 0.

• DDISCIES: Device Disconnection Interrupt Enable Set

Set to set DDISCIE.

Clearing has no effect.

Always read as 0.

• RSTIES: USB Reset Sent Interrupt Enable Set

Set to set RSTIE.

Clearing has no effect.

Always read as 0.

• RSMEDIES: Downstream Resume Sent Interrupt Enable Set

Set to set RSMEDIE.

Clearing has no effect.

Always read as 0.

• RXRSMIES: Upstream Resume Received Interrupt Enable Set

Set to set RXRSMIE.

31 30 29 28 27 26 25 24
– DMA6INTES DMA5INTES DMA4INTES DMA3INTES DMA2INTES DMA1INTES –

w w w w w w
0 0 0 0 0 0

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– P6INTES P5INTES P4INTES P3INTES P2INTES P1INTES P0INTES

w w w w w w w
0 0 0 0 0 0 0

7 6 5 4 3 2 1 0
– HWUPIES HSOFIES RXRSMIES RSMEDIES RSTIES DDISCIES DCONNIES

w w w w w w w
0 0 0 0 0 0 0

32058K AVR32-01/12

609

AT32UC3A

Clearing has no effect.

Always read as 0.

• HSOFIES: Host Start of Frame Interrupt Enable Set

Set to set HSOFIE.

Clearing has no effect.

Always read as 0.

• HWUPIES: Host Wake-Up Interrupt Enable Set

Set to set HWUPIE.

Clearing has no effect.

Always read as 0.

• PXINTES, X in [0..6]: Pipe X Interrupt Enable Set

Set to set PXINTE.

Clearing has no effect.

Always read as 0.

• DMAXINTES, X in [1..6]: DMA Channel X Interrupt Enable Set

Set to set DMAXINTE.

Clearing has no effect.

Always read as 0.

32058K AVR32-01/12

610

AT32UC3A

30.8.3.8 USB Host Frame Number Register (UHFNUM)

Offset: 0x0420

Register Name: UHFNUM

Access Type: Read/Write

Reset Value: 0x00000000

• FNUM: Frame Number

The value contained in this register is the current SOF number.

This value can be modified by software.

• FLENHIGH: Frame Length

This register gives the 8 high-order bits of the 14-bits internal frame counter (frame counter at 12 Mhz, counter length is
12000 to ensure a SOF generation every 1 ms).

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
FLENHIGH

ru
0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8
– – FNUM

rwu
0 0 0 0 0 0

7 6 5 4 3 2 1 0
FNUM – – –

rwu
0 0 0 0 0

32058K AVR32-01/12

611

AT32UC3A

30.8.3.9 USB Host Frame Number Register (UHADDR1)

Offset: 0x0424

Register Name: UHADDR1

Access Type: Read/Write

Reset Value: 0x00000000

• UHADDR_P0 : USB Host Address

These bits should contain the address of the Pipe0 of the USB Device.

Cleared by hardware when a USB reset is requested.

• UHADDR_P1 : USB Host Address

These bits should contain the address of the Pipe1 of the USB Device.

Cleared by hardware when a USB reset is requested.

• UHADDR_P2 : USB Host Address

These bits should contain the address of the Pipe2 of the USB Device.

Cleared by hardware when a USB reset is requested.

• UHADDR_P3 : USB Host Address

These bits should contain the address of the Pipe3 of the USB Device.

Cleared by hardware when a USB reset is requested.

31 30 29 28 27 26 25 24
– UHADDR_P3

rwu
– 0 0 0 0 0 0 0

23 22 21 20 19 18 17 16
– UHADDR_P2

rwu
– 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8
– UHADDR_P1

rwu
– 0 0 0 0 0 0 0

7 6 5 4 3 2 1 0
– UHADDR_P0

rwu
– 0 0 0 0

32058K AVR32-01/12

612

AT32UC3A

30.8.3.10 USB Host Frame Number Register (UHADDR2)

Offset: 0x0428

Register Name: UHADDR2

Access Type: Read/Write

Reset Value: 0x00000000

• UHADDR_P4 : USB Host Address

These bits should contain the address of the Pipe4 of the USB Device.

Cleared by hardware when a USB reset is requested.

• UHADDR_P5 : USB Host Address

These bits should contain the address of the Pipe5 of the USB Device.

Cleared by hardware when a USB reset is requested.

• UHADDR_P6 : USB Host Address

These bits should contain the address of the Pipe6 of the USB Device.

Cleared by hardware when a USB reset is requested.

• UHADDR_P7 : USB Host Address

These bits should contain the address of the Pipe7 of the USB Device.

Cleared by hardware when a USB reset is requested.

31 30 29 28 27 26 25 24
– – – – – – – –

rwu
– 0 0 0 0 0 0 0

23 22 21 20 19 18 17 16
– UHADDR_P6

rwu
– 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8
– UHADDR_P5

rwu
– 0 0 0 0 0 0 0

7 6 5 4 3 2 1 0
– UHADDR_P4

rwu
– 0 0 0 0

32058K AVR32-01/12

613

AT32UC3A

30.8.3.11 USB Pipe Enable/Reset Register (UPRST)

Offset: 0x0041C

Register Name: UPRST

Access Type: Read/Write

Reset Value: 0x00000000

• PENX, X in [0..6]: Pipe X Enable

Set to enable the Pipe X.

Clear to disable the Pipe X, what forces the Pipe X state to inactive and resets the pipe X registers (UPCFGX, UPSTAX,
UPCONX) but not the pipe configuration (ALLOC, PBK, PSIZE).

• PRSTX, X in [0..6]: Pipe X Reset

Set by software to reset the Pipe X FIFO.

This resets the endpoint X registers (UPCFGX, UPSTAX, UPCONX) but not the endpoint configuration (ALLOC, PBK,
PSIZE, PTOKEN, PTYPE, PEPNUM, INTFRQ).

All the endpoint mechanism (FIFO counter, reception, transmission, etc.) is reset apart from the Data Toggle management
.

The endpoint configuration remains active and the endpoint is still enabled.

Then, clear by software to complete the reset operation and to start using the FIFO.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– PRST6 PRST5 PRST4 PRST3 PRST2 PRST1 PRST0

rwu rwu rwu rwu rwu rwu rwu
0 0 0 0 0 0 0

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
– PEN6 PEN5 PEN4 PEN3 PEN2 PEN1 PEN0

rw rw rw rw rw rw rw
0 0 0 0 0 0 0

32058K AVR32-01/12

614

AT32UC3A

30.8.3.12 USB Pipe X Configuration Register (UPCFGX)

Offset: 0x0500 + X . 0x04

Register Name: UPCFGX, X in [0..6]

Access Type: Read/Write

Reset Value: 0x00000000

• ALLOC: Pipe Memory Allocate

Set to configure the pipe memory with the characteristics.

Clear to update the memory allocation.

This bit is cleared by hardware when a USB Reset is requested.

Refer to the DPRAM Management chapter for more details.

• PBK: Pipe Banks

Set to select the number of banks for the pipe:

For control endpoints, a single-bank pipe (00b) should be selected.

Cleared by hardware upon sending a USB reset.

31 30 29 28 27 26 25 24
INTFRQ

rwu
0 0 0 0 0 0 0 0

23 22 21 20 19 18 17 16
– – – – PEPNUM

rwu
0 0 0 0

15 14 13 12 11 10 9 8
– – PTYPE – AUTOSW PTOKEN

rwu rwu rwu
0 0 0 0 0

7 6 5 4 3 2 1 0
– PSIZE PBK ALLOC –

rwu rwu rwu
0 0 0 0 0 0

PBK Endpoint Banks

0 0 1 (single-bank pipe)

0 1 2 (double-bank pipe)

1 0 3 (triple-bank pipe)

1 1 Reserved

32058K AVR32-01/12

615

AT32UC3A

• PSIZE: Pipe Size

Set to select the size of each pipe bank:

Cleared by hardware upon sending a USB reset.

• PTOKEN: Pipe Token

Set to select the endpoint token:

• AUTOSW: Automatic Switch

Set to automatically switch bank when it is ready.

Clear to disable the automatic bank switching.

Cleared by hardware upon sending a USB reset.

• PTYPE: Pipe Type

Set to select the pipe type:

Cleared by hardware upon sending a USB reset.

• PEPNUM: Pipe Endpoint Number

Set this field according to the Pipe configuration. Set the number of the endpoint targeted by the pipe. This value is from 0
to 15.

Cleared by hardware upon sending a USB reset.

PSIZE Endpoint Size

0 0 0 8 bytes

0 0 1 16 bytes

0 1 0 32 bytes

0 1 1 64 bytes

1 0 0 128 bytes

1 0 1 256 bytes

1 1 0 512 bytes

1 1 1 1024 bytes

PTOKEN Endpoint Direction

00 SETUP

01 IN

10 OUT

11 reserved

PTYPE Pipe Type

0 0 Control

0 1 Isochronous

1 0 Bulk

1 1 Interrupt

32058K AVR32-01/12

616

AT32UC3A

• INTFRQ: Pipe Interrupt Request Frequency

These bits are the maximum value in millisecond of the polling period for an Interrupt Pipe.

This value has no effect for a non-Interrupt Pipe.

Cleared by hardware upon sending a USB reset.

32058K AVR32-01/12

617

AT32UC3A

30.8.3.13 USB Pipe X Status Register (UPSTAX)

Offset: 0x0530 + X . 0x04

Register Name: UPSTAX, X in [0..6]

Access Type: Read-Only

Reset Value: 0x00000000

• RXINI: Received IN Data Interrupt Flag

Set by hardware when a new USB message is stored in the current bank of the Pipe. This triggers an interrupt if the RXINE
bit is set. Shall be cleared by software (by setting the RXINIC bit).

• TXOUTI: Transmitted OUT Data Interrupt Flag

Set by hardware when the current OUT bank is free and can be filled. This triggers an interrupt if the TXOUTE bit is set.
Shall be cleared by software (by setting the TXOUTIC bit).

• TXSTPI: Transmitted SETUP Interrupt Flag

For Control endpoints. Set by hardware when the current SETUP bank is free and can be filled. This triggers an interrupt if
the TXSTPE bit is set. Shall be cleared by software (by setting the TXSTPIC bit).

• UNDERFI: Underflow Interrupt Flag

Set by hardware when a transaction underflow occurs in the current isochronous or interrupt pipe. (the pipe can’t send the
OUT data packet in time because the current bank is not ready). A zero-length-packet (ZLP) will be send instead of. This
triggers an interrupt if the UNDERFLE bit is set. Shall be cleared by software (by setting the UNDERFIC bit).

• PERRI: Pipe Error Interrupt Flag

Set by hardware when an error occurs on the current bank of the Pipe. This triggers an interrupt if the PERRE bit is set.
Refers to the UPERRX register to determine the source of the error. Automatically cleared by hardware when the error
source bit is cleared.

• NAKEDI: NAKed Interrupt Flag

Set by hardware when a NAK has been received on the current bank of the Pipe. This triggers an interrupt if the NAKEDE
bit is set. Shall be cleared by software (by setting the NAKEDIC bit).

31 30 29 28 27 26 25 24
– PBYCT

r
0 0 0 0 0 0 0

23 22 21 20 19 18 17 16
PBYCT – CFGOK – RWALL

r r r
0 0 0 0 0 0

15 14 13 12 11 10 9 8
CURRBK NBUSYBK – – DTSEQ

r r r
0 0 0 0 0 0

7 6 5 4 3 2 1 0
SHORT

PACKETI
RXSTALLDI/
CRCERRI OVERFI NAKEDI PERRI TXSTPI/

UNDERFI TXOUTI RXINI

r r r r r r r r
0 0 0 0 0 0 0 0

32058K AVR32-01/12

618

AT32UC3A

• OVERFI: Overflow Interrupt Flag

Set by hardware when the current Pipe has received more data than the maximum length of the current Pipe. An interrupt
is triggered if the OVERFIE bit is set. Shall be cleared by software (by setting the OVERFIC bit).

• RXSTALLDI: Received STALLed Interrupt Flag

For all endpoints but isochronous. Set by hardware when a STALL handshake has been received on the current bank of
the Pipe. The Pipe is automatically frozen. This triggers an interrupt if the RXSTALLE bit is set. Shall be cleared to hand-
shake the interrupt (by setting the RXSTALLDIC bit).

• CRCERRI: CRC Error Interrupt Flag

For isochronous endpoint, set by hardware when a CRC error occurs on the current bank of the Pipe. This triggers an inter-
rupt if the TXSTPE bit is set. Shall be cleared to handshake the interrupt (by setting the CRCERRIC bit).

• SHORTPACKETI: Short Packet Interrupt Flag

Set by hardware when a short packet is received by the host controller (packet length inferior to the PSIZE programmed
field). Shall be cleared to handshake the interrupt (by setting the SHORTPACKETIC bit).

• DTSEQ: Data Toggle Sequence

Set by hardware to indicate the data PID of the current bank.

For OUT pipe, this field indicates the data toggle of the next packet that will be sent.

For IN pipe, this field indicates the data toggle of the received packet stored in the current bank.

• NBUSYBK: Number of Busy Banks

Set by hardware to indicate the number of busy bank.

For OUT Pipe, it indicates the number of busy bank(s), filled by the user, ready for OUT transfer. When all banks are busy,
this triggers an PXINT interrupt if UPCONX.NBUSYBKE = 1.

For IN Pipe, it indicates the number of busy bank(s) filled by IN transaction from the Device. When all banks are free, this
triggers an PXINT interrupt if UPCONX.NBUSYBKE = 1..

DTSEQ Data toggle sequence

0 0 Data0

0 1 Data1

1 0 reserved

1 1 reserved

NBUSYBK Number of busy bank

0 0 All banks are free.

0 1 1 busy bank

1 0 2 busy banks

1 1 reserved

32058K AVR32-01/12

619

AT32UC3A

• CURRBK: Current Bank

For non-control pipe, set by hardware to indicate the number of the current bank.

Note that this field may be updated 1 clock cycle after the RWALL bit changes, so the user should not poll this field as an
interrupt flag.

• RWALL: Read/Write Allowed

For OUT pipe, set by hardware when the current bank is not full, i.e. the software can write further data into the FIFO.

For IN pipe, set by hardware when the current bank is not empty, i.e. the software can read further data from the FIFO.

Cleared by hardware otherwise.

This bit is also cleared by hardware when the RXSTALL or the PERR bit is set.

• CFGOK: Configuration OK Status

This bit is updated when the ALLOC bit is set.

Set by hardware if the pipe X number of banks (PBK) and size (PSIZE) are correct compared to the maximal allowed num-
ber of banks and size for this pipe and to the maximal FIFO size (i.e. the DPRAM size).

If this bit is cleared by hardware, the user should reprogram the UPCFGX register with correct PBK and PSIZE values.

• PBYCT: Pipe Byte Count

Set by the hardware to indicate the byte count of the FIFO.

For OUT pipe, incremented after each byte written by the software into the pipe and decremented after each byte sent to
the peripheral.

For In pipe, incremented after each byte received from the peripheral and decremented after each byte read by the soft-
ware from the pipe.

Note that this field may be updated 1 clock cycle after the RWALL bit changes, so the user should not poll this field as an
interrupt flag.

CURRBK Current Bank

0 0 Bank0

0 1 Bank1

1 0 Bank2

1 1 Reserved

32058K AVR32-01/12

620

AT32UC3A

30.8.3.14 USB Pipe X Status Clear Register (UPSTAXCLR)

Offset: 0x0560 + X . 0x04

Register Name: UPSTAXCLR, X in [0..6]

Access Type: Write-Only

Read Value: 0x00000000

• RXINIC: Received IN Data Interrupt Flag Clear

Set to clear RXINI.

Clearing has no effect.

Always read as 0.

• TXOUTIC: Transmitted OUT Data Interrupt Flag Clear

Set to clear TXOUTI.

Clearing has no effect.

Always read as 0.

• TXSTPIC: Transmitted SETUP Interrupt Flag Clear

Set to clear TXSTPI.

Clearing has no effect.

Always read as 0.

• UNDERFIC: Underflow Interrupt Flag Clear

Set to clear UNDERFI.

Clearing has no effect.

Always read as 0.

• NAKEDIC: NAKed Interrupt Flag Clear

Set to clear NAKEDI.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
SHORT

PACKETIC
RXSTALLDIC/
CRCERRIC OVERFIC NAKEDIC – TXSTPIC/

UNDERFIC TXOUTIC RXINIC

w w w w w w w
0 0 0 0 0 0 0

32058K AVR32-01/12

621

AT32UC3A

Clearing has no effect.

Always read as 0.

• OVERFIC: Overflow Interrupt Flag Clear

Set to clear OVERFI.

Clearing has no effect.

Always read as 0.

• RXSTALLDIC: Received STALLed Interrupt Flag Clear

Set to clear RXSTALLDI.

Clearing has no effect.

Always read as 0.

• CRCERRIC: CRC Error Interrupt Flag Clear

Set to clear CRCERRI.

Clearing has no effect.

Always read as 0.

• SHORTPACKETIC: Short Packet Interrupt Flag Clear

Set to clear SHORTPACKETI.

Clearing has no effect.

Always read as 0.

32058K AVR32-01/12

622

AT32UC3A

30.8.3.15 USB Pipe X Status Set Register (UPSTAXSET)

Offset: 0x0590 + X . 0x04

Register Name: UPSTAXSET, X in [0..6]

Access Type: Write-Only

Read Value: 0x00000000

• RXINIS: Received IN Data Interrupt Flag Set

Set to set RXINI, what may be useful for test or debug purposes.

Clearing has no effect.

Always read as 0.

• TXOUTIS: Transmitted OUT Data Interrupt Flag Set

Set to set TXOUTI, what may be useful for test or debug purposes.

Clearing has no effect.

Always read as 0.

• TXSTPIS: Transmitted SETUP Interrupt Flag Set

Set to set TXSTPI, what may be useful for test or debug purposes.

Clearing has no effect.

Always read as 0.

• UNDERFIS: Underflow Interrupt Flag Set

Set to set UNDERFI, what may be useful for test or debug purposes.

Clearing has no effect.

Always read as 0.

• PERRIS: Pipe Error Interrupt Flag Set

Set to set PERRI, what may be useful for test or debug purposes.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – NBUSYBKS – – – –

w
0

7 6 5 4 3 2 1 0
SHORT

PACKETIS
RXSTALLDIS/
CRCERRIS OVERFIS NAKEDIS PERRIS TXSTPIS/

UNDERFIS TXOUTIS RXINIS

w w w w w w w w
0 0 0 0 0 0 0 0

32058K AVR32-01/12

623

AT32UC3A

Clearing has no effect.

Always read as 0.

• NAKEDIS: NAKed Interrupt Flag Set

Set to set NAKEDI, what may be useful for test or debug purposes.

Clearing has no effect.

Always read as 0.

• OVERFIS: Overflow Interrupt Flag Set

Set to set OVERFI, what may be useful for test or debug purposes.

Clearing has no effect.

Always read as 0.

• RXSTALLDIS: Received STALLed Interrupt Flag Set

Set to set RXSTALLDI, what may be useful for test or debug purposes.

Clearing has no effect.

Always read as 0.

• CRCERRIS: CRC Error Interrupt Flag Set

Set to set CRCERRI, what may be useful for test or debug purposes.

Clearing has no effect.

Always read as 0.

• SHORTPACKETIS: Short Packet Interrupt Flag Set

Set to set SHORTPACKETI, what may be useful for test or debug purposes.

Clearing has no effect.

Always read as 0.

• NBUSYBKS: Number of Busy Banks Interrupt Flag Set

Set to set NBUSYBKI, what may be useful for test or debug purposes.

Clearing has no effect.

Always read as 0.

32058K AVR32-01/12

624

AT32UC3A

30.8.3.16 USB Pipe X Control Register (UPCONX)

Offset: 0x05C0 + X . 0x04

Register Name: UPCONX, X in [0..6]

Access Type: Read-Only

Reset Value: 0x00000000

• RXINE: Received IN Data Interrupt Enable

Set by software (by setting the RXINES bit) to enable the Received IN Data interrupt (RXINE).

Clear by software (by setting the RXINEC bit) to disable the Received IN Data interrupt (RXINE).

• TXOUTE: Transmitted OUT Data Interrupt Enable

Set by software (by setting the TXOUTES bit) to enable the Transmitted OUT Data interrupt (TXOUTE).

Clear by software (by setting the TXOUTECbit) to disable the Transmitted OUT Data interrupt (TXOUTE).

• TXSTPE: Transmitted SETUP Interrupt Enable

Set by software (by setting the TXSTPES bit) to enable the Transmitted SETUP interrupt (TXSTPE).

Clear by software (by setting the TXSTPEC bit) to disable the Transmitted SETUP interrupt (TXSTPE).

• UNDERFIE: Underflow Interrupt Enable

Set by software (by setting the UNDERFIES bit) to enable the Underflow interrupt (UNDERFIE).

Clear by software (by setting the UNDERFIEC bit) to disable the Underflow interrupt (UNDERFIE).

• PERRE: Pipe Error Interrupt Enable

Set by software (by setting the PERRES bit) to enable the Pipe Error interrupt (PERRE).

Clear by software (by setting the PERREC bit) to disable the Pipe Error interrupt (PERRE).

• NAKEDE: NAKed Interrupt Enable

Set by software (by setting the NAKEDES bit) to enable the NAKed interrupt (NAKEDE).

Clear by software (by setting the NAKEDEC bit) to disable the NAKed interrupt (NAKEDE).

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – RSTDT PFREEZE PDISHDMA

ru ru ru
0 0 0

15 14 13 12 11 10 9 8
– FIFOCON – NBUSYBKE – – – –

ru ru
0 0

7 6 5 4 3 2 1 0
SHORT

PACKETIE
RXSTALLDE/
CRCERRE OVERFIE NAKEDE PERRE TXSTPE/

UNDERFIE TXOUTE RXINE

ru ru ru ru ru ru ru ru
0 0 0 0 0 0 0 0

32058K AVR32-01/12

625

AT32UC3A

• OVERFIE: Overflow Interrupt Enable

Set by software (by setting the OVERFIES bit) to enable the Overflow interrupt (OVERFIE).

Clear by software (by setting the OVERFIEC bit) to disable the Overflow interrupt (OVERFIE).

• RXSTALLDE: Received STALLed Interrupt Enable

Set by software (by setting the RXSTALLDES bit) to enable the Received STALLed interrupt (RXSTALLDE).

Clear by software (by setting the RXSTALLDEC bit) to disable the Received STALLed interrupt (RXSTALLDE).

• CRCERRE: CRC Error Interrupt Enable

Set by software (by setting the CRCERRES bit) to enable the CRC Error interrupt (CRCERRE).

Clear by software (by setting the CRCERREC bit) to disable the CRC Error interrupt (CRCERRE).

• SHORTPACKETIE: Short Packet Interrupt Enable

Set by software (by setting the SHORTPACKETES bit) to enable the Short Packet interrupt (SHORTPACKETIE).

Clear by software (by setting the SHORTPACKETEC bit) to disable the Short Packet interrupt (SHORTPACKETE).

• NBUSYBKE: Number of Busy Banks Interrupt Enable

Set by software (by setting the NBUSYBKES bit) to enable the Number of Busy Banks interrupt (NBUSYBKE).

Clear by software (by setting the NBUSYBKEC bit) to disable the Number of Busy Banks interrupt (NBUSYBKE).

• FIFOCON: FIFO Control

For OUT and SETUP Pipe :

Set by hardware when the current bank is free, at the same time than TXOUTI or TXSTPI.

Clear by software (by setting the FIFOCONC bit) to send the FIFO data and to switch the bank.

For IN Pipe:

Set by hardware when a new IN message is stored in the current bank, at the same time than RXINI.

Clear by software (by setting the FIFOCONC bit) to free the current bank and to switch to the next bank.

• PDISHDMA: Pipe Interrupts Disable HDMA Request Enable

See EPDISHDMA (UECONX register).

• PFREEZE: Pipe Freeze

Set by software (by setting the PFREEZES bit) to Freeze the Pipe requests generation.

Clear by software (by setting the PFREEZEC bit) to enable the Pipe request generation.

This bit is set by hardware when:

- the pipe is not configured

- a STALL handshake has been received on this Pipe

- An error occurs on the Pipe (PERR = 1)

- (INRQ+1) In requests have been processed

This bit is set at 1 by hardware after a Pipe reset or a Pipe enable.

• RSTDT: Reset Data Toggle

Set by software (by setting the RSTDTS bit) to reset the Data Toggle to its initial value for the current Pipe.

Cleared by hardware when proceed.

32058K AVR32-01/12

626

AT32UC3A

30.8.3.17 USB Pipe X Control Clear Register (UPCONXCLR)

Offset: 0x0620 + X . 0x04

Register Name: UPCONXCLR, X in [0..6]

Access Type: Write-Only

Read Value: 0x00000000

• RXINEC: Received IN Data Interrupt Enable Clear

Set to clear RXINE.

Clearing has no effect.

Always read as 0.

• TXOUTEC: Transmitted OUT Data Interrupt Enable Clear

Set to clear TXOUTE.

Clearing has no effect.

Always read as 0.

• TXSTPEC: Transmitted SETUP Interrupt Enable Clear

Set to clear TXSTPE.

Clearing has no effect.

Always read as 0.

• UNDERFIEC: Underflow Interrupt Enable Clear

Set to clear UNDERFIE.

Clearing has no effect.

Always read as 0.

• PERREC: Pipe Error Interrupt Enable Clear

Set to clear PERRE.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – PFREEZEC PDISHDMAC

w w
0 0

15 14 13 12 11 10 9 8
– FIFOCONC – NBUSYBKEC – – – –

w w
0 0

7 6 5 4 3 2 1 0
SHORT

PACKETIEC
RXSTALLDEC/
CRCERREC OVERFIEC NAKEDEC PERREC TXSTPEC/

UNDERFIEC TXOUTEC RXINEC

w w w w w w w w
0 0 0 0 0 0 0 0

32058K AVR32-01/12

627

AT32UC3A

Clearing has no effect.

Always read as 0.

• NAKEDEC: NAKed Interrupt Enable Clear

Set to clear NAKEDE.

Clearing has no effect.

Always read as 0.

• OVERFIEC: Overflow Interrupt Enable Clear

Set to clear OVERFIE.

Clearing has no effect.

Always read as 0.

• RXSTALLDEC: Received STALLed Interrupt Enable Clear

Set to clear RXSTALLDE.

Clearing has no effect.

Always read as 0.

• CRCERREC: CRC Error Interrupt Enable Clear

Set to clear CRCERRE.

Clearing has no effect.

Always read as 0.

• SHORTPACKETIEC: Short Packet Interrupt Enable Clear

Set to clear SHORTPACKETIE.

Clearing has no effect.

Always read as 0.

• NBUSYBKEC: Number of Busy Banks Interrupt Enable Clear

Set to clear NBUSYBKE.

Clearing has no effect.

Always read as 0.

• FIFOCONC: FIFO Control Clear

Set to clear FIFOCON.

Clearing has no effect.

Always read as 0.

• PDISHDMAC: Pipe Interrupts Disable HDMA Request Enable Clear

Set to clear PDISHDMA.

Clearing has no effect.

Always read as 0.

• PFREEZEC: Pipe Freeze Clear

Set to clear PFREEZE.

32058K AVR32-01/12

628

AT32UC3A

Clearing has no effect.

Always read as 0.

32058K AVR32-01/12

629

AT32UC3A

30.8.3.18 USB Pipe X Control Set Register (UPCONXSET)

Offset: 0x05F0 + X . 0x04

Register Name: UPCONXSET, X in [0..6]

Access Type: Write-Only

Read Value: 0x00000000

• RXINES: Received IN Data Interrupt Enable Set

Set to set RXINE.

Clearing has no effect.

Always read as 0.

• TXOUTE: Transmitted OUT Data Interrupt Enable Set

Set to set RXINE.

Clearing has no effect.

Always read as 0.

• TXSTPES: Transmitted SETUP Interrupt Enable Set

Set to set TXSTPE.

Clearing has no effect.

Always read as 0.

• UNDERFIES: Underflow Interrupt Enable Set

Set to set UNDERFIE.

Clearing has no effect.

Always read as 0.

• PERRES: Pipe Error Interrupt Enable Set

Set to set PERRE.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – RSTDTS PFREEZES PDISHDMAS

w w w
0 0 0

15 14 13 12 11 10 9 8
– – – NBUSYBKES – – – –

w
0

7 6 5 4 3 2 1 0
SHORT

PACKETIES
RXSTALLDES/
CRCERRES OVERFIES NAKEDES PERRES TXSTPES/

UNDERFIES TXOUTES RXINES

w w w w w w w w
0 0 0 0 0 0 0 0

32058K AVR32-01/12

630

AT32UC3A

Clearing has no effect.

Always read as 0.

• NAKEDES: NAKed Interrupt Enable Set

Set to set NAKEDE.

Clearing has no effect.

Always read as 0.

• OVERFIES: Overflow Interrupt Enable Set

Set to set OVERFIE.

Clearing has no effect.

Always read as 0.

• RXSTALLDES: Received STALLed Interrupt Enable Set

Set to set RXSTALLDE.

Clearing has no effect.

Always read as 0.

• CRCERRES: CRC Error Interrupt Enable Set

Set to set CRCERRE.

Clearing has no effect.

Always read as 0.

• SHORTPACKETIES: Short Packet Interrupt Enable Set

Set to set SHORTPACKETIE.

Clearing has no effect.

Always read as 0.

• NBUSYBKES: Number of Busy Banks Interrupt Enable Set

Set to set NBUSYBKE.

Clearing has no effect.

Always read as 0.

• PDISHDMAS: Pipe Interrupts Disable HDMA Request Enable Set

Set to set PDISHDMA.

Clearing has no effect.

Always read as 0.

• PFREEZES: Pipe Freeze Set

Set to set PFREEZE.

Clearing has no effect.

Always read as 0.

• RSTDTS: Reset Data Toggle Set

Set to set RSTDT.

32058K AVR32-01/12

631

AT32UC3A

Clearing has no effect.

Always read as 0.

32058K AVR32-01/12

632

AT32UC3A

30.8.3.19 USB Pipe X IN Request Register (UPINRQX)

Offset: 0x0650 + X . 0x04

Register Name: UPINRQX, X in [0..6]

Access Type: Read/Write

Reset Value: 0x00000000

• INRQ: IN Request Number before Freeze

Enter the number of IN transactions before the USB controller freezes the pipe. The USB controller will perform (INRQ+1)
IN requests before to freeze the Pipe. This counter is automatically decreased by 1 each time a IN request has been suc-
cessfully performed.

This register has no effect when the INMODE bit is set (infinite IN requests generation till the pipe is not frozen).

• INMODE: IN Request Mode

Set this bit to allow the USB controller to perform infinite IN requests when the Pipe is not frozen.

Clear this bit to perform a pre-defined number of IN requests. This number is the INRQ field.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – INMODE

rw
0

7 6 5 4 3 2 1 0
INRQ
rwu

0 0 0 0 0 0 0 0

32058K AVR32-01/12

633

AT32UC3A

30.8.3.20 USB Pipe X Error Register (UPERRX)

Offset: 0x0680 + X . 0x04

Register Name: UPERRX, X in [0..6]

Access Type: Read/Write

Reset Value: 0x00000000

• DATATGL: Data Toggle Error

Set by hardware when a data toggle error has been detected.

Shall be cleared by software. Setting by software has no effect.

• DATAPID: Data PID Error

Set by hardware when a data PID error has been detected.

Shall be cleared by software. Setting by software has no effect.

• PID: PID Error

Set by hardware when a PID error has been detected.

Shall be cleared by software. Setting by software has no effect.

• TIMEOUT: Time-Out Error

Set by hardware when a Timeout error has been detected.

Shall be cleared by software. Setting by software has no effect.

• CRC16: CRC16 Error

Set by hardware when a CRC16 error has been detected.

Shall be cleared by software. Setting by software has no effect.

• COUNTER: Error Counter

Set by hardware when a CRC16 error has been detected.

Shall be cleared by software. Setting by software has no effect.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
– COUNTER CRC16 TIMEOUT PID DATAPID DATATGL

rwu rwu rwu rwu rwu rwu
0 0 0 0 0 0 0

32058K AVR32-01/12

634

AT32UC3A

30.8.3.21 USB Host DMA Channel X Next Descriptor Address Register (UHDMAX_NEXTDESC)

Offset: 0x0710 + (X - 1) . 0x10

Register Name: UHDMAX_NEXTDESC, X in [1..6]

Access Type: Read/Write

Reset Value: 0x00000000

Same as ”USB Device DMA Channel X Next Descriptor Address Register (UDDMAX_NEXTDESC)” on page 591.

31 30 29 28 27 26 25 24
NXT_DESC_ADDR

rwu
0 0 0 0 0 0 0 0

23 22 21 20 19 18 17 16
NXT_DESC_ADDR

rwu
0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8
NXT_DESC_ADDR

rwu
0 0 0 0 0 0 0 0

7 6 5 4 3 2 1 0
NXT_DESC_ADDR – – – –

rwu
0 0 0 0

32058K AVR32-01/12

635

AT32UC3A

30.8.3.22 USB Host DMA Channel X HSB Address Register (UHDMAX_ADDR)

Offset: 0x0714 + (X - 1) . 0x10

Register Name: UHDMAX_ADDR, X in [1..6]

Access Type: Read/Write

Reset Value: 0x00000000

Same as ”USB Device DMA Channel X HSB Address Register (UDDMAX_ADDR)” on page 592.

31 30 29 28 27 26 25 24
HSB_ADDR

rwu
0 0 0 0 0 0 0 0

23 22 21 20 19 18 17 16
HSB_ADDR

rwu
0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8
HSB_ADDR

rwu
0 0 0 0 0 0 0 0

7 6 5 4 3 2 1 0
HSB_ADDR

rwu
0 0 0 0 0 0 0 0

32058K AVR32-01/12

636

AT32UC3A

30.8.3.23 USB Host DMA Channel X Control Register (UHDMAX_CONTROL)

Offset: 0x0718 + (X - 1) . 0x10

Register Name: UHDMAX_CONTROL, X in [1..6]

Access Type: Read/Write

Reset Value: 0x00000000

Same as ”USB Device DMA Channel X Control Register (UDDMAX_CONTROL)” on page 593.

(just replace the IN endpoint term by OUT endpoint, and vice-versa)

31 30 29 28 27 26 25 24
CH_BYTE_LENGTH

rwu
0 0 0 0 0 0 0 0

23 22 21 20 19 18 17 16
CH_BYTE_LENGTH

rwu
0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
BURST_LOCK

_EN
DESC_LD_

IRQ_EN
EOBUFF_
IRQ_EN EOT_IRQ_EN DMAEND_EN BUFF_CLOSE

_IN_EN
LD_NXT_CH_

DESC_EN CH_EN

rwu rwu rwu rwu rwu rwu rwu rwu
0 0 0 0 0 0 0 0

32058K AVR32-01/12

637

AT32UC3A

30.8.3.24 USB Host DMA Channel X Status Register (UHDMAX_STATUS)

Offset: 0x071C + (X - 1) . 0x10

Register Name: UHDMAX_STATUS, X in [1..6]

Access Type: Read/Write

Reset Value: 0x00000000

Same as ”USB Device DMA Channel X Status Register (UDDMAX_STATUS)” on page 595.

31 30 29 28 27 26 25 24
CH_BYTE_CNT

ru
0 0 0 0 0 0 0 0

23 22 21 20 19 18 17 16
CH_BYTE_CNT

ru
0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0

– DESC_LD_
STA

EOCH_BUFF_
STA EOT_STA – – CH_ACTIVE CH_EN

ru ru ru rwu rwu
0 0 0 0 0

32058K AVR32-01/12

638

AT32UC3A

30.8.4 USB Pipe/Endpoint X FIFO Data Register (USB_FIFOX_DATA)

Note that this register can be accessed even if USBE = 0 or FRZCLK = 1. Disabling the USB controller (by clearing the
USBE bit) does not reset the DPRAM.

32058K AVR32-01/12

639

AT32UC3A

31. Timer/Counter (TC)

Rev: 2.2.2.1

31.1 Features

• Three 16-bit Timer Counter Channels
• A Wide Range of Functions Including:

– Frequency Measurement
– Event Counting
– Interval Measurement
– Pulse Generation
– Delay Timing
– Pulse Width Modulation
– Up/down Capabilities

• Each Channel is User-configurable and Contains:
– Three External Clock Inputs
– Five Internal Clock Inputs
– Two Multi-purpose Input/Output Signals

• Internal Interrupt Signal
• Two Global Registers that Act on All Three TC Channels

31.2 Description

The Timer Counter (TC) includes three identical 16-bit Timer Counter channels.

Each channel can be independently programmed to perform a wide range of functions including
frequency measurement, event counting, interval measurement, pulse generation, delay timing
and pulse width modulation.

Each channel has three external clock inputs, five internal clock inputs and two multi-purpose
input/output signals which can be configured by the user. Each channel drives an internal inter-
rupt signal which can be programmed to generate processor interrupts.

The Timer Counter block has two global registers which act upon all three TC channels.

The Block Control Register allows the three channels to be started simultaneously with the same
instruction.

The Block Mode Register defines the external clock inputs for each channel, allowing them to be
chained.

32058K AVR32-01/12

640

AT32UC3A

31.3 Block Diagram

Figure 31-1. Timer Counter Block Diagram

Table 31-1. Signal Name Description

Block/Channel Signal Name Description

Channel Signal

XC0, XC1, XC2 External Clock Inputs

TIOA Capture Mode: Timer Counter Input
Waveform Mode: Timer Counter Output

TIOB Capture Mode: Timer Counter Input
Waveform Mode: Timer Counter Input/Output

INT Interrupt Signal Output

SYNC Synchronization Input Signal

Timer/Counter
Channel 0

Timer/Counter
Channel 1

Timer/Counter
Channel 2

SYNC

Parallel I/O
Controller

TC1XC1S

TC0XC0S

TC2XC2S

INT0

INT1

INT2

TIOA0

TIOA1

TIOA2

TIOB0

TIOB1

TIOB2

XC0

XC1

XC2

XC0

XC1

XC2

XC0

XC1

XC2

TCLK0

TCLK1

TCLK2

TCLK0

TCLK1

TCLK2

TCLK0

TCLK1

TCLK2

TIOA1
TIOA2

TIOA0

TIOA2

TIOA0

TIOA1

Interrupt
Controller

TCLK0
TCLK1
TCLK2

TIOA0
TIOB0

TIOA1
TIOB1

TIOA2
TIOB2

Timer Counter

TIOA

TIOB

TIOA

TIOB

TIOA

TIOB

SYNC

SYNC

TIMER_CLOCK2

TIMER_CLOCK3

TIMER_CLOCK4

TIMER_CLOCK5

TIMER_CLOCK1

32058K AVR32-01/12

641

AT32UC3A

31.4 Pin Name List

31.5 Product Dependencies

31.5.1 I/O Lines

The pins used for interfacing the compliant external devices may be multiplexed with PIO lines.
The programmer must first program the PIO controllers to assign the TC pins to their peripheral
functions.

31.5.2 Debug operation

The Timer Counter clocks are frozen during debug operation, unless the OCD system keeps
peripherals running in debug operation.

31.5.3 Power Management

The Timer Counter clock is generated by the power manager. Before using the TC, the program-
mer must ensure that the TC clock is enabled in the power manager.

31.5.4 Interrupt

The TC has an interrupt line connected to the interrupt controller. Handling the TC interrupt
requires programming the interrupt controller before configuring the TC.

31.6 Functional Description

31.6.1 TC Description

The three channels of the Timer Counter are independent and identical in operation. The regis-
ters for channel programming are listed in Table 31-4 on page 654.

31.6.1.1 16-bit Counter

Each channel is organized around a 16-bit counter. The value of the counter is incremented at
each positive edge of the selected clock. When the counter has reached the value 0xFFFF and
passes to 0x0000, an overflow occurs and the COVFS bit in SR (Status Register) is set.

The current value of the counter is accessible in real time by reading the Counter Value Regis-
ter, CV. The counter can be reset by a trigger. In this case, the counter value passes to 0x0000
on the next valid edge of the selected clock.

31.6.1.2 Clock Selection

At block level, input clock signals of each channel can either be connected to the external inputs
TCLK0, TCLK1 or TCLK2, or be connected to the configurable I/O signals TIOA0, TIOA1 or
TIOA2 for chaining by programming the BMR (Block Mode). See Figure 31-2.

Table 31-2. TC pin list

Pin Name Description Type

TCLK0-TCLK2 External Clock Input Input

TIOA0-TIOA2 I/O Line A I/O

TIOB0-TIOB2 I/O Line B I/O

32058K AVR32-01/12

642

AT32UC3A

Each channel can independently select an internal or external clock source for its counter:

• Internal clock signals: TIMER_CLOCK1, TIMER_CLOCK2, TIMER_CLOCK3,
TIMER_CLOCK4, TIMER_CLOCK5. The Peripherals Chapter details the connection of these
clock sources.

• External clock signals: XC0, XC1 or XC2. The Peripherals Chapter details the connection of
these clock sources.

This selection is made by the TCCLKS bits in the TC Channel Mode Register .

The selected clock can be inverted with the CLKI bit in CMR. This allows counting on the oppo-
site edges of the clock.

The burst function allows the clock to be validated when an external signal is high. The BURST
parameter in the Mode Register defines this signal (none, XC0, XC1, XC2).

Note: In all cases, if an external clock is used, the duration of each of its levels must be longer than the
master clock period. The external clock frequency must be at least 2.5 times lower than the mas-
ter clock

Figure 31-2. Clock Selection

31.6.1.3 Clock Control

The clock of each counter can be controlled in two different ways: it can be enabled/disabled
and started/stopped. See Figure 31-3.

• The clock can be enabled or disabled by the user with the CLKEN and the CLKDIS commands
in the Control Register. In Capture Mode it can be disabled by an RB load event if LDBDIS is
set to 1 in CMR. In Waveform Mode, it can be disabled by an RC Compare event if CPCDIS is
set to 1 in CMR. When disabled, the start or the stop actions have no effect: only a CLKEN
command in the Control Register can re-enable the clock. When the clock is enabled, the
CLKSTA bit is set in the Status Register.

• The clock can also be started or stopped: a trigger (software, synchro, external or compare)
always starts the clock. The clock can be stopped by an RB load event in Capture Mode

TIMER_CLOCK1

TIMER_CLOCK2

TIMER_CLOCK3

TIMER_CLOCK4

TIMER_CLOCK5

XC0

XC1

XC2

TCCLKS

CLKI

BURST

1

Selected
Clock

32058K AVR32-01/12

643

AT32UC3A

(LDBSTOP = 1 in CMR) or a RC compare event in Waveform Mode (CPCSTOP = 1 in CMR).
The start and the stop commands have effect only if the clock is enabled.

Figure 31-3. Clock Control

31.6.1.4 TC Operating Modes

Each channel can independently operate in two different modes:

• Capture Mode provides measurement on signals.
• Waveform Mode provides wave generation.
The TC Operating Mode is programmed with the WAVE bit in the TC Channel Mode Register.

In Capture Mode, TIOA and TIOB are configured as inputs.

In Waveform Mode, TIOA is always configured to be an output and TIOB is an output if it is not
selected to be the external trigger.

31.6.1.5 Trigger

A trigger resets the counter and starts the counter clock. Three types of triggers are common to
both modes, and a fourth external trigger is available to each mode.

The following triggers are common to both modes:

• Software Trigger: Each channel has a software trigger, available by setting SWTRG in CCR.
• SYNC: Each channel has a synchronization signal SYNC. When asserted, this signal has the

same effect as a software trigger. The SYNC signals of all channels are asserted
simultaneously by writing BCR (Block Control) with SYNC set.

• Compare RC Trigger: RC is implemented in each channel and can provide a trigger when the
counter value matches the RC value if CPCTRG is set in CMR.

The channel can also be configured to have an external trigger. In Capture Mode, the external
trigger signal can be selected between TIOA and TIOB. In Waveform Mode, an external event
can be programmed on one of the following signals: TIOB, XC0, XC1 or XC2. This external
event can then be programmed to perform a trigger by setting ENETRG in CMR.

Q S
R

S

R

Q

CLKSTA CLKEN CLKDIS

Stop
Event

Disable
EventCounter

Clock

Selected
Clock Trigger

32058K AVR32-01/12

644

AT32UC3A

If an external trigger is used, the duration of the pulses must be longer than the master clock
period in order to be detected.

Regardless of the trigger used, it will be taken into account at the following active edge of the
selected clock. This means that the counter value can be read differently from zero just after a
trigger, especially when a low frequency signal is selected as the clock.

31.6.2 Capture Operating Mode

This mode is entered by clearing the WAVE parameter in CMR (Channel Mode Register).

Capture Mode allows the TC channel to perform measurements such as pulse timing, fre-
quency, period, duty cycle and phase on TIOA and TIOB signals which are considered as
inputs.

Figure 31-4 shows the configuration of the TC channel when programmed in Capture Mode.

31.6.2.1 Capture Registers A and B

Registers A and B (RA and RB) are used as capture registers. This means that they can be
loaded with the counter value when a programmable event occurs on the signal TIOA.

The LDRA parameter in CMR defines the TIOA edge for the loading of register A, and the LDRB
parameter defines the TIOA edge for the loading of Register B.

RA is loaded only if it has not been loaded since the last trigger or if RB has been loaded since
the last loading of RA.

RB is loaded only if RA has been loaded since the last trigger or the last loading of RB.

Loading RA or RB before the read of the last value loaded sets the Overrun Error Flag (LOVRS)
in SR (Status Register). In this case, the old value is overwritten.

31.6.2.2 Trigger Conditions

In addition to the SYNC signal, the software trigger and the RC compare trigger, an external trig-
ger can be defined.

The ABETRG bit in CMR selects TIOA or TIOB input signal as an external trigger. The
ETRGEDG parameter defines the edge (rising, falling or both) detected to generate an external
trigger. If ETRGEDG = 0 (none), the external trigger is disabled.

32058K AVR32-01/12

645

AT32UC3A

Figure 31-4. Capture Mode

TI
M

ER
_C

LO
C

K1
TI

M
ER

_C
LO

C
K2

TI
M

ER
_C

LO
C

K3
TI

M
ER

_C
LO

C
K4

TI
M

ER
_C

LO
C

K5

XC
0

XC
1

XC
2

TC
C

LK
S

C
LK

I

Q
S R

S R

Q

C
LK

ST
A

C
LK

EN
C

LK
D

IS

BU
R

ST

TI
O

B

R
eg

is
te

r C

C
ap

tu
re

R

eg
is

te
r A

C

ap
tu

re

R
eg

is
te

r B
C

om
pa

re
 R

C
 =

16
-b

it
C

ou
nt

er

AB
ET

R
G

SW
TR

G

ET
R

G
ED

G
C

PC
TR

G

TC1_IMR

Tr
ig

LDRBS

LDRAS

ETRGS

TC1_SR

LOVRS

COVFS

SY
N

C

1

M
TI

O
B

TI
O

A

M
TI

O
A

LD
R

A

LD
BS

TO
P

If
R

A
is

 n
ot

 lo
ad

ed

or
 R

B
is

 L
oa

de
d

If
R

A
is

 L
oa

de
d

LD
BD

IS

CPCS

IN
T

Ed
ge

D
et

ec
to

r

Ed
ge

D

et
ec

to
r

LD
R

B

Ed
ge

D

et
ec

to
r

C
LK

O
VF

R
ES

ET

Ti
m

er
/C

ou
nt

er
 C

ha
nn

el

32058K AVR32-01/12

646

AT32UC3A

31.6.3 Waveform Operating Mode

Waveform operating mode is entered by setting the WAVE parameter in CMR (Channel Mode
Register).

In Waveform Operating Mode the TC channel generates 1 or 2 PWM signals with the same fre-
quency and independently programmable duty cycles, or generates different types of one-shot
or repetitive pulses.

In this mode, TIOA is configured as an output and TIOB is defined as an output if it is not used
as an external event (EEVT parameter in CMR).

Figure 31-5 shows the configuration of the TC channel when programmed in Waveform Operat-
ing Mode.

31.6.3.1 Waveform Selection

Depending on the WAVSEL parameter in CMR (Channel Mode Register), the behavior of CV
varies.

With any selection, RA, RB and RC can all be used as compare registers.

RA Compare is used to control the TIOA output, RB Compare is used to control the TIOB output
(if correctly configured) and RC Compare is used to control TIOA and/or TIOB outputs.

32058K AVR32-01/12

647

AT32UC3A

Figure 31-5. Waveform Mode

TC
C

LK
S

C
LK

I

Q
S R

S R

Q

C
LK

S
TA

C
LK

E
N

C
LK

D
IS

C
P

C
D

IS

B
U

R
S

T

TI
O

B

R
eg

is
te

r A
R

eg
is

te
r B

R
eg

is
te

r C

C
om

pa
re

 R
A

 =

C
om

pa
re

 R
B

 =

C
om

pa
re

 R
C

 =

C
P

C
S

TO
P

16
-b

it
C

ou
nt

er

E
E

V
T

E
E

V
TE

D
G

S
Y

N
C

S
W

TR
G

E
N

E
TR

G

W
A

V
S

E
L

TC1_IMR
Tr

ig

A
C

P
C

A
C

P
A

A
E

E
V

T

A
S

W
TR

G

B
C

P
C

B
C

P
B

B
E

E
V

T

B
S

W
TR

G

TI
O

A

M
TI

O
A

TI
O

B

M
TI

O
B

CPAS

COVFS

ETRGS

TC1_SR

CPCS

CPBS
C

LK
O

V
F

R
E

S
E

T

Output Controller Output Controller

IN
T

1

E
dg

e
D

et
ec

to
r

Ti
m

er
/C

ou
nt

er
 C

ha
nn

el

TI
M

E
R

_C
LO

C
K

1
TI

M
E

R
_C

LO
C

K
2

TI
M

E
R

_C
LO

C
K

3
TI

M
E

R
_C

LO
C

K
4

TI
M

E
R

_C
LO

C
K

5

X
C

0
X

C
1

X
C

2

W
A

V
S

E
L

32058K AVR32-01/12

648

AT32UC3A

31.6.3.2 WAVSEL = 00

When WAVSEL = 00, the value of CV is incremented from 0 to 0xFFFF. Once 0xFFFF has been
reached, the value of CV is reset. Incrementation of CV starts again and the cycle continues.
See Figure 31-6.

An external event trigger or a software trigger can reset the value of CV. It is important to note
that the trigger may occur at any time. See Figure 31-7.

RC Compare cannot be programmed to generate a trigger in this configuration. At the same
time, RC Compare can stop the counter clock (CPCSTOP = 1 in CMR) and/or disable the coun-
ter clock (CPCDIS = 1 in CMR).

Figure 31-6. WAVSEL= 00 without trigger

Time

Counter Value

RC

RB

RA

TIOB

TIOA

Counter cleared by compare match with 0xFFFF

0xFFFF

Waveform Examples

32058K AVR32-01/12

649

AT32UC3A

Figure 31-7. WAVSEL= 00 with trigger

31.6.3.3 WAVSEL = 10

When WAVSEL = 10, the value of CV is incremented from 0 to the value of RC, then automati-
cally reset on a RC Compare. Once the value of CV has been reset, it is then incremented and
so on. See Figure 31-8.

It is important to note that CV can be reset at any time by an external event or a software trigger
if both are programmed correctly. See Figure 31-9.

In addition, RC Compare can stop the counter clock (CPCSTOP = 1 in CMR) and/or disable the
counter clock (CPCDIS = 1 in CMR).

Figure 31-8. WAVSEL = 10 Without Trigger

Time

Counter Value

RC

RB

RA

TIOB

TIOA

Counter cleared by compare match with 0xFFFF

0xFFFF

Waveform Examples

Counter cleared by trigger

Time

Counter Value

RC

RB

RA

TIOB

TIOA

Counter cleared by compare match with RC
0xFFFF

Waveform Examples

32058K AVR32-01/12

650

AT32UC3A

Figure 31-9. WAVSEL = 10 With Trigger

31.6.3.4 WAVSEL = 01

When WAVSEL = 01, the value of CV is incremented from 0 to 0xFFFF. Once 0xFFFF is
reached, the value of CV is decremented to 0, then re-incremented to 0xFFFF and so on. See
Figure 31-10.

A trigger such as an external event or a software trigger can modify CV at any time. If a trigger
occurs while CV is incrementing, CV then decrements. If a trigger is received while CV is decre-
menting, CV then increments. See Figure 31-11.

RC Compare cannot be programmed to generate a trigger in this configuration.

At the same time, RC Compare can stop the counter clock (CPCSTOP = 1) and/or disable the
counter clock (CPCDIS = 1).

Time

Counter Value

RC

RB

RA

TIOB

TIOA

Counter cleared by compare match with RC
0xFFFF

Waveform Examples

Counter cleared by trigger

32058K AVR32-01/12

651

AT32UC3A

Figure 31-10. WAVSEL = 01 Without Trigger

Figure 31-11. WAVSEL = 01 With Trigger

31.6.3.5 WAVSEL = 11

When WAVSEL = 11, the value of CV is incremented from 0 to RC. Once RC is reached, the
value of CV is decremented to 0, then re-incremented to RC and so on. See Figure 31-12.

A trigger such as an external event or a software trigger can modify CV at any time. If a trigger
occurs while CV is incrementing, CV then decrements. If a trigger is received while CV is decre-
menting, CV then increments. See Figure 31-13.

RC Compare can stop the counter clock (CPCSTOP = 1) and/or disable the counter clock
(CPCDIS = 1).

Time

Counter Value

RC

RB

RA

TIOB

TIOA

Counter decremented by compare match with 0xFFFF

0xFFFF

Waveform Examples

Time

Counter Value

TIOB

TIOA

Counter decremented by compare match with 0xFFFF

0xFFFF

Waveform Examples

Counter decremented
by trigger

Counter incremented
by trigger

RC

RB

RA

32058K AVR32-01/12

652

AT32UC3A

Figure 31-12. WAVSEL = 11 Without Trigger

Figure 31-13. WAVSEL = 11 With Trigger

31.6.3.6 External Event/Trigger Conditions

An external event can be programmed to be detected on one of the clock sources (XC0, XC1,
XC2) or TIOB. The external event selected can then be used as a trigger.

The EEVT parameter in CMR selects the external trigger. The EEVTEDG parameter defines the
trigger edge for each of the possible external triggers (rising, falling or both). If EEVTEDG is
cleared (none), no external event is defined.

Time

Counter Value

RC

RB

RA

TIOB

TIOA

Counter decremented by compare match with RC

0xFFFF

Waveform Examples

Time

Counter Value

TIOB

TIOA

Counter decremented by compare match with RC

0xFFFF

Waveform Examples

Counter decremented
by trigger

Counter incremented
by trigger

RC

RB

RA

32058K AVR32-01/12

653

AT32UC3A

If TIOB is defined as an external event signal (EEVT = 0), TIOB is no longer used as an output
and the compare register B is not used to generate waveforms and subsequently no IRQs. In
this case the TC channel can only generate a waveform on TIOA.

When an external event is defined, it can be used as a trigger by setting bit ENETRG in CMR.

As in Capture Mode, the SYNC signal and the software trigger are also available as triggers. RC
Compare can also be used as a trigger depending on the parameter WAVSEL.

31.6.3.7 Output Controller

The output controller defines the output level changes on TIOA and TIOB following an event.
TIOB control is used only if TIOB is defined as output (not as an external event).

The following events control TIOA and TIOB: software trigger, external event and RC compare.
RA compare controls TIOA and RB compare controls TIOB. Each of these events can be pro-
grammed to set, clear or toggle the output as defined in the corresponding parameter in CMR.

32058K AVR32-01/12

654

AT32UC3A

31.7 Timer Counter (TC) User Interface

BCR (Block Control Register) and BMR (Block Mode Register) control the whole TC block. TC
channels are controlled by the registers listed in Table 31-4. The offset of each of the channel
registers in Table 31-4 is in relation to the offset of the corresponding channel as mentioned in
Table 31-4.

Notes: 1. Read-only if WAVE = 0

Table 31-3. TC Global Memory Map

Offset Channel/Register Name Access Reset Value

0x00 TC Channel 0 See Table 31-4

0x40 TC Channel 1 See Table 31-4

0x80 TC Channel 2 See Table 31-4

0xC0 TC Block Control Register BCR Write-only –

0xC4 TC Block Mode Register BMR Read/Write 0

Table 31-4. TC Channel Memory Map

Offset Register Name Access Reset Value

0x00 Channel Control Register CCR Write-only –

0x04 Channel Mode Register CMR Read/Write 0

0x08 Reserved –

0x0C Reserved –

0x10 Counter Value CV Read-only 0

0x14 Register A RA Read/Write(1) 0

0x18 Register B RB Read/Write(1) 0

0x1C Register C RC Read/Write 0

0x20 Status Register SR Read-only 0

0x24 Interrupt Enable Register IER Write-only –

0x28 Interrupt Disable Register IDR Write-only –

0x2C Interrupt Mask Register IMR Read-only 0

32058K AVR32-01/12

655

AT32UC3A

31.7.1 TC Block Control Register

Register Name: BCR

Access Type: Write-only

• SYNC: Synchro Command

0 = No effect.

1 = Asserts the SYNC signal which generates a software trigger simultaneously for each of the channels.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
– – – – – – – SYNC

32058K AVR32-01/12

656

AT32UC3A

31.7.2 TC Block Mode Register

Register Name: BMR

Access Type: Read/Write

• TC0XC0S: External Clock Signal 0 Selection

• TC1XC1S: External Clock Signal 1 Selection

• TC2XC2S: External Clock Signal 2 Selection

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
– – TC2XC2S TC1XC1S TC0XC0S

TC0XC0S Signal Connected to XC0

0 0 TCLK0

0 1 none

1 0 TIOA1

1 1 TIOA2

TC1XC1S Signal Connected to XC1

0 0 TCLK1

0 1 none

1 0 TIOA0

1 1 TIOA2

TC2XC2S Signal Connected to XC2

0 0 TCLK2

0 1 none

1 0 TIOA0

1 1 TIOA1

32058K AVR32-01/12

657

AT32UC3A

31.7.3 TC Channel Control Register

Register Name: CCR

Access Type: Write-only

• CLKEN: Counter Clock Enable Command

0 = No effect.

1 = Enables the clock if CLKDIS is not 1.

• CLKDIS: Counter Clock Disable Command

0 = No effect.

1 = Disables the clock.

• SWTRG: Software Trigger Command

0 = No effect.

1 = A software trigger is performed: the counter is reset and the clock is started.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
– – – – – SWTRG CLKDIS CLKEN

32058K AVR32-01/12

658

AT32UC3A

31.7.4 TC Channel Mode Register: Capture Mode

Register Name: CMR

Access Type: Read/Write

• TCCLKS: Clock Selection

• CLKI: Clock Invert

0 = Counter is incremented on rising edge of the clock.

1 = Counter is incremented on falling edge of the clock.

• BURST: Burst Signal Selection

• LDBSTOP: Counter Clock Stopped with RB Loading

0 = Counter clock is not stopped when RB loading occurs.

1 = Counter clock is stopped when RB loading occurs.

• LDBDIS: Counter Clock Disable with RB Loading

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – LDRB LDRA

15 14 13 12 11 10 9 8
WAVE = 0 CPCTRG – – – ABETRG ETRGEDG

7 6 5 4 3 2 1 0
LDBDIS LDBSTOP BURST CLKI TCCLKS

TCCLKS Clock Selected

0 0 0 TIMER_CLOCK1

0 0 1 TIMER_CLOCK2

0 1 0 TIMER_CLOCK3

0 1 1 TIMER_CLOCK4

1 0 0 TIMER_CLOCK5

1 0 1 XC0

1 1 0 XC1

1 1 1 XC2

BURST

0 0 The clock is not gated by an external signal.

0 1 XC0 is ANDed with the selected clock.

1 0 XC1 is ANDed with the selected clock.

1 1 XC2 is ANDed with the selected clock.

32058K AVR32-01/12

659

AT32UC3A

0 = Counter clock is not disabled when RB loading occurs.

1 = Counter clock is disabled when RB loading occurs.

• ETRGEDG: External Trigger Edge Selection

• ABETRG: TIOA or TIOB External Trigger Selection

0 = TIOB is used as an external trigger.

1 = TIOA is used as an external trigger.

• CPCTRG: RC Compare Trigger Enable

0 = RC Compare has no effect on the counter and its clock.

1 = RC Compare resets the counter and starts the counter clock.

• WAVE

0 = Capture Mode is enabled.

1 = Capture Mode is disabled (Waveform Mode is enabled).

• LDRA: RA Loading Selection

• LDRB: RB Loading Selection

ETRGEDG Edge

0 0 none

0 1 rising edge

1 0 falling edge

1 1 each edge

LDRA Edge

0 0 none

0 1 rising edge of TIOA

1 0 falling edge of TIOA

1 1 each edge of TIOA

LDRB Edge

0 0 none

0 1 rising edge of TIOA

1 0 falling edge of TIOA

1 1 each edge of TIOA

32058K AVR32-01/12

660

AT32UC3A

31.7.5 TC Channel Mode Register: Waveform Mode

Register Name: CMR

Access Type: Read/Write

• TCCLKS: Clock Selection

• CLKI: Clock Invert

0 = Counter is incremented on rising edge of the clock.

1 = Counter is incremented on falling edge of the clock.

• BURST: Burst Signal Selection

• CPCSTOP: Counter Clock Stopped with RC Compare

0 = Counter clock is not stopped when counter reaches RC.

1 = Counter clock is stopped when counter reaches RC.

• CPCDIS: Counter Clock Disable with RC Compare

31 30 29 28 27 26 25 24
BSWTRG BEEVT BCPC BCPB

23 22 21 20 19 18 17 16
ASWTRG AEEVT ACPC ACPA

15 14 13 12 11 10 9 8
WAVE = 1 WAVSEL ENETRG EEVT EEVTEDG

7 6 5 4 3 2 1 0
CPCDIS CPCSTOP BURST CLKI TCCLKS

TCCLKS Clock Selected

0 0 0 TIMER_CLOCK1

0 0 1 TIMER_CLOCK2

0 1 0 TIMER_CLOCK3

0 1 1 TIMER_CLOCK4

1 0 0 TIMER_CLOCK5

1 0 1 XC0

1 1 0 XC1

1 1 1 XC2

BURST

0 0 The clock is not gated by an external signal.

0 1 XC0 is ANDed with the selected clock.

1 0 XC1 is ANDed with the selected clock.

1 1 XC2 is ANDed with the selected clock.

32058K AVR32-01/12

661

AT32UC3A

0 = Counter clock is not disabled when counter reaches RC.

1 = Counter clock is disabled when counter reaches RC.

• EEVTEDG: External Event Edge Selection

• EEVT: External Event Selection

Note: 1. If TIOB is chosen as the external event signal, it is configured as an input and no longer generates waveforms and subse-
quently no IRQs.

• ENETRG: External Event Trigger Enable

0 = The external event has no effect on the counter and its clock. In this case, the selected external event only controls the
TIOA output.

1 = The external event resets the counter and starts the counter clock.

• WAVSEL: Waveform Selection

• WAVE = 1

0 = Waveform Mode is disabled (Capture Mode is enabled).

1 = Waveform Mode is enabled.

EEVTEDG Edge

0 0 none

0 1 rising edge

1 0 falling edge

1 1 each edge

EEVT Signal selected as external event TIOB Direction

0 0 TIOB input(1)

0 1 XC0 output

1 0 XC1 output

1 1 XC2 output

WAVSEL Effect

0 0 UP mode without automatic trigger on RC Compare

1 0 UP mode with automatic trigger on RC Compare

0 1 UPDOWN mode without automatic trigger on RC Compare

1 1 UPDOWN mode with automatic trigger on RC Compare

32058K AVR32-01/12

662

AT32UC3A

• ACPA: RA Compare Effect on TIOA

• ACPC: RC Compare Effect on TIOA

• AEEVT: External Event Effect on TIOA

• ASWTRG: Software Trigger Effect on TIOA

• BCPB: RB Compare Effect on TIOB

ACPA Effect

0 0 none

0 1 set

1 0 clear

1 1 toggle

ACPC Effect

0 0 none

0 1 set

1 0 clear

1 1 toggle

AEEVT Effect

0 0 none

0 1 set

1 0 clear

1 1 toggle

ASWTRG Effect

0 0 none

0 1 set

1 0 clear

1 1 toggle

BCPB Effect

0 0 none

32058K AVR32-01/12

663

AT32UC3A

• BCPC: RC Compare Effect on TIOB

• BEEVT: External Event Effect on TIOB

• BSWTRG: Software Trigger Effect on TIOB

0 1 set

1 0 clear

1 1 toggle

BCPC Effect

0 0 none

0 1 set

1 0 clear

1 1 toggle

BEEVT Effect

0 0 none

0 1 set

1 0 clear

1 1 toggle

BSWTRG Effect

0 0 none

0 1 set

1 0 clear

1 1 toggle

BCPB Effect

32058K AVR32-01/12

664

AT32UC3A

31.7.6 TC Counter Value Register

Register Name: CV

Access Type: Read-only

• CV: Counter Value

CV contains the counter value in real time.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
CV

7 6 5 4 3 2 1 0
CV

32058K AVR32-01/12

665

AT32UC3A

31.7.7 TC Register A

Register Name: RA

Access Type: Read-only if WAVE = 0, Read/Write if WAVE = 1

• RA: Register A

RA contains the Register A value in real time.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
RA

7 6 5 4 3 2 1 0
RA

32058K AVR32-01/12

666

AT32UC3A

31.7.8 TC Register B

Register Name: RB

Access Type: Read-only if WAVE = 0, Read/Write if WAVE = 1

• RB: Register B

RB contains the Register B value in real time.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
RB

7 6 5 4 3 2 1 0
RB

32058K AVR32-01/12

667

AT32UC3A

31.7.9 TC Register C

Register Name: RC

Access Type: Read/Write

• RC: Register C

RC contains the Register C value in real time.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
RC

7 6 5 4 3 2 1 0
RC

32058K AVR32-01/12

668

AT32UC3A

31.7.10 TC Status Register

Register Name: SR

Access Type: Read-only

Note: Reading the Status Register will also clear the interrupt flag for the corresponding interrupts.

• COVFS: Counter Overflow Status

0 = No counter overflow has occurred since the last read of the Status Register.

1 = A counter overflow has occurred since the last read of the Status Register.

• LOVRS: Load Overrun Status

0 = Load overrun has not occurred since the last read of the Status Register or WAVE = 1.

1 = RA or RB have been loaded at least twice without any read of the corresponding register since the last read of the Sta-
tus Register, if WAVE = 0.

• CPAS: RA Compare Status

0 = RA Compare has not occurred since the last read of the Status Register or WAVE = 0.

1 = RA Compare has occurred since the last read of the Status Register, if WAVE = 1.

• CPBS: RB Compare Status

0 = RB Compare has not occurred since the last read of the Status Register or WAVE = 0.

1 = RB Compare has occurred since the last read of the Status Register, if WAVE = 1.

• CPCS: RC Compare Status

0 = RC Compare has not occurred since the last read of the Status Register.

1 = RC Compare has occurred since the last read of the Status Register.

• LDRAS: RA Loading Status

0 = RA Load has not occurred since the last read of the Status Register or WAVE = 1.

1 = RA Load has occurred since the last read of the Status Register, if WAVE = 0.

• LDRBS: RB Loading Status

0 = RB Load has not occurred since the last read of the Status Register or WAVE = 1.

1 = RB Load has occurred since the last read of the Status Register, if WAVE = 0.

• ETRGS: External Trigger Status

0 = External trigger has not occurred since the last read of the Status Register.

1 = External trigger has occurred since the last read of the Status Register.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – MTIOB MTIOA CLKSTA

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
ETRGS LDRBS LDRAS CPCS CPBS CPAS LOVRS COVFS

32058K AVR32-01/12

669

AT32UC3A

• CLKSTA: Clock Enabling Status

0 = Clock is disabled.

1 = Clock is enabled.

• MTIOA: TIOA Mirror

0 = TIOA is low. If WAVE = 0, this means that TIOA pin is low. If WAVE = 1, this means that TIOA is driven low.

1 = TIOA is high. If WAVE = 0, this means that TIOA pin is high. If WAVE = 1, this means that TIOA is driven high.

• MTIOB: TIOB Mirror

0 = TIOB is low. If WAVE = 0, this means that TIOB pin is low. If WAVE = 1, this means that TIOB is driven low.

1 = TIOB is high. If WAVE = 0, this means that TIOB pin is high. If WAVE = 1, this means that TIOB is driven high.

32058K AVR32-01/12

670

AT32UC3A

31.7.11 TC Interrupt Enable Register

Register Name: IER

Access Type: Write-only

Note: Reading the Status Register will also clear the interrupt flag for the corresponding interrupts.

• COVFS: Counter Overflow

0 = No effect.

1 = Enables the Counter Overflow Interrupt.

• LOVRS: Load Overrun

0 = No effect.

1 = Enables the Load Overrun Interrupt.

• CPAS: RA Compare

0 = No effect.

1 = Enables the RA Compare Interrupt.

• CPBS: RB Compare

0 = No effect.

1 = Enables the RB Compare Interrupt.

• CPCS: RC Compare

0 = No effect.

1 = Enables the RC Compare Interrupt.

• LDRAS: RA Loading

0 = No effect.

1 = Enables the RA Load Interrupt.

• LDRBS: RB Loading

0 = No effect.

1 = Enables the RB Load Interrupt.

• ETRGS: External Trigger

0 = No effect.

1 = Enables the External Trigger Interrupt.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
ETRGS LDRBS LDRAS CPCS CPBS CPAS LOVRS COVFS

32058K AVR32-01/12

671

AT32UC3A

31.7.12 TC Interrupt Disable Register

Register Name: IDR

Access Type: Write-only

Note: Reading the Status Register will also clear the interrupt flag for the corresponding interrupts.

• COVFS: Counter Overflow

0 = No effect.

1 = Disables the Counter Overflow Interrupt.

• LOVRS: Load Overrun

0 = No effect.

1 = Disables the Load Overrun Interrupt (if WAVE = 0).

• CPAS: RA Compare

0 = No effect.

1 = Disables the RA Compare Interrupt (if WAVE = 1).

• CPBS: RB Compare

0 = No effect.

1 = Disables the RB Compare Interrupt (if WAVE = 1).

• CPCS: RC Compare

0 = No effect.

1 = Disables the RC Compare Interrupt.

• LDRAS: RA Loading

0 = No effect.

1 = Disables the RA Load Interrupt (if WAVE = 0).

• LDRBS: RB Loading

0 = No effect.

1 = Disables the RB Load Interrupt (if WAVE = 0).

• ETRGS: External Trigger

0 = No effect.

1 = Disables the External Trigger Interrupt.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
ETRGS LDRBS LDRAS CPCS CPBS CPAS LOVRS COVFS

32058K AVR32-01/12

672

AT32UC3A

31.7.13 TC Interrupt Mask Register

Register Name: IMR

Access Type: Read-only

Note: Reading the Status Register will also clear the interrupt flag for the corresponding interrupts.

• COVFS: Counter Overflow

0 = The Counter Overflow Interrupt is disabled.

1 = The Counter Overflow Interrupt is enabled.

• LOVRS: Load Overrun

0 = The Load Overrun Interrupt is disabled.

1 = The Load Overrun Interrupt is enabled.

• CPAS: RA Compare

0 = The RA Compare Interrupt is disabled.

1 = The RA Compare Interrupt is enabled.

• CPBS: RB Compare

0 = The RB Compare Interrupt is disabled.

1 = The RB Compare Interrupt is enabled.

• CPCS: RC Compare

0 = The RC Compare Interrupt is disabled.

1 = The RC Compare Interrupt is enabled.

• LDRAS: RA Loading

0 = The Load RA Interrupt is disabled.

1 = The Load RA Interrupt is enabled.

• LDRBS: RB Loading

0 = The Load RB Interrupt is disabled.

1 = The Load RB Interrupt is enabled.

• ETRGS: External Trigger

0 = The External Trigger Interrupt is disabled.

1 = The External Trigger Interrupt is enabled.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
ETRGS LDRBS LDRAS CPCS CPBS CPAS LOVRS COVFS

32058K AVR32-01/12

673

AT32UC3A

32. Pulse Width Modulation Controller (PWM)

Rev: 1.3.0.1

32.1 Features

• 7 Channels
• One 20-bit Counter Per Channel
• Common Clock Generator Providing Thirteen Different Clocks

– A Modulo n Counter Providing Eleven Clocks
– Two Independent Linear Dividers Working on Modulo n Counter Outputs

• Independent Channels
– Independent Enable Disable Command for Each Channel
– Independent Clock Selection for Each Channel
– Independent Period and Duty Cycle for Each Channel
– Double Buffering of Period or Duty Cycle for Each Channel
– Programmable Selection of The Output Waveform Polarity for Each Channel
– Programmable Center or Left Aligned Output Waveform for Each Channel

32.2 Description

The PWM macrocell controls several channels independently. Each channel controls one
square output waveform. Characteristics of the output waveform such as period, duty-cycle and
polarity are configurable through the user interface. Each channel selects and uses one of the
clocks provided by the clock generator. The clock generator provides several clocks resulting
from the division of the PWM macrocell master clock.

All PWM macrocell accesses are made through registers mapped on the peripheral bus.

Channels can be synchronized, to generate non overlapped waveforms. All channels integrate a
double buffering system in order to prevent an unexpected output waveform while modifying the
period or the duty-cycle.

32058K AVR32-01/12

674

AT32UC3A

32.3 Block Diagram

Figure 32-1. Pulse Width Modulation Controller Block Diagram

32.4 I/O Lines Description

Each channel outputs one waveform on one external I/O line.

PWM
Controller

Peripheral
Bus

PWMx

PWMx

PWMx
Channel

Update

Duty Cycle

Counter

PWM0
Channel

PIO

Interrupt
Controller

Power
Manager

MCK
Clock Generator PB Interface Interrupt Generator

Clock
Selector

Period

Comparator

Update

Duty Cycle

Counter
Clock

Selector

Period

Comparator

PWM0

PWM0

Table 32-1. I/O Line Description

Name Description Type

PWMx PWM Waveform Output for channel x Output

32058K AVR32-01/12

675

AT32UC3A

32.5 Product Dependencies

32.5.1 I/O Lines

The pins used for interfacing the PWM may be multiplexed with PIO lines. The programmer must
first program the PIO controller to assign the desired PWM pins to their peripheral function. If I/O
lines of the PWM are not used by the application, they can be used for other purposes by the
PIO controller.

Not all PWM outputs may be enabled. If an application requires only four channels, then only
four PIO lines will be assigned to PWM outputs.

32.5.2 Debug operation

The PWM clock is running during debug operation.

32.5.3 Power Management

The PWM clock is generated by the Power Manager. Before using the PWM, the programmer
must ensure that the PWM clock is enabled in the Power Manager. However, if the application
does not require PWM operations, the PWM clock can be stopped when not needed and be
restarted later. In this case, the PWM will resume its operations where it left off.

In the PWM description, Master Clock (MCK) is the clock of the peripheral bus to which the
PWM is connected.

32.5.4 Interrupt Sources

The PWM interrupt line is connected to the interrupt controller. Using the PWM interrupt requires
the interrupt controller to be programmed first.

32058K AVR32-01/12

676

AT32UC3A

32.6 Functional Description

The PWM macrocell is primarily composed of a clock generator module and 7 channels.

– Clocked by the system clock, MCK, the clock generator module provides 13 clocks.
– Each channel can independently choose one of the clock generator outputs.
– Each channel generates an output waveform with attributes that can be defined

independently for each channel through the user interface registers.

32.6.1 PWM Clock Generator

Figure 32-2. Functional View of the Clock Generator Block Diagram

Caution: Before using the PWM macrocell, the programmer must ensure that the PWM clock in
the Power Manager is enabled.

The PWM macrocell master clock, MCK, is divided in the clock generator module to provide dif-
ferent clocks available for all channels. Each channel can independently select one of the
divided clocks.

modulo n counter
MCK

MCK/2
MCK/4

MCK/16
MCK/32
MCK/64

MCK/8

Divider A clkA

DIVA

PWM_MR

MCK

MCK/128
MCK/256
MCK/512
MCK/1024

PREA

Divider B clkB

DIVB

PWM_MR

PREB

32058K AVR32-01/12

677

AT32UC3A

The clock generator is divided in three blocks:

– a modulo n counter which provides 11 clocks: FMCK, FMCK/2, FMCK/4, FMCK/8, FMCK/16,
FMCK/32, FMCK/64, FMCK/128, FMCK/256, FMCK/512, FMCK/1024

– two linear dividers (1, 1/2, 1/3, ... 1/255) that provide two separate clocks: clkA and
clkB

Each linear divider can independently divide one of the clocks of the modulo n counter. The
selection of the clock to be divided is made according to the PREA (PREB) field of the PWM
Mode register (MR). The resulting clock clkA (clkB) is the clock selected divided by DIVA (DIVB)
field value in the PWM Mode register (MR).

After a reset of the PWM controller, DIVA (DIVB) and PREA (PREB) in the PWM Mode register
are set to 0. This implies that after reset clkA (clkB) are turned off.

At reset, all clocks provided by the modulo n counter are turned off except clock “clk”. This situa-
tion is also true when the PWM master clock is turned off through the Power Management
Controller.

32.6.2 PWM Channel

32.6.2.1 Block Diagram

Figure 32-3. Functional View of the Channel Block Diagram

Each of the 7 channels is composed of three blocks:

• A clock selector which selects one of the clocks provided by the clock generator described in
Section 32.6.1 ”PWM Clock Generator” on page 676.

• An internal counter clocked by the output of the clock selector. This internal counter is
incremented or decremented according to the channel configuration and comparators events.
The size of the internal counter is 20 bits.

• A comparator used to generate events according to the internal counter value. It also computes
the PWMx output waveform according to the configuration.

32.6.2.2 Waveform Properties

The different properties of output waveforms are:

• the internal clock selection. The internal channel counter is clocked by one of the clocks
provided by the clock generator described in the previous section. This channel parameter is
defined in the CPRE field of the CMRx register. This field is reset at 0.

• the waveform period. This channel parameter is defined in the CPRD field of the CPRDx
register.

Comparator PWMx output waveform
Internal
Counter

Clock
Selector

inputs
from clock
generator

inputs from
Peripheral

Bus

Channel

32058K AVR32-01/12

678

AT32UC3A

- If the waveform is left aligned, then the output waveform period depends on the counter
source clock and can be calculated:
By using the Master Clock (MCK) divided by an X given prescaler value
(with X being 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, or 1024), the resulting period formula will be:

By using a Master Clock divided by one of both DIVA or DIVB divider, the formula becomes,
respectively:

 or

If the waveform is center aligned then the output waveform period depends on the counter
source clock and can be calculated:
By using the Master Clock (MCK) divided by an X given prescaler value
(with X being 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, or 1024). The resulting period formula will
be:

By using a Master Clock divided by one of both DIVA or DIVB divider, the formula becomes,
respectively:

 or

• the waveform duty cycle. This channel parameter is defined in the CDTY field of the CDTYx
register.
If the waveform is left aligned then:

If the waveform is center aligned, then:

• the waveform polarity. At the beginning of the period, the signal can be at high or low level.
This property is defined in the CPOL field of the CMRx register. By default the signal starts by
a low level.

• the waveform alignment. The output waveform can be left or center aligned. Center aligned
waveforms can be used to generate non overlapped waveforms. This property is defined in the
CALG field of the CMRx register. The default mode is left aligned.

X CPRD×()
MCK

CRPD DIVA×()
MCK

-- CRPD DIVAB×()
MCK

--

2 X CPRD××()
MCK

--

2 CPRD DIVA××()
MCK

--- 2 CPRD× DIVB×()
MCK

duty cycle period 1 fchannel_x_clock CDTY×⁄–()
period

---=

duty cycle period 2⁄() 1 fchannel_x_clock CDTY×⁄–())
period 2⁄()

--=

32058K AVR32-01/12

679

AT32UC3A

Figure 32-4. Non Overlapped Center Aligned Waveforms

Note: 1. See Figure 32-5 on page 680 for a detailed description of center aligned waveforms.
When center aligned, the internal channel counter increases up to CPRD and.decreases down
to 0. This ends the period.

When left aligned, the internal channel counter increases up to CPRD and is reset. This ends
the period.

Thus, for the same CPRD value, the period for a center aligned channel is twice the period for a
left aligned channel.

Waveforms are fixed at 0 when:

• CDTY = CPRD and CPOL = 0

• CDTY = 0 and CPOL = 1

Waveforms are fixed at 1 (once the channel is enabled) when:

• CDTY = 0 and CPOL = 0

• CDTY = CPRD and CPOL = 1

The waveform polarity must be set before enabling the channel. This immediately affects the
channel output level. Changes on channel polarity are not taken into account while the channel
is enabled.

PWM0

PWM1

Period

No overlap

32058K AVR32-01/12

680

AT32UC3A

Figure 32-5. Waveform Properties

PWM_MCKx

CHIDx(PWM_SR)

Center Aligned

CPRD(PWM_CPRDx)

CDTY(PWM_CDTYx)

PWM_CCNTx

Output Waveform PWMx
CPOL(PWM_CMRx) = 0

Output Waveform PWMx
CPOL(PWM_CMRx) = 1

CHIDx(PWM_ISR)

Left Aligned

CPRD(PWM_CPRDx)

CDTY(PWM_CDTYx)

PWM_CCNTx

Output Waveform PWMx
CPOL(PWM_CMRx) = 0

 Output Waveform PWMx
CPOL(PWM_CMRx) = 1

CHIDx(PWM_ISR)

CALG(PWM_CMRx) = 0

CALG(PWM_CMRx) = 1

Period

Period

CHIDx(PWM_ENA)

CHIDx(PWM_DIS)

32058K AVR32-01/12

681

AT32UC3A

32.6.3 PWM Controller Operations

32.6.3.1 Initialization

Before enabling the output channel, this channel must have been configured by the software
application:

• Configuration of the clock generator if DIVA and DIVB are required
• Selection of the clock for each channel (CPRE field in the CMRx register)
• Configuration of the waveform alignment for each channel (CALG field in the CMRx register)
• Configuration of the period for each channel (CPRD in the CPRDx register). Writing in CPRDx

Register is possible while the channel is disabled. After validation of the channel, the user must
use CUPDx Register to update CPRDx as explained below.

• Configuration of the duty cycle for each channel (CDTY in the CDTYx register). Writing in
CDTYx Register is possible while the channel is disabled. After validation of the channel, the
user must use CUPDx Register to update CDTYx as explained below.

• Configuration of the output waveform polarity for each channel (CPOL in the CMRx register)
• Enable Interrupts (Writing CHIDx in the IER register)
• Enable the PWM channel (Writing CHIDx in the ENA register)
It is possible to synchronize different channels by enabling them at the same time by means of
writing simultaneously several CHIDx bits in the ENA register.

In such a situation, all channels may have the same clock selector configuration and the same
period specified.

32.6.3.2 Source Clock Selection Criteria

The large number of source clocks can make selection difficult. The relationship between the
value in the Period Register (CPRDx) and the Duty Cycle Register (CDTYx) can help the user in
choosing. The event number written in the Period Register gives the PWM accuracy. The Duty
Cycle quantum cannot be lower than 1/CPRDx value. The higher the value of CPRDx, the
greater the PWM accuracy.

For example, if the user sets 15 (in decimal) in CPRDx, the user is able to set a value between 1
up to 14 in CDTYx Register. The resulting duty cycle quantum cannot be lower than 1/15 of the
PWM period.

32.6.3.3 Changing the Duty Cycle or the Period

It is possible to modulate the output waveform duty cycle or period.

To prevent unexpected output waveform, the user must use the update register (PWM_CUPDx)
to change waveform parameters while the channel is still enabled. The user can write a new
period value or duty cycle value in the update register (CUPDx). This register holds the new
value until the end of the current cycle and updates the value for the next cycle. Depending on
the CPD field in the CMRx register, CUPDx either updates CPRDx or CDTYx. Note that even if
the update register is used, the period must not be smaller than the duty cycle.

32058K AVR32-01/12

682

AT32UC3A

Figure 32-6. Synchronized Period or Duty Cycle Update

To prevent overwriting the CUPDx by software, the user can use status events in order to syn-
chronize his software. Two methods are possible. In both, the user must enable the dedicated
interrupt in IER at PWM Controller level.

The first method (polling method) consists of reading the relevant status bit in ISR Register
according to the enabled channel(s). See Figure 32-7.

The second method uses an Interrupt Service Routine associated with the PWM channel.

Note: Reading the ISR register automatically clears CHIDx flags.

Figure 32-7. Polling Method

Note: Polarity and alignment can be modified only when the channel is disabled.

PWM_CUPDx Value

PWM_CPRDx PWM_CDTYx

End of Cycle

PWM_CMRx. CPD

User's Writing

1 0

Writing in PWM_CUPDx
The last write has been taken into account

CHIDx = 1

Writing in CPD field
Update of the Period or Duty Cycle

PWM_ISR Read
Acknowledgement and clear previous register state

YES

32058K AVR32-01/12

683

AT32UC3A

32.6.3.4 Interrupts

Depending on the interrupt mask in the IMR register, an interrupt is generated at the end of the
corresponding channel period. The interrupt remains active until a read operation in the ISR reg-
ister occurs.

A channel interrupt is enabled by setting the corresponding bit in the IER register. A channel
interrupt is disabled by setting the corresponding bit in the IDR register.

32058K AVR32-01/12

684

AT32UC3A

32.7 Pulse Width Modulation (PWM) Controller User Interface

32.7.1 Register Mapping

Table 32-2. PWM Controller Registers

Offset Register Name Access
Peripheral

Reset Value

0x00 PWM Mode Register MR Read/Write 0

0x04 PWM Enable Register ENA Write-only -

0x08 PWM Disable Register DIS Write-only -

0x0C PWM Status Register SR Read-only 0

0x10 PWM Interrupt Enable Register IER Write-only -

0x14 PWM Interrupt Disable Register IDR Write-only -

0x18 PWM Interrupt Mask Register IMR Read-only 0

0x1C PWM Interrupt Status Register ISR Read-only 0

0x4C - 0xF8 Reserved – – –

0x4C - 0xFC Reserved – – –

0x100 - 0x1FC Reserved

0x200 Channel 0 Mode Register CMR0 Read/Write 0x0

0x204 Channel 0 Duty Cycle Register CDTY0 Read/Write 0x0

0x208 Channel 0 Period Register CPRD0 Read/Write 0x0

0x20C Channel 0 Counter Register CCNT0 Read-only 0x0

0x210 Channel 0 Update Register CUPD0 Write-only -

... Reserved

0x220 Channel 1 Mode Register CMR1 Read/Write 0x0

0x224 Channel 1 Duty Cycle Register CDTY1 Read/Write 0x0

0x228 Channel 1 Period Register CPRD1 Read/Write 0x0

0x22C Channel 1 Counter Register CCNT1 Read-only 0x0

0x230 Channel 1 Update Register CUPD1 Write-only -

...

32058K AVR32-01/12

685

AT32UC3A

32.7.2 PWM Mode Register

Register Name: MR

Access Type: Read/Write

• DIVA, DIVB: CLKA, CLKB Divide Factor

• PREA, PREB

31 30 29 28 27 26 25 24
– – – – PREB

23 22 21 20 19 18 17 16
DIVB

15 14 13 12 11 10 9 8
– – – – PREA

7 6 5 4 3 2 1 0
DIVA

DIVA, DIVB CLKA, CLKB

0 CLKA, CLKB clock is turned off

1 CLKA, CLKB clock is clock selected by PREA, PREB

2-255 CLKA, CLKB clock is clock selected by PREA, PREB divided by DIVA, DIVB factor.

PREA, PREB Divider Input Clock

0 0 0 0 MCK.

0 0 0 1 MCK/2

0 0 1 0 MCK/4

0 0 1 1 MCK/8

0 1 0 0 MCK/16

0 1 0 1 MCK/32

0 1 1 0 MCK/64

0 1 1 1 MCK/128

1 0 0 0 MCK/256

1 0 0 1 MCK/512

1 0 1 0 MCK/1024

Other Reserved

32058K AVR32-01/12

686

AT32UC3A

32.7.3 PWM Enable Register

Register Name: ENA

Access Type: Write-only

• CHIDx: Channel ID

0 = No effect.

1 = Enable PWM output for channel x.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
– CHID6 CHID5 CHID4 CHID3 CHID2 CHID1 CHID0

32058K AVR32-01/12

687

AT32UC3A

32.7.4 PWM Disable Register

Register Name: DIS

Access Type: Write-only

• CHIDx: Channel ID

0 = No effect.

1 = Disable PWM output for channel x.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
– CHID6 CHID5 CHID4 CHID3 CHID2 CHID1 CHID0

32058K AVR32-01/12

688

AT32UC3A

32.7.5 PWM Status Register

Register Name: SR

Access Type: Read-only

• CHIDx: Channel ID

0 = PWM output for channel x is disabled.

1 = PWM output for channel x is enabled.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
– CHID6 CHID5 CHID4 CHID3 CHID2 CHID1 CHID0

32058K AVR32-01/12

689

AT32UC3A

32.7.6 PWM Interrupt Enable Register

Register Name: IER

Access Type: Write-only

• CHIDx: Channel ID.

0 = No effect.

1 = Enable interrupt for PWM channel x.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
– CHID6 CHID5 CHID4 CHID3 CHID2 CHID1 CHID0

32058K AVR32-01/12

690

AT32UC3A

32.7.7 PWM Interrupt Disable Register

Register Name: IDR

Access Type: Write-only

• CHIDx: Channel ID.

0 = No effect.

1 = Disable interrupt for PWM channel x.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
– CHID6 CHID5 CHID4 CHID3 CHID2 CHID1 CHID0

32058K AVR32-01/12

691

AT32UC3A

32.7.8 PWM Interrupt Mask Register

Register Name: IMR

Access Type: Read-only

• CHIDx: Channel ID.

0 = Interrupt for PWM channel x is disabled.

1 = Interrupt for PWM channel x is enabled.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
– CHID6 CHID5 CHID4 CHID3 CHID2 CHID1 CHID0

32058K AVR32-01/12

692

AT32UC3A

32.7.9 PWM Interrupt Status Register

Register Name: ISR

Access Type: Read-only

• CHIDx: Channel ID

0 = No new channel period since the last read of the ISR register.

1 = At least one new channel period since the last read of the ISR register.

Note: Reading ISR automatically clears CHIDx flags.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
– CHID6 CHID5 CHID4 CHID3 CHID2 CHID1 CHID0

32058K AVR32-01/12

693

AT32UC3A

32.7.10 PWM Channel Mode Register

Register Name: CMRx

Access Type: Read/Write

• CPRE: Channel Pre-scaler

• CALG: Channel Alignment

0 = The period is left aligned.

1 = The period is center aligned.

• CPOL: Channel Polarity

0 = The output waveform starts at a low level.

1 = The output waveform starts at a high level.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – CPD CPOL CALG

7 6 5 4 3 2 1 0
– – – – CPRE

CPRE Channel Pre-scaler

0 0 0 0 MCK

0 0 0 1 MCK/2

0 0 1 0 MCK/4

0 0 1 1 MCK/8

0 1 0 0 MCK/16

0 1 0 1 MCK/32

0 1 1 0 MCK/64

0 1 1 1 MCK/128

1 0 0 0 MCK/256

1 0 0 1 MCK/512

1 0 1 0 MCK/1024

1 0 1 1 CLKA

1 1 0 0 CLKB

Other Reserved

32058K AVR32-01/12

694

AT32UC3A

• CPD: Channel Update Period

0 = Writing to the CUPDx will modify the duty cycle at the next period start event.

1 = Writing to the CUPDx will modify the period at the next period start event.

32058K AVR32-01/12

695

AT32UC3A

32.7.11 PWM Channel Duty Cycle Register

Register Name: CDTYx

Access Type: Read/Write

Only the first 20 bits (internal channel counter size) are significant.

• CDTY: Channel Duty Cycle

Defines the waveform duty cycle. This value must be defined between 0 and CPRD (CPRx).

31 30 29 28 27 26 25 24
CDTY

23 22 21 20 19 18 17 16
CDTY

15 14 13 12 11 10 9 8
CDTY

7 6 5 4 3 2 1 0
CDTY

32058K AVR32-01/12

696

AT32UC3A

32.7.12 PWM Channel Period Register

Register Name: CPRDx

Access Type: Read/Write

Only the first 20 bits (internal channel counter size) are significant.

• CPRD: Channel Period

If the waveform is left-aligned, then the output waveform period depends on the counter source clock and can be
calculated:

– By using the Master Clock (MCK) divided by an X given prescaler value (with X being
1, 2, 4, 8, 16, 32, 64, 128, 256, 512, or 1024). The resulting period formula will be:

– By using a Master Clock divided by one of both DIVA or DIVB divider, the formula
becomes, respectively:

 or

If the waveform is center-aligned, then the output waveform period depends on the counter source clock and can be
calculated:

– By using the Master Clock (MCK) divided by an X given prescaler value (with X being
1, 2, 4, 8, 16, 32, 64, 128, 256, 512, or 1024). The resulting period formula will be:

– By using a Master Clock divided by one of both DIVA or DIVB divider, the formula
becomes, respectively:

 or

31 30 29 28 27 26 25 24
CPRD

23 22 21 20 19 18 17 16
CPRD

15 14 13 12 11 10 9 8
CPRD

7 6 5 4 3 2 1 0
CPRD

X CPRD×()
MCK

CRPD DIVA×()
MCK

-- CRPD DIVAB×()
MCK

--

2 X CPRD××()
MCK

--

2 CPRD DIVA××()
MCK

--- 2 CPRD× DIVB×()
MCK

32058K AVR32-01/12

697

AT32UC3A

32.7.13 PWM Channel Counter Register

Register Name: CCNTx

Access Type: Read-only

• CNT: Channel Counter Register

Internal counter value. This register is reset when:

• the channel is enabled (writing CHIDx in the ENA register).
• the counter reaches CPRD value defined in the CPRDx register if the waveform is left aligned.

31 30 29 28 27 26 25 24
CNT

23 22 21 20 19 18 17 16
CNT

15 14 13 12 11 10 9 8
CNT

7 6 5 4 3 2 1 0
CNT

32058K AVR32-01/12

698

AT32UC3A

32.7.14 PWM Channel Update Register

Register Name: CUPDx

Access Type: Write-only

This register acts as a double buffer for the period or the duty cycle. This prevents an unexpected waveform when modify-
ing the waveform period or duty-cycle.

Only the first 20 bits (internal channel counter size) are significant.

31 30 29 28 27 26 25 24
CUPD

23 22 21 20 19 18 17 16
CUPD

15 14 13 12 11 10 9 8
CUPD

7 6 5 4 3 2 1 0
CUPD

CPD (CMRx Register)

0 The duty-cycle (CDTY in the CDTYx register) is updated with the CUPD value at the beginning of
the next period.

1 The period (CPRD in the CPRDx register) is updated with the CUPD value at the beginning of the
next period.

32058K AVR32-01/12

699

AT32UC3A

33. Analog-to-Digital Converter (ADC)
Rev: 1.0.0.3

33.1 Features
• Integrated Multiplexer Offering Up to Eight Independent Analog Inputs
• Individual Enable and Disable of Each Channel
• Hardware or Software Trigger

– External Trigger Pin
– Timer Counter Outputs (Corresponding TIOA Trigger)

• PDC Support
• Possibility of ADC Timings Configuration
• Sleep Mode and Conversion Sequencer

– Automatic Wakeup on Trigger and Back to Sleep Mode after Conversions of all Enabled
Channels

33.2 Overview
The ADC is based on a Successive Approximation Register (SAR) 10-bit Analog-to-Digital Con-
verter (ADC). It also integrates an ADC_NB_CHANNELS-to-1 analog multiplexer, making
possible the analog-to-digital conversions of ADC_NB_CHANNELS analog lines. The conver-
sions extend from 0V to ADVREF.

The ADC supports an 8-bit or 10-bit resolution mode, and conversion results are reported in a
common register for all channels, as well as in a channel-dedicated register. Software trigger,
external trigger on rising edge of the TRIGGER pin or internal triggers from Timer Counter out-
put(s) are configurable.

The ADC also integrates a Sleep Mode and a conversion sequencer and connects with a PDC
channel. These features reduce both power consumption and processor intervention.

Finally, the user can configure ADC timings, such as Startup Time and Sample & Hold Time.

32058K AVR32-01/12

700

AT32UC3A

33.3 Block Diagram

Figure 33-1. Analog-to-Digital Converter Block Diagram

33.4 I/O Lines Description

33.5 Product Dependencies

33.5.1 GPIO
The pin TRIGGER may be shared with other peripheral functions through the PIO Controller. In
this case, the PIO Controller should be set accordingly to assign the pin TRIGGER to the ADC
function.

Table 33-1. ADC Pins Description

Pin Name Description

VDDANA Analog power supply

ADVREF Reference voltage

AD0 - AD[ADC_NB_CHANNELS-1] Analog input channels

TRIGGER External trigger

Dedicated
Analog
Inputs

Analog Inputs
Multiplexed

With I/O lines

GND

AD-

AD-

AD-

AD-

AD-

AD-

ADVREF

VDDANA

TRIGGER
Trigger

Selection

ADC

Control
Logic

ADC Interrupt
INTC

HSB

PDC

Peripheral Bridge

PB

User
Interface

Successive
Approximation

Register
Analog-to-Digital

ConverterPIO

Timer
Counter

Channels

32058K AVR32-01/12

701

AT32UC3A

33.5.2 Analog Inputs
The analog input pins can be multiplexed with PIO lines. In this case, the assignment of the ADC
input is automatically done as soon as the corresponding channel is enabled by writing the
CHER register . By default, after reset, the PIO line is configured as input with its pull-up enabled
and the ADC input is connected to the GND.

33.5.3 Power Manager
The ADC is automatically clocked after the first conversion in Normal Mode. In Sleep Mode, the
ADC clock is automatically stopped after each conversion. As the logic is small and the ADC cell
can be put into Sleep Mode, the Power Manager(PM) has no effect on the ADC behavior.

33.5.4 Interrupt Controller
The ADC interrupt line is connected on one of the internal sources of the Interrupt Controller.
Using the ADC interrupt requires the INTC to be programmed first.

33.5.5 Timer Triggers
Timer Counters may or may not be used as hardware triggers depending on user requirements.
Thus, some or all of the timer counters may be non-connected.

33.5.6 Conversion Performances
For performance and electrical characteristics of the ADC, see the DC Characteristics section.

32058K AVR32-01/12

702

AT32UC3A

33.6 Functional Description

33.6.1 Analog-to-digital Conversion
The ADC uses the ADC Clock to perform conversions. Converting a single analog value to a 10-
bit digital data requires Sample and Hold Clock cycles as defined in the field SHTIM of the MR
register and 10 ADC Clock cycles. The ADC Clock frequency is selected in the PRESCAL field
of the MR register.

The ADC clock range is between CLK_ADC/2, if PRESCAL is 0, and CLK_ADC/128, if PRES-
CAL is set to 63 (0x3F). PRESCAL must be programmed in order to provide an ADC clock
frequency according to the parameters given in the Product definition section.

33.6.2 Conversion Reference
The conversion is performed on a full range between 0V and the reference voltage pin ADVREF.
Analog inputs between these voltages convert to values based on a linear conversion.

33.6.3 Conversion Resolution
The ADC supports 8-bit or 10-bit resolutions. The 8-bit selection is performed by setting the bit
LOWRES in the ADC Mode Register (MR). By default, after a reset, the resolution is the highest
and the DATA field in the data registers is fully used. By setting the bit LOWRES, the ADC
switches in the lowest resolution and the conversion results can be read in the eight lowest sig-
nificant bits of the data registers. The two highest bits of the DATA field in the corresponding
CDR register and of the LDATA field in the LCDR register read 0.

Moreover, when a PDC channel is connected to the ADC, 10-bit resolution sets the transfer
request sizes to 16-bit. Setting the bit LOWRES automatically switches to 8-bit data transfers. In
this case, the destination buffers are optimized.

32058K AVR32-01/12

703

AT32UC3A

33.6.4 Conversion Results
When a conversion is completed, the resulting 10-bit digital value is stored in the Channel Data
Register (CDR) of the current channel and in the ADC Last Converted Data Register (LCDR).

The channel EOC bit in the Status Register (SR) is set and the DRDY is set. In the case of a
connected PDC channel, DRDY rising triggers a data transfer request. In any case, either EOC
and DRDY can trigger an interrupt.

Reading one of the CDR registers clears the corresponding EOC bit. Reading LCDR clears the
DRDY bit and the EOC bit corresponding to the last converted channel.

Figure 33-2. EOCx and DRDY Flag Behavior

Read LCDR
Write CR

With START=1
Read CDRx

Write CR
With START=1

CHx(CHSR)

EOCx(SR)

DRDY(SR)

Conversion Time Conversion Time

32058K AVR32-01/12

704

AT32UC3A

If the CDR is not read before further incoming data is converted, the corresponding Overrun
Error (OVRE) flag is set in the Status Register (SR).

In the same way, new data converted when DRDY is high sets the bit GOVRE (General Overrun
Error) in SR.

The OVRE and GOVRE flags are automatically cleared when SR is read.

Figure 33-3. GOVRE and OVREx Flag Behavior

Warning: If the corresponding channel is disabled during a conversion or if it is disabled and
then reenabled during a conversion, its associated data and its corresponding EOC and OVRE
flags in SR are unpredictable.

Read SR

Data C

Data C

Data B

Data B

Data A

Data AUndefined Data

Undefined Data

Undefined Data

LCDR

CRD0

CH1(CHSR)

CH0(CHSR)

TRIGGER

CRD1

EOC0(SR)

EOC1(SR)

GOVRE(SR)

DRDY(ASR)

OVRE0(SR)

Read CDR0

Read CDR1

Conversion

Conversion

Conversion

32058K AVR32-01/12

705

AT32UC3A

33.6.5 Conversion Triggers
Conversions of the active analog channels are started with a software or a hardware trigger. The
software trigger is provided by writing the Control Register (CR) with the bit START at 1.

The hardware trigger can be one of the TIOA outputs of the Timer Counter channels, or the
external trigger input of the ADC (TRIGGER). The hardware trigger is selected with the field
TRGSEL in the Mode Register (MR). The selected hardware trigger is enabled with the bit
TRGEN in the Mode Register (MR).

If a hardware trigger is selected, the start of a conversion is detected at each rising edge of the
selected signal. If one of the TIOA outputs is selected, the corresponding Timer Counter channel
must be programmed in Waveform Mode.

Only one start command is necessary to initiate a conversion sequence on all the channels. The
ADC hardware logic automatically performs the conversions on the active channels, then waits
for a new request. The Channel Enable (CHER) and Channel Disable (CHDR) Registers enable
the analog channels to be enabled or disabled independently.

If the ADC is used with a PDC, only the transfers of converted data from enabled channels are
performed and the resulting data buffers should be interpreted accordingly.

Warning: Enabling hardware triggers does not disable the software trigger functionality. Thus, if
a hardware trigger is selected, the start of a conversion can be initiated either by the hardware or
the software trigger.

33.6.6 Sleep Mode and Conversion Sequencer
The ADC Sleep Mode maximizes power saving by automatically deactivating the ADC when it is
not being used for conversions. Sleep Mode is selected by setting the bit SLEEP in the Mode
Register MR.

The SLEEP mode is automatically managed by a conversion sequencer, which can automati-
cally process the conversions of all channels at lowest power consumption.

When a start conversion request occurs, the ADC is automatically activated. As the analog cell
requires a start-up time, the logic waits during this time and starts the conversion on the enabled
channels. When all conversions are complete, the ADC is deactivated until the next trigger. Trig-
gers occurring during the sequence are not taken into account.

The conversion sequencer allows automatic processing with minimum processor intervention
and optimized power consumption. Conversion sequences can be performed periodically using
a Timer/Counter output. The periodic acquisition of several samples can be processed automat-
ically without any intervention of the processor thanks to the PDC.

Note: The reference voltage pins always remain connected in normal mode as in sleep mode.

32058K AVR32-01/12

706

AT32UC3A

33.6.7 ADC Timings
Each ADC has its own minimal Startup Time that is programmed through the field STARTUP in
the Mode Register MR.

In the same way, a minimal Sample and Hold Time is necessary for the ADC to guarantee the
best converted final value between two channels selection. This time has to be programmed
through the bitfield SHTIM in the Mode Register MR.

Warning: No input buffer amplifier to isolate the source is included in the ADC. This must be
taken into consideration to program a precise value in the SHTIM field. See the section, ADC
Characteristics in the product datasheet.

32058K AVR32-01/12

707

AT32UC3A

33.7 User Interface

Table 33-2. ADC Register Mapping

Offset Register Name Access Reset State

0x00 Control Register CR Write-only –

0x04 Mode Register MR Read/Write 0x00000000

0x10 Channel Enable Register CHER Write-only –

0x14 Channel Disable Register CHDR Write-only –

0x18 Channel Status Register CHSR Read-only 0x00000000

0x1C Status Register SR Read-only 0x000C0000

0x20 Last Converted Data Register LCDR Read-only 0x00000000

0x24 Interrupt Enable Register IER Write-only –

0x28 Interrupt Disable Register IDR Write-only –

0x2C Interrupt Mask Register IMR Read-only 0x00000000

0x30 Channel Data Register 0 CDR0 Read-only 0x00000000

... ...(if implemented)

0x4C Channel Data Register 7(if implemented) CDR7 Read-only 0x00000000

0xFC Version Register VERSION Read-only –

32058K AVR32-01/12

708

AT32UC3A

33.7.1 Control Register
Name: CR

Access Type: Write-only

Offset: 0x00

Reset Value: –

• START: Start Conversion
0 = No effect.

1 = Begins analog-to-digital conversion.

• SWRST: Software Reset
0 = No effect.

1 = Resets the ADC simulating a hardware reset.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
– – – – – – START SWRST

32058K AVR32-01/12

709

AT32UC3A

33.7.2 Mode Register
Name: MR

Access Type: Read/Write

Offset: 0x04

Reset Value: 0x00000000

• SHTIM: Sample & Hold Time
Sample & Hold Time = (SHTIM+1) / ADCClock

• STARTUP: Start Up Time
Startup Time = (STARTUP+1) * 8 / ADCClock

• PRESCAL: Prescaler Rate Selection
ADCClock = CLK_ADC / ((PRESCAL+1) * 2)

• SLEEP: Sleep Mode

• LOWRES: Resolution

• TRGSEL: Trigger Selection

31 30 29 28 27 26 25 24
– – – – SHTIM

23 22 21 20 19 18 17 16
– – – STARTUP

15 14 13 12 11 10 9 8
– – PRESCAL

7 6 5 4 3 2 1 0
– – SLEEP LOWRES TRGSEL TRGEN

SLEEP Selected Mode

0 Normal Mode

1 Sleep Mode

LOWRES Selected Resolution

0 10-bit resolution

1 8-bit resolution

TRGSEL Selected TRGSEL

0 0 0 Internal Trigger 0, depending of chip integration

0 0 1 Internal Trigger 1, depending of chip integration

0 1 0 Internal Trigger 2, depending of chip integration

0 1 1 Internal Trigger 3, depending of chip integration

1 0 0 Internal Trigger 4, depending of chip integration

32058K AVR32-01/12

710

AT32UC3A

• TRGEN: Trigger Enable

1 0 1 Internal Trigger 5, depending of chip integration

1 1 0 External trigger

1 1 1 Reserved

TRGEN Selected TRGEN

0 Hardware triggers are disabled. Starting a conversion is only possible by software.

1 Hardware trigger selected by TRGSEL field is enabled.

TRGSEL Selected TRGSEL

32058K AVR32-01/12

711

AT32UC3A

33.7.3 Channel Enable Register
Name: CHER

Access Type: Write-only

Offset: 0x10

Reset Value: –

• CHx: Channel x Enable
0 = No effect.

1 = Enables the corresponding channel(if implemented).

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
CH2 CH6 CH5 CH4 CH3 CH2 CH1 CH0

32058K AVR32-01/12

712

AT32UC3A

33.7.4 Channel Disable Register
Name: CHDR

Access Type: Write-only

Offset: 0x14

Reset Value: –

• CHx: Channel x Disable
0 = No effect.

1 = Disables the corresponding channel(if implemented).

Warning: If the corresponding channel is disabled during a conversion or if it is disabled then reenabled during a conver-
sion, its associated data and its corresponding EOC and OVRE flags in SR are unpredictable.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
CH7 CH6 CH5 CH4 CH3 CH2 CH1 CH0

32058K AVR32-01/12

713

AT32UC3A

33.7.5 Channel Status Register
Name: CHSR

Access Type: Read-only

Offset: 0x18

Reset Value: 0x00000000

• CHx: Channel x Status
0 = Corresponding channel is disabled(if implemented).

1 = Corresponding channel is enabled(if implemented).

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
CH7 CH6 CH5 CH4 CH3 CH2 CH1 CH0

32058K AVR32-01/12

714

AT32UC3A

33.7.6 Status Register
Name: SR

Access Type: Read-only

Offset: 0x1C

Reset Value: 0x000C0000

• RXBUFF: RX Buffer Full
0 = RCR or RNCR have a value other than 0.

1 = Both RCR and RNCR have a value of 0.

• ENDRX: End of RX Buffer
0 = The Receive Counter Register has not reached 0 since the last write in RCR or RNCR.

1 = The Receive Counter Register has reached 0 since the last write in RCR or RNCR.

• GOVRE: General Overrun Error
0 = No General Overrun Error occurred since the last read of SR.

1 = At least one General Overrun Error has occurred since the last read of SR.

• DRDY: Data Ready
0 = No data has been converted since the last read of LCDR.

1 = At least one data has been converted and is available in LCDR.

• OVREx: Overrun Error x
0 = No overrun error on the corresponding channel(if implemented) since the last read of SR.

1 = There has been an overrun error on the corresponding channel (if implemented) since the last read of SR.

• EOCx: End of Conversion x
0 = Corresponding analog channel (if implemented) is disabled, or the conversion is not finished.

1 = Corresponding analog channel (if implemented) is enabled and conversion is complete.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – RXBUFF ENDRX GOVRE DRDY

15 14 13 12 11 10 9 8
OVRE7 OVRE6 OVRE5 OVRE4 OVRE3 OVRE2 OVRE1 OVRE0

7 6 5 4 3 2 1 0
EOC7 EOC6 EOC5 EOC4 EOC3 EOC2 EOC1 EOC0

32058K AVR32-01/12

715

AT32UC3A

33.7.7 Last Converted Data Register
Name: LCDR

Access Type: Read-only

Offset: 0x20

Reset Value: 0x00000000

• LDATA: Last Data Converted
The analog-to-digital conversion data is placed into this register at the end of a conversion and remains until a new conver-
sion is completed.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – LDATA

7 6 5 4 3 2 1 0
LDATA

32058K AVR32-01/12

716

AT32UC3A

33.7.8 Interrupt Enable Register
Name: IER

Access Type: Write-only

Offset: 0x24

Reset Value: –

• RXBUFF: Receive Buffer Full Interrupt Enable
0 = No effect.

1 = Enables the corresponding interrupt. ENDRX: End of Receive Buffer Interrupt Enable

• GOVRE: General Overrun Error Interrupt Enable

• DRDY: Data Ready Interrupt Enable

• OVREx: Overrun Error Interrupt Enable x

• EOCx: End of Conversion Interrupt Enable x

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – RXBUFF ENDRX GOVRE DRDY

15 14 13 12 11 10 9 8
OVRE7 OVRE6 OVRE5 OVRE4 OVRE3 OVRE2 OVRE1 OVRE0

7 6 5 4 3 2 1 0
EOC7 EOC6 EOC5 EOC4 EOC3 EOC2 EOC1 EOC0

32058K AVR32-01/12

717

AT32UC3A

33.7.9 Interrupt Disable Register
Name: IDR

Access Type: Write-only

Offset: 0x28

Reset Value: –

• RXBUFF: Receive Buffer Full Interrupt Disable
0 = No effect.

1 = Disables the corresponding interrupt.

• ENDRX: End of Receive Buffer Interrupt Disable

• GOVRE: General Overrun Error Interrupt Disable

• DRDY: Data Ready Interrupt Disable

• OVREx: Overrun Error Interrupt Disable x

• EOCx: End of Conversion Interrupt Disable x

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – RXBUFF ENDRX GOVRE DRDY

15 14 13 12 11 10 9 8
OVRE7 OVRE6 OVRE5 OVRE4 OVRE3 OVRE2 OVRE1 OVRE0

7 6 5 4 3 2 1 0
EOC7 EOC6 EOC5 EOC4 EOC3 EOC2 EOC1 EOC0

32058K AVR32-01/12

718

AT32UC3A

33.7.10 Interrupt Mask Register
Name: IMR

Access Type: Read-only

Offset: 0x2C

Reset Value: 0x00000000

• RXBUFF: Receive Buffer Full Interrupt Mask
0 = The corresponding interrupt is disabled.

1 = The corresponding interrupt is enabled.

• ENDRX: End of Receive Buffer Interrupt Mask

• GOVRE: General Overrun Error Interrupt Mask

• DRDY: Data Ready Interrupt Mask

• OVREx: Overrun Error Interrupt Mask x

• EOCx: End of Conversion Interrupt Mask x

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – RXBUFF ENDRX GOVRE DRDY

15 14 13 12 11 10 9 8
OVRE7 OVRE6 OVRE5 OVRE4 OVRE3 OVRE2 OVRE1 OVRE0

7 6 5 4 3 2 1 0
EOC7 EOC6 EOC5 EOC4 EOC3 EOC2 EOC1 EOC0

32058K AVR32-01/12

719

AT32UC3A

33.7.11 Channel Data Register
Name: CDRx

Access Type: Read-only

Offset: 0x2C-0x4C

Reset Value: 0x00000000

• DATA: Converted Data
The analog-to-digital conversion data is placed into this register at the end of a conversion and remains until a new conver-
sion is completed. The Convert Data Register (CDR) is only loaded if the corresponding analog channel is enabled.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – DATA

7 6 5 4 3 2 1 0
DATA

32058K AVR32-01/12

720

AT32UC3A

33.7.12 Version Register
Name: VERSION

Access Type: Read-only

Offset: 0xFC

Reset Value: –

• VARIANT: Variant Number
Reserved. No functionality associated.

• VERSION: Version Number
Version number of the module. No functionality associated.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – VARIANT

15 14 13 12 11 10 9 8
– – – – VERSION[11:8]

7 6 5 4 3 2 1 0
VERSION[7:0]

32058K AVR32-01/12

721

AT32UC3A

34. Audio Bitstream DAC (ABDAC)

Rev: 1.0.1.1

34.1 Features

• Digital Stereo DAC
• Oversampled D/A conversion architecture

– Oversampling ratio fixed 128x
– FIR equalization filter
– Digital interpolation filter: Comb4
– 3rd Order Sigma-Delta D/A converters

• Digital bitstream outputs
• Parallel interface
• Connected to DMA Controller for background transfer without CPU intervention

34.2 Description

The Audio Bitstream DAC converts a 16-bit sample value to a digital bitstream with an average
value proportional to the sample value. Two channels are supported, making the Audio Bit-
stream DAC particularly suitable for stereo audio. Each channel has a pair of complementary
digital outputs, DACn and DACn_N, which can be connected to an external high input imped-
ance amplifier.

The Audio Bitstream DAC is compromised of two 3rd order Sigma Delta D/A converter with an
oversampling ratio of 128. The samples are upsampled with a 4th order Sinc interpolation filter
(Comb4) before being input to the Sigmal Delta Modulator. In order to compensate for the pass
band frequency response of the interpolation filter and flatten the overall frequency response,
the input to the interpolation filter is first filtered with a simple 3-tap FIR filter.The total frequency
response of the Equalization FIR filter and the interpolation filter is given in Figure 34-2 on page
733. The digital output bitstreams from the Sigma Delta Modulators should be low-pass filtered
to remove high frequency noise inserted by the Modulation process.

The output DACn and DACn_N should be as ideal as possible before filtering, to achieve the
best SNR quality. The output can be connected to a class D amplifier output stage, or it can be
low pass filtered and connected to a high input impedance amplifier. A simple 1st order or higher
low pass filter that filters all the frequencies above 50 kHz should be adequate.

32058K AVR32-01/12

722

AT32UC3A

34.3 Block Diagram

Figure 34-1. Functional Block Diagram

34.4 Pin Name List

34.5 Product Dependencies

34.5.1 I/O Lines
The output pins used for the output bitstream from the Audio Bitstream DAC may be multiplexed
with PIO lines.

Before using the Audio Bitstream DAC, the PIO controller must be configured in order for the
Audio Bitstream DAC I/O lines to be in Audio Bitstream DAC peripheral mode.

34.5.2 Power Management
The PB-bus clock to the Audio Bitstream DAC is generated by the power manager. Before using
the Audio Bitstream DAC, the programmer must ensure that the Audio Bitstream DAC clock is
enabled in the power manager.

Table 34-1. I/O Lines Description

Pin Name Pin Description Type

DATA0 Output from Audio Bitstream DAC Channel 0 Output

DATA1 Output from Audio Bitstream DAC Channel 1 Output

DATAN0 Inverted output from Audio Bitstream DAC Channel 0 Output

DATAN1 Inverted output from Audio Bitstream DAC Channel 1 Output

Clock Generator

Equalization FIR COMB
(INT=128)

Sigma-Delta
DA-MOD

Equalization FIR COMB
(INT=128)

Sigma-Delta
DA-MOD

bit_clk

bit_out1

bit_out2

clk

sample_clk

din1[15:0]

din2[15:0]

Audio Bitstream DAC

32058K AVR32-01/12

723

AT32UC3A

34.5.3 Clock Management

The Audio Bitstream DAC needs a separate clock for the D/A conversion operation. This clock
should be set up in the generic clock register in the power manager. The frequency of this clock
must be 256 times the frequency of the desired samplerate (fs). For fs=48kHz this means that the
clock must have a frequency of 12.288MHz.

34.5.4 Interrupts

The Audio Bitstream DAC interface has an interrupt line connected to the interrupt controller. In
order to handle interrupts, the interrupt controller must be programmed before configuring the
Audio Bitstream DAC.

All Audio Bitstream DAC interrupts can be enabled/disabled by writing to the Audio Bitstream
DAC Interrupt Enable/Disable Registers. Each pending and unmasked Audio Bitstream DAC
interrupt will assert the interrupt line. The Audio Bitstream DAC interrupt service routine can get
the interrupt source by reading the Interrupt Status Register.

34.5.5 DMA

The Audio Bitstream DAC is connected to the DMA controller. The DMA controller can be pro-
grammed to automatically transfer samples to the Audio Bitstream DAC Sample Data Register
(SDR) when the Audio Bitstream DAC is ready for new samples. This enables the Audio Bit-
stream DAC to operate without any CPU intervention such as polling the Interrupt Status
Register (ISR) or using interrupts. See the DMA controller documentation for details on how to
setup DMA transfers.

34.6 Functional Description

In order to use the Audio Bitstream DAC the product dependencies given in Section 34.5 on
page 722 must be resolved. Particular attention should be given to the configuration of clocks
and I/O lines in order to ensure correct operation of the Audio Bitstream DAC.

The Audio Bitstream DAC is enabled by writing the ENABLE bit in the Audio Bitstream DAC
Control Register (CR). The two 16-bit sample values for channel 0 and 1 can then be written to
the least and most significant halfword of the Sample Data Register (SDR), respectively. The
TX_READY bit in the Interrupt Status Register (ISR) will be set whenever the DAC is ready to
receive a new sample. A new sample value should be written to SDR before 256 DAC clock
cycles, or an underrun will occur, as indicated by the UNDERRUN status flags in ISR. ISR is
cleared when read, or when writing one to the corresponding bits in the Interrupt Clear Register
(ICR).

For interrupt-based operation, the relevant interrupts must be enabled by writing one to the cor-
responding bits in the Interrupt Enable Register (IER). Interrupts can be disabled by the Interrupt
Disable Register (IDR), and active interrupts are indicated in the read-only Interrupt Mask Regis-
ter (IMR).

The Audio Bitstream DAC can also be configured for peripheral DMA access, in which case only
the enable bit in the control register needs to be set in the Audio Bitstream DAC module.

34.6.1 Equalization Filter

The equalization filter is a simple 3-tap FIR filter. The purpose of this filter is to compensate for
the pass band frequency response of the sinc interpolation filter. The equalization filter makes
the pass band response more flat and moves the -3dB corner a little higher.

32058K AVR32-01/12

724

AT32UC3A

34.6.2 Interpolation filter

The interpolation filter interpolates from fs to 128fs. This filter is a 4th order Cascaded Integrator-
Comb filter, and the basic building blocks of this filter is a comb part and an integrator part.

34.6.3 Sigma Delta Modulator

This part is a 3rd order Sigma Delta Modulator consisting of three differentiators (delta blocks),
three integrators (sigma blocks) and a one bit quantizer. The purpose of the integrators is to
shape the noise, so that the noise is reduces in the band of interest and increased at the higher
frequencies, where it can be filtered.

34.6.4 Data Format

Input data is on two’s complement format.

32058K AVR32-01/12

725

AT32UC3A

34.7 Audio Bitstream DAC User Interface

Table 34-2. Register Mapping

Offset Register Register Name Access Reset

0x0 Sample Data Register SDR Read/Write 0x0

0x4 Reserved - - -

0x8 Control Register CR Read/Write 0x0

0xc Interrupt Mask Register IMR Read 0x0

0x10 Interrupt Enable Register IER Write -

0x14 Interrupt Disable Register IDR Write -

0x18 Interrupt Clear Register ICR Write -

0x1C Interrupt Status Register ISR Read 0x0

32058K AVR32-01/12

726

AT32UC3A

34.7.1 Audio Bitstream DAC Sample Data Register

Name: SDR
Access Type: Read-Write

• CHANNEL0: Sample Data for Channel 0

Signed 16-bit Sample Data for channel 0. When the SWAP bit in the DAC Control Register (CR) is set writing to the Sample
Data Register (SDR) will cause the values written to CHANNEL0 and CHANNEL1 to be swapped.

• CHANNEL1: Sample Data for Channel 1

Signed 16-bit Sample Data for channel 1. When the SWAP bit in the DAC Control Register (CR) is set writing to the Sample
Data Register (SDR) will cause the values written to CHANNEL0 and CHANNEL1 to be swapped.

31 30 29 28 27 26 25 24
CHANNEL1

23 22 21 20 19 18 17 16
CHANNEL1

15 14 13 12 11 10 9 8
CHANNEL0

7 6 5 4 3 2 1 0
CHANNEL0

32058K AVR32-01/12

727

AT32UC3A

34.7.2 Audio Bitstream DAC Control Register

Name: CR
Access Type: Read-Write

• SWAP: Swap Channels

0: The CHANNEL0 and CHANNEL1 samples will not be swapped when writing the Audio Bitstream DAC Sample Data
Register (SDR).

1: The CHANNEL0 and CHANNEL1 samples will be swapped when writing the Audio Bitstream DAC Sample Data Regis-
ter (SDR).

• EN: Enable Audio Bitstream DAC

0: Audio Bitstream DAC is disabled.

1: Audio Bitstream DAC is enabled.

31 30 29 28 27 26 25 24
EN SWAP - - - - - -
23 22 21 20 19 18 17 16
- - - - - - - -

15 14 13 12 11 10 9 8
- - - - - - - -
7 6 5 4 3 2 1 0
- - - - - - - -

32058K AVR32-01/12

728

AT32UC3A

34.7.3 Audio Bitstream DAC Interrupt Mask Register

Name: IMR
Access Type: Read-only

• UNDERRUN: Underrun Interrupt Mask

0: The Audio Bitstream DAC Underrun interrupt is disabled.

1: The Audio Bitstream DAC Underrun interrupt is enabled.

• TX_READY: TX Ready Interrupt Mask

0: The Audio Bitstream DAC TX Ready interrupt is disabled.

1: The Audio Bitstream DAC TX Ready interrupt is enabled.

31 30 29 28 27 26 25 24
- - TX_READY UNDERRUN - - - -

23 22 21 20 19 18 17 16
- - - - - - - -

15 14 13 12 11 10 9 8
- - - - - - - -
7 6 5 4 3 2 1 0
- - - - - - - -

32058K AVR32-01/12

729

AT32UC3A

34.7.4 Audio Bitstream DAC Interrupt Enable Register

Name: IER
Access Type: Write-only

• UNDERRUN: Underrun Interrupt Enable

0: No effect.

1: Enables the Audio Bitstream DAC Underrun interrupt.

• TX_READY: TX Ready Interrupt Enable

0: No effect.

1: Enables the Audio Bitstream DAC TX Ready interrupt.

31 30 29 28 27 26 25 24
- - TX_READY UNDERRUN - - - -

23 22 21 20 19 18 17 16
- - - - - - - -

15 14 13 12 11 10 9 8
- - - - - - - -
7 6 5 4 3 2 1 0
- - - - - - - -

32058K AVR32-01/12

730

AT32UC3A

34.7.5 Audio Bitstream DAC Interrupt Disable Register

Name: IDR
Access Type: Write-only

• UNDERRUN: Underrun Interrupt Disable

0: No effect.

1: Disable the Audio Bitstream DAC Underrun interrupt.

• TX_READY: TX Ready Interrupt Disable

0: No effect.

1: Disable the Audio Bitstream DAC TX Ready interrupt.

31 30 29 28 27 26 25 24
- - TX_READY UNDERRUN - - - -

23 22 21 20 19 18 17 16
- - - - - - - -

15 14 13 12 11 10 9 8
- - - - - - - -
7 6 5 4 3 2 1 0
- - - - - - - -

32058K AVR32-01/12

731

AT32UC3A

34.7.6 Audio Bitstream DAC Interrupt Clear Register

Name: ICR
Access Type: Write-only

• UNDERRUN: Underrun Interrupt Clear

0: No effect.

1: Clear the Audio Bitstream DAC Underrun interrupt.

• TX_READY: TX Ready Interrupt Clear

0: No effect.

1: Clear the Audio Bitstream DAC TX Ready interrupt.

31 30 29 28 27 26 25 24
- - TX_READY UNDERRUN - - - -

23 22 21 20 19 18 17 16
- - - - - - - -

15 14 13 12 11 10 9 8
- - - - - - - -
7 6 5 4 3 2 1 0
- - - - - - - -

32058K AVR32-01/12

732

AT32UC3A

34.7.7 Audio Bitstream DAC Interrupt Status Register

Name: ISR
Access Type: Read-only

• UNDERRUN: Underrun Interrupt Status

0: No Audio Bitstream DAC Underrun has occured since the last time ISR was read or since reset.

1: At least one Audio Bitstream DAC Underrun has occured since the last time ISR was read or since reset.

• TX_READY: TX Ready Interrupt Status

0: No Audio Bitstream DAC TX Ready has occuredt since the last time ISR was read.

1: At least one Audio Bitstream DAC TX Ready has occuredt since the last time ISR was read.

31 30 29 28 27 26 25 24
- - TX_READY UNDERRUN - - - -

23 22 21 20 19 18 17 16
- - - - - - - -

15 14 13 12 11 10 9 8
- - - - - - - -
7 6 5 4 3 2 1 0
- - - - - - - -

32058K AVR32-01/12

733

AT32UC3A

34.8 Frequency Response

Figure 34-2. Frequecy response, EQ-FIR+COMB4

0 1 2 3 4 5 6 7 8 9 1 0

x 1 0
4

- 6 0

- 5 0

- 4 0

- 3 0

- 2 0

- 1 0

0

1 0

32058K AVR32-01/12

734

AT32UC3A

35. On-Chip Debug
Rev: 1.3.0.0

35.1 Features
• Debug interface in compliance with IEEE-ISTO 5001-2003 (Nexus 2.0) Class 2+
• JTAG access to all on-chip debug functions
• Advanced Program, Data, Ownership, and Watchpoint trace supported
• NanoTrace JTAG-based trace access
• Auxiliary port for high-speed trace information
• Hardware support for 6 Program and 2 Data breakpoints
• Unlimited number of software breakpoints supported
• Automatic CRC check of memory regions

35.2 Overview
Debugging on the AT32UC3A is facilitated by a powerful On-Chip Debug (OCD) system. The
user accesses this through an external debug tool which connects to the JTAG port and the Aux-
iliary (AUX) port. The AUX port is primarily used for trace functions, and a JTAG-based
debugger is sufficient for basic debugging.

The debug system is based on the Nexus 2.0 standard, class 2+, which includes:

• Basic run-time control
• Program breakpoints
• Data breakpoints
• Program trace
• Ownership trace
• Data trace

In addition to the mandatory Nexus debug features, the AT32UC3A implements several useful
OCD features, such as:

• Debug Communication Channel between CPU and JTAG
• Run-time PC monitoring
• CRC checking
• NanoTrace
• Software Quality Assurance (SQA) support

The OCD features are controlled by OCD registers, which can be accessed by JTAG when the
NEXUS_ACCESS JTAG instruction is loaded. The CPU can also access OCD registers directly
using mtdr/mfdr instructions in any privileged mode. The OCD registers are implemented based
on the recommendations in the Nexus 2.0 standard, and are detailed in the AVR32UC Technical
Reference Manual.

32058K AVR32-01/12

735

AT32UC3A

35.3 Block diagram

Figure 35-1. On-Chip Debug block diagram

35.4 Functional description

35.4.1 JTAG-based debug features
A debugger can control all OCD features by writing OCD registers over the JTAG interface.
Many of these do not depend on output on the AUX port, allowing a JTAG-based debugger to be
used.

A JTAG-based debugger should connect to the device through a standard 10-pin IDC connector
as described in the AVR32UC Technical Reference Manual.

On-Chip Debug

JTAG

Debug PC

Debug
Instruction

CPU

Breakpoints

Program
Trace Data Trace Ownership

Trace

WatchpointsTransmit Queue

AUX

JTAG

Internal
SRAM

Service Access Bus
Memory
Service

Unit

HSB Bus Matrix Memories and
peripherals

32058K AVR32-01/12

736

AT32UC3A

Figure 35-2. JTAG-based debugger

35.4.1.1 Debug Communication Channel
The Debug Communication Channel (DCC) consists of a pair OCD registers with associated
handshake logic, accessible to both CPU and JTAG. The registers can be used to exchange
data between the CPU and the JTAG master, both runtime as well as in debug mode.

35.4.1.2 Breakpoints
One of the most fundamental debug features is the ability to halt the CPU, to examine registers
and the state of the system. This is accomplished by breakpoints, of which many types are
available:

• Unconditional breakpoints are set by writing OCD registers by JTAG, halting the CPU
immediately.

• Program breakpoints halt the CPU when a specific address in the program is executed.
• Data breakpoints halt the CPU when a specific memory address is read or written, allowing

variables to be watched.
• Software breakpoints halt the CPU when the breakpoint instruction is executed.

When a breakpoint triggers, the CPU enters debug mode, and the D bit in the status register is
set. This is a privileged mode with dedicated return address and return status registers. All privi-
leged instructions are permitted. Debug mode can be entered as either OCD Mode, running
instructions from JTAG, or Monitor Mode, running instructions from program memory.

AVR32

JTAG-based
debug tool

PC

JTAG

10-pin IDC

32058K AVR32-01/12

737

AT32UC3A

35.4.1.3 OCD Mode
When a breakpoint triggers, the CPU enters OCD mode, and instructions are fetched from the
Debug Instruction OCD register. Each time this register is written by JTAG, the instruction is
executed, allowing the JTAG to execute CPU instructions directly. The JTAG master can e.g.
read out the register file by issuing mtdr instructions to the CPU, writing each register to the
Debug Communication Channel OCD registers.

35.4.1.4 Monitor Mode
Since the OCD registers are directly accessible by the CPU, it is possible to build a software-
based debugger that runs on the CPU itself. Setting the Monitor Mode bit in the Development
Control register causes the CPU to enter Monitor Mode instead of OCD mode when a breakpoint
triggers. Monitor Mode is similar to OCD mode, except that instructions are fetched from the
debug exception vector in regular program memory, instead of issued by JTAG.

35.4.1.5 Program Counter monitoring
Normally, the CPU would need to be halted for a JTAG-based debugger to examine the current
PC value. However, the AT32UC3A also proves a Debug Program Counter OCD register, where
the debugger can continuously read the current PC without affecting the CPU. This allows the
debugger to generate a simple statistic of the time spent in various areas of the code, easing
code optimization.

35.4.2 Memory Service Unit
The Memory Service Unit (MSU) is a block dedicated to test and debug functionality. It is con-
trolled through a dedicated set of registers addressed through the MEMORY_SERVICE JTAG
command.

35.4.2.1 Cyclic Redundancy Check (CRC)
The MSU can be used to automatically calculate the CRC of a block of data in memory. The
OCD will then read out each word in the specified memory block and report the CRC32-value in
an OCD register.

35.4.2.2 NanoTrace
The MSU additionally supports NanoTrace. This is an AVR32-specific feature, in which trace
data is output to memory instead of the AUX port. This allows the trace data to be extracted by
JTAG MEMORY_ACCESS, enabling trace features for JTAG-based debuggers. The user must
write MSU registers to configure the address and size of the memory block to be used for Nano-
Trace. The NanoTrace buffer can be anywhere in the physical address range, including internal
and external RAM, through an EBI, if present. This area may not be used by the application run-
ning on the CPU.

35.4.3 AUX-based debug features
Utilizing the Auxiliary (AUX) port gives access to a wide range of advanced debug features. Of
prime importance are the trace features, which allow an external debugger to receive continuous
information on the program execution in the CPU. Additionally, Event In and Event Out pins
allow external events to be correlated with the program flow.

The AUX port contains a number of pins, as shown in Table 35-1 on page 738. These are multi-
plexed with PIO lines, and must explicitly be enabled by writing OCD registers before the debug
session starts. The AUX port is mapped to two different locations, selectable by OCD Registers,
minimizing the chance that the AUX port will need to be shared with an application.

32058K AVR32-01/12

738

AT32UC3A

Debug tools utilizing the AUX port should connect to the device through a Nexus-compliant Mic-
tor-38 connector, as described in the AVR32UC Technical Reference manual. This connector
includes the JTAG signals and the RESET_N pin, giving full access to the programming and
debug features in the device.

Figure 35-3. AUX+JTAG based debugger

35.4.3.1 Trace operation
Trace features are enabled by writing OCD registers by JTAG. The OCD extracts the trace infor-
mation from the CPU, compresses this information and formats it into variable-length messages
according to the Nexus standard. The messages are buffered in a 16-frame transmit queue, and
are output on the AUX port one frame at a time.

Table 35-1. Auxiliary port signals

Signal Direction Description

MCKO Output Trace data output clock

MDO[5:0] Output Trace data output

MSEO[1:0] Output Trace frame control

EVTI_N Input Event In

EVTO_N Output Event Out

A V R 3 2

A U X + J T A G
d e b u g to o l

J T A GA U X
h ig h s p e e d

M ic to r 3 8

T r a c e b u f fe r

P C

32058K AVR32-01/12

739

AT32UC3A

The trace features can be configured to be very selective, to reduce the bandwidth on the AUX
port. In case the transmit queue overflows, error messages are produced to indicate loss of
data. The transmit queue module can optionally be configured to halt the CPU when an overflow
occurs, to prevent the loss of messages, at the expense of longer run-time for the program.

35.4.3.2 Program Trace
Program trace allows the debugger to continuously monitor the program execution in the CPU.
Program trace messages are generated for every branch in the program, and contains com-
pressed information, which allows the debugger to correlate the message with the source code
to identify the branch instruction and target address.

35.4.3.3 Data Trace
Data trace outputs a message every time a specific location is read or written. The message
contains information about the type (read/write) and size of the access, as well as the address
and data of the accessed location. The AT32UC3A contains two data trace channels, each of
which are controlled by a pair of OCD registers which determine the range of addresses (or sin-
gle address) which should produce data trace messages.

35.4.3.4 Ownership Trace
Program and data trace operate on virtual addresses. In cases where an operating system runs
several processes in overlapping virtual memory segments, the Ownership Trace feature can be
used to identify the process switch. When the O/S activates a process, it will write the process ID
number to an OCD register, which produces an Ownership Trace Message, allowing the debug-
ger to switch context for the subsequent program and data trace messages. As the use of this
feature depends on the software running on the CPU, it can also be used to extract other types
of information from the system.

35.4.3.5 Watchpoint messages
The breakpoint modules normally used to generate program and data breakpoints can also be
used to generate Watchpoint messages, allowing a debugger to monitor program and data
events without halting the CPU. Watchpoints can be enabled independently of breakpoints, so a
breakpoint module can optionally halt the CPU when the trigger condition occurs. Data trace
modules can also be configured to produce watchpoint messages instead of regular data trace
messages.

35.4.3.6 Event In and Event Out pins
The AUX port also contains an Event In pin (EVTI_N) and an Event Out pin (EVTO_N). EVTI_N
can be used to trigger a breakpoint when an external event occurs. It can also be used to trigger
specific program and data trace synchronization messages, allowing an external event to be
correlated to the program flow.

When the CPU enters debug mode, a Debug Status message is transmitted on the trace port.
All trace messages can be timestamped when they are received by the debug tool. However,
due to the latency of the transmit queue buffering, the timestamp will not be 100% accurate. To
improve this, EVTO_N can toggle every time a message is inserted into the transmit queue,
allowing trace messages to be timestamped precisely. EVTO_N can also toggle when a break-
point module triggers, or when the CPU enters debug mode, for any reason. This can be used to
measure precisely when the respective internal event occurs.

32058K AVR32-01/12

740

AT32UC3A

35.4.3.7 Software Quality Analysis (SQA)
Software Quality Analysis (SQA) deals with two important issues regarding embedded software
development. Code coverage involves identifying untested parts of the embedded code, to
improve test procedures and thus the quality of the released software. Performance analysis
allows the developer to precisely quantify the time spent in various parts of the code, allowing
bottlenecks to be identified and optimized.

Program trace must be used to accomplish these tasks without instrumenting (altering) the code
to be examined. However, traditional program trace cannot reconstruct the current PC value
without correlating the trace information with the source code, which cannot be done on-the-fly.
This limits program trace to a relatively short time segment, determined by the size of the trace
buffer in the debug tool.

The OCD system in AT32UC3A extends program trace with SQA capabilities, allowing the
debug tool to reconstruct the PC value on-the-fly. Code coverage and performance analysis can
thus be reported for an unlimited execution sequence.

32058K AVR32-01/12

741

AT32UC3A

36. JTAG and Boundary Scan
Rev.: 2.0.0.2

36.1 Features
• IEEE1149.1 compliant JTAG Interface
• Boundary-Scan Chain for board-level testing
• Direct memory access and programming capabilities through JTAG interface
• On-Chip Debug access in compliance with IEEE-ISTO 5001-2003 (Nexus 2.0)

36.2 Overview
Figure 36-1 on page 742 shows how the JTAG is connected in an AVR32 device. The TAP Con-
troller is a state machine controlled by the TCK and TMS signals. The TAP Controller selects
either the JTAG Instruction Register or one of several Data Registers as the scan chain (shift
register) between the TDI-input and TDO-output. The Instruction Register holds JTAG instruc-
tions controlling the behavior of a Data Register.

The ID Register, Bypass Register, and the Boundary-Scan Chain are the Data Registers used
for board-level testing. The Reset Register can be used to keep the device reset during test or
programming.

The Service Access Bus (SAB) interface contains address and data registers for the Service
Access Bus, which gives access to on-chip debug, programming, and other functions in the
device. The SAB offers several modes of access to the address and data registers, as dis-
cussed in Section 36.6.4.

Section 36.7 lists the supported JTAG instructions, with references to the description in this
document.

32058K AVR32-01/12

742

AT32UC3A

36.3 Block diagram

Figure 36-1. JTAG and Boundary Scan access

AVR32 device

JTAG data registers

TAP
ControllerTCK

TMS

TDO

Instruction Register

ID Register

By-
pass

Reset
Register

Service Access Bus
interface

B
ou

nd
ar

y
S

ca
n

C
ha

in

CPU

Memories and
peripherals

OCD Registers

P
in

s
an

d
an

al
og

 b
lo

ck
s

Instruction Register
Scan enable

Data register
scan enable

JT
A

G
 T

A
P

Boundary scan enable

JTAG device

JTAG master

TCK TDITDO

...

TDI

TMS

RAM H
igh Speed Bus

Memory Service
Unit

Service
Access

Bus

32058K AVR32-01/12

743

AT32UC3A

36.4 I/O Lines Description

36.5 Product Dependencies

In order to use this module, other parts of the system must be configured correctly, as described
below.

36.5.1 I/O Lines

The JTAG interface pins are multiplexed with IO lines. When the JTAG is used the associated
pins must be enabled. To enable the JTAG pins TCK must be zero while RESET_N has a zero
to one transition. To disable the JTAG pins TCK must be one while RESET_N has a zero to one
transition.

While using the JTAG lines all normal peripheral activity on these lines are disabled. The user
must make sure that no external peripheral is blocking the JTAG lines while debugging.

36.6 Functional description

36.6.1 JTAG interface
The JTAG interface is accessed through the dedicated JTAG pins shown in Table 36-1 on page
743. The TMS control line navigates the TAP controller, as shown in Figure 36-2 on page 744.
The TAP controller manages the serial access to the JTAG Instruction and Data registers. Data
is scanned into the selected instruction or data register on TDI, and out of the register on TDO,
in the Shift-IR and Shift-DR states, respectively. The LSB is shifted in and out first. TDO is high-
Z in other states than Shift-IR and Shift-DR.

Independent of the initial state of the TAP Controller, the Test-Logic-Reset state can always be
entered by holding TMS high for 5 TCK clock periods. This sequence should always be applied
at the start of a JTAG session to bring the TAP Controller into a defined state before applying
JTAG commands. Applying a 0 on TMS for 1 TCK period brings the TAP Controller to the Run-
Test/Idle state, which is the starting point for JTAG operations.

The device implements a 5-bit Instruction Register (IR). A number of public JTAG instructions
defined by the JTAG standard are supported, as described in Section 36.8, as well as a number
of AVR32-specific private JTAG instructions described in Section 36.9. Each instruction selects
a specific data register for the Shift-DR path, as described for each instruction.

Table 36-1. I/O Lines Description

Name Description Type

TCK Test Clock Input. Fully asynchronous to system clock frequency. Input

TMS Test Mode Select, sampled on rising TCK Input

TDI Test Data In, sampled on rising TCK. Input

TDO Test Data Out, driven on falling TCK. Output

32058K AVR32-01/12

744

AT32UC3A

Figure 36-2. TAP Controller State Diagram

36.6.2 Typical sequence
Assuming Run-Test/Idle is the present state, a typical scenario for using the JTAG interface is:

36.6.2.1 Scanning in JTAG instruction
At the TMS input, apply the sequence 1, 1, 0, 0 at the rising edges of TCK to enter the Shift
Instruction Register - Shift-IR state. While in this state, shift the 5 bits of the JTAG instructions
into the JTAG instruction register from the TDI input at the rising edge of TCK. The TMS input
must be held low during input of the 4 LSBs in order to remain in the Shift-IR state. The JTAG
Instruction selects a particular Data Register as path between TDI and TDO and controls the cir-
cuitry surrounding the selected Data Register.

Apply the TMS sequence 1, 1, 0 to re-enter the Run-Test/Idle state. The instruction is latched
onto the parallel output from the shift register path in the Update-IR state. The Exit-IR, Pause-IR,
and Exit2-IR states are only used for navigating the state machine.

Test-Logic-
Reset

Run-Test/
Idle

Select-DR
Scan

Select-IR
Scan

Capture-DR Capture-IR

Shift-DR Shift-IR

Exit1-DR Exit1-IR

Pause-DR Pause-IR

Exit2-DR Exit2-IR

Update-DR Update-IR

0

1 1

1

0

0

1

0

1

1

0

0

1

0

1

1

1

0

1 1

0 0

11

0

1

0

0 0

0

0

1

32058K AVR32-01/12

745

AT32UC3A

Figure 36-3. Scanning in JTAG instruction

36.6.2.2 Scanning in/out data
At the TMS input, apply the sequence 1, 0, 0 at the rising edges of TCK to enter the Shift Data
Register - Shift-DR state. While in this state, upload the selected Data Register (selected by the
present JTAG instruction in the JTAG Instruction Register) from the TDI input at the rising edge
of TCK. In order to remain in the Shift-DR state, the TMS input must be held low. While the Data
Register is shifted in from the TDI pin, the parallel inputs to the Data Register captured in the
Capture-DR state is shifted out on the TDO pin.

Apply the TMS sequence 1, 1, 0 to re-enter the Run-Test/Idle state. If the selected Data Register
has a latched parallel-output, the latching takes place in the Update-DR state. The Exit-DR,
Pause-DR, and Exit2-DR states are only used for navigating the state machine.

As shown in the state diagram, the Run-Test/Idle state need not be entered between selecting
JTAG instruction and using Data Registers.

36.6.3 Boundary-Scan
The Boundary-Scan chain has the capability of driving and observing the logic levels on the dig-
ital I/O pins, as well as the boundary between digital and analog logic for analog circuitry having
off-chip connections. At system level, all ICs having JTAG capabilities are connected serially by
the TDI/TDO signals to form a long shift register. An external controller sets up the devices to
drive values at their output pins, and observe the input values received from other devices. The
controller compares the received data with the expected result. In this way, Boundary-Scan pro-
vides a mechanism for testing interconnections and integrity of components on Printed Circuits
Boards by using the 4 TAP signals only.

The four IEEE 1149.1 defined mandatory JTAG instructions IDCODE, BYPASS, SAMPLE/PRE-
LOAD, and EXTEST can be used for testing the Printed Circuit Board. Initial scanning of the
data register path will show the ID-code of the device, since IDCODE is the default JTAG
instruction. It may be desirable to have the AVR32 device in reset during test mode. If not reset,
inputs to the device may be determined by the scan operations, and the internal software may
be in an undetermined state when exiting the test mode. Entering reset, the outputs of any Port
Pin will instantly enter the high impedance state, making the HIGHZ instruction redundant. If
needed, the BYPASS instruction can be issued to make the shortest possible scan chain
through the device. The device can be set in the reset state either by pulling the external
RESETn pin low, or issuing the AVR_RESET instruction with appropriate setting of the Reset
Data Register.

The EXTEST instruction is used for sampling external pins and loading output pins with data.
The data from the output latch will be driven out on the pins as soon as the EXTEST instruction
is loaded into the JTAG IR-register. Therefore, the SAMPLE/PRELOAD should also be used for
setting initial values to the scan ring, to avoid damaging the board when issuing the EXTEST

TCK

TAP State TLR RTI SelDR SelIR CapIR ShIR Ex1IR UpdIR RTI

TMS

TDI Instruction

TDO ImplDefined

32058K AVR32-01/12

746

AT32UC3A

instruction for the first time. SAMPLE/PRELOAD can also be used for taking a snapshot of the
external pins during normal operation of the part.

When using the JTAG interface for Boundary-Scan, the JTAG TCK clock is independent of the
internal chip clock, which is not required to run.

36.6.4 Service Access Bus
A number of private instructions are used to access Service Access Bus (SAB) resources. Each
of these are described in detail in SAB address map in the Service Access Bus chapter. The
MEMORY_SIZED_ACCESS instruction allows a sized read or write to any 36-bit address on the
bus. MEMORY_WORD_ACCESS is a shorthand instruction for 32-bit accesses to any 36-bit
address, while the NEXUS_ACCESS instruction is a Nexus-compliant shorthand instruction for
accessing the 32-bit OCD registers in the 7-bit address space reserved for these. These instruc-
tions require two passes through the Shift-DR TAP state: one for the address and control
information, and one for data.

To increase the transfer rate, consecutive memory accesses can be accomplished by the
MEMORY_BLOCK_ACCESS instruction, which only requires a single pass through Shift-DR for
data transfer only. The address is automatically incremented according to the size of the last
SAB transfer.

The access time to SAB resources depends on the type of resource being accessed. It is possi-
ble to read external memory through the EBI, in which case the latency may be very long. It is
possible to abort an ongoing SAB access by the CANCEL_ACCESS instruction, to avoid hang-
ing the bus due to an extremely slow slave.

"The access time to SAB resources depends on the type of resource being

accessed. It is possible to abort an ongoing SAB access by the

CANCEL_ACCESS instruction, to avoid hanging the bus due to an extremely

slow slave."

36.6.4.1 Busy reporting
As the time taken to perform an access may vary depending on system activity and current chip
frequency, all the SAB access JTAG instructions can return a busy indicator. This indicates
whether a delay needs to be inserted, or an operation needs to be repeated in order to be suc-
cessful. If a new access is requested while the SAB is busy, the request is ignored.

The SAB becomes busy when:

• Entering Update-DR in the address phase of any read operation, e.g. after scanning in a
NEXUS_ACCESS address with the read bit set.

• Entering Update-DR in the data phase of any write operation, e.g. after scanning in data for a
NEXUS_ACCESS write.

• Entering Update-DR during a MEMORY_BLOCK_ACCESS.
• Entering Update-DR after scanning in a counter value for SYNC.
• Entering Update-IR after scanning in a MEMORY_BLOCK_ACCESS if the previous access

was a read and data was scanned after scanning the address.
The SAB becomes ready again when:

• A read or write operation completes.

32058K AVR32-01/12

747

AT32UC3A

• A SYNC countdown completed.
• A operation is cancelled by the CANCEL_ACCESS instruction.

What to do if the busy bit is set:

• During Shift-IR: The new instruction is selected, but the previous operation has not yet
completed and will continue (unless the new instruction is CANCEL_ACCESS). You may
continue shifting the same instruction until the busy bit clears, or start shifting data. If shifting
data, you must be prepared that the data shift may also report busy.

• During Shift-DR of an address: The new address is ignored. The SAB stays in address mode,
so no data must be shifted. Repeat the address until the busy bit clears.

• During Shift-DR of read data: The read data are invalid. The SAB stays in data mode. Repeat
scanning until the busy bit clears.

• During Shift-DR of write data: The write data are ignored. The SAB stays in data mode.
Repeat scanning until the busy bit clears.

36.6.4.2 Error reporting
The Service access port may not be able to complete all accesses as requested. This may be
because the address is invalid, the addressed area is read-only or cannot handle byte/halfword
accesses, or because the chip is set in a protected mode where only limited accesses are
allowed.

The error bit is updated when an access completes, and is cleared when a new access starts.

What to do if the error bit is set:

• During Shift-IR: The new instruction is selected. The last operation performed using the old
instruction did not complete successfully.

• During Shift-DR of an address: The previous operation failed. The new address is accepted.
If the read bit is set, a read operation is started.

• During Shift-DR of read data: The read operation failed, and the read data are invalid.
• During Shift-DR of write data: The previous write operation failed. The new data are accepted

and a write operation started. This should only occur during block writes or stream writes. No
error can occur between scanning a write address and the following write data.

• While polling with CANCEL_ACCESS: The previous access was cancelled. It may or may not
have actually completed.

36.6.5 Memory programming
The High-Speed Bus (HSB) in the device is mapped as a slave on the SAB. This enables all
HSB-mapped memories to be read or written through the SAB using JTAG instructions, as
described in Section 36.6.4.

Internal SRAM can always be directly accessed. External static memory or SDRAM can be
accessed if the EBI has been correctly configured to access this memory. It is also possible to
access the configuration registers for these modules to set up the correct configuration. Simi-
larly, external parallel flash can be programmed by accessing the registers for the flash device
through the EBI.

The internal flash and fuses can likewise be programmed by accessing the registers in the Flash
Controller. When the security fuse is set, access to internal memory is blocked, and the
CHIP_ERASE instruction must be used to erase the fuse and flash contents. For detail see the
SAB address map section.

32058K AVR32-01/12

748

AT32UC3A

Memory can be written while the CPU is executing, which can be utilized for debug purposes.
When downloading a new program, the JTAG HALT instruction should be used to freeze the
CPU, to prevent partially downloaded code from being executed.

36.7 JTAG Instruction Summary
The implemented JTAG instructions in the AVR32 are shown in the table below.

36.7.1 Security restrictions
When the security fuse in the Flash is programmed, the following JTAG instructions are
restricted:

• NEXUS_ACCESS
• MEMORY_WORD_ACCESS
• MEMORY_BLOCK_ACCESS
• MEMORY_SIZED_ACCESS

Table 36-2. JTAG Instruction Summary

Instruction
OPCODE Instruction Description Page

0x01 IDCODE Select the 32-bit ID register as data register. 749

0x02 SAMPLE_PRELOAD Take a snapshot of external pin values without affecting system
operation. 749

0x03 EXTEST Select boundary scan chain as data register for testing circuitry
external to the device. 749

0x04 INTEST Select boundary scan chain for internal testing of the device. 749

0x06 CLAMP Bypass device through Bypass register, while driving outputs from
boundary scan register. 750

0x0C AVR_RESET Apply or remove a static reset to the device 757

0x0F CHIP_ERASE Erase the device 757

0x10 NEXUS_ACCESS Select the SAB Address and Data registers as data register for the
TAP. The registers are accessed in Nexus mode. 751

0x11 MEMORY_WORD_ACCESS Select the SAB Address and Data registers as data register for the
TAP. 754

0x12 MEMORY_BLOCK_ACCESS Select the SAB Data register as data register for the TAP. The
address is auto-incremented. 755

0x13 CANCEL_ACCESS Cancel an ongoing Nexus or Memory access. 756

0x14 MEMORY_SERVICE Select the SAB Address and Data registers as data register for the
TAP. The registers are accessed in Memory Service mode. 752

0x15 MEMORY_SIZED_ACCESS Select the SAB Address and Data registers as data register for the
TAP. 753

0x17 SYNC Synchronization counter 757

0x1C HALT Halt the CPU for safe programming. 758

0x1F BYPASS Bypass this device through the bypass register. 750

Others N/A Acts as BYPASS

32058K AVR32-01/12

749

AT32UC3A

For description of what memory locations remain accessible, please refer to the SAB address
map.

Full access to these instructions is re-enabled when the security fuse is erased by the
CHIP_ERASE JTAG instruction.

Note that the security bit will read as programmed and block these instructions also if the Flash
Controller is statically reset.

Other security mechanisms can also restrict these functions. If such mechanisms are present
they are listed in the SAB address map section.

36.8 Public JTAG instructions

36.8.1 IDCODE
This instruction selects the 32 bit ID register as Data Register. The ID register consists of a ver-
sion number, a device number and the manufacturer code chosen by JEDEC. This is the default
instruction after power-up.

The active states are:

• Capture-DR: The static IDCODE value is latched into the shift register.
• Shift-DR: The IDCODE scan chain is shifted by the TCK input.

36.8.2 SAMPLE_PRELOAD
JTAG instruction for taking a snap-shot of the input/output pins without affecting the system
operation, and pre-loading the scan chain without updating the DR-latch. The Boundary-Scan
Chain is selected as Data Register.

The active states are:

• Capture-DR: Data on the external pins are sampled into the Boundary-Scan Chain.
• Shift-DR: The Boundary-Scan Chain is shifted by the TCK input.

36.8.3 EXTEST
JTAG instruction for selecting the Boundary-Scan Chain as Data Register for testing circuitry
external to the AVR32 package. The contents of the latched outputs of the Boundary-Scan chain
is driven out as soon as the JTAG IR-register is loaded with the EXTEST instruction.

The active states are:

• Capture-DR: Data on the external pins is sampled into the Boundary-Scan Chain.
• Shift-DR: The Internal Scan Chain is shifted by the TCK input.
• Update-DR: Data from the scan chain is applied to output pins.

36.8.4 INTEST
This instruction selects the Boundary-Scan Chain as Data Register for testing internal logic in
the device. The logic inputs are determined by the Boundary-Scan Chain, and the logic outputs
are captured by the Boundary-Scan chain. The device output pins are driven from the Boundary-
Scan Chain.

The active states are:

• Capture-DR: Data from the internal logic is sampled into the Boundary-Scan Chain.

32058K AVR32-01/12

750

AT32UC3A

• Shift-DR: The Internal Scan Chain is shifted by the TCK input.
• Update-DR: Data from the scan chain is applied to internal logic inputs.

36.8.5 CLAMP
This instruction selects the Bypass register as Data Register. The device output pins are driven
from the Boundary-Scan Chain.

The active states are:

• Capture-DR: Loads a logic ‘0’ into the Bypass Register.
• Shift-DR: Data is scanned from TDI to TDO through the Bypass register.

36.8.6 BYPASS
 JTAG instruction selecting the 1-bit Bypass Register for Data Register.

The active states are:

• Capture-DR: Loads a logic ‘0’ into the Bypass Register.
• Shift-DR: Data is scanned from TDI to TDO through the Bypass register.

36.9 Private JTAG Instructions

36.9.1 Notation
The AVR32 defines a number of private JTAG instructions. Each instruction is briefly described
in text, with details following in table form.

Table 36-4 on page 751 shows bit patterns to be shifted in a format like "peb01". Each character
corresponds to one bit, and eight bits are grouped together for readability. The rightmost bit is
always shifted first, and the leftmost bit shifted last. The symbols used are shown in Table 36-3.

In many cases, it is not required to shift all bits through the data register. Bit patterns are shown
using the full width of the shift register, but the suggested or required bits are emphasized using

Table 36-3. Symbol description

Symbol Description

0 Constant low value - always reads as zero.

1 Constant high value - always reads as one.

a An address bit - always scanned with the least significant bit first

b A busy bit. Reads as one if the SAB was busy, or zero if it was not. See Section 36.6.4.1 for
details on how the busy reporting works.

d A data bit - always scanned with the least significant bit first.

e An error bit. Reads as one if an error occurred, or zero if not. See Section 36.6.4.2 for details
on how the error reporting works.

p
The chip protected bit. Some devices may be set in a protected state where access to chip
internals are severely restricted. See the documentation for the specific device for details.
On devices without this possibility, this bit always reads as zero.

r A direction bit. Set to one to request a read, set to zero to request a write.

s A size bit. The size encoding is described where used.

x A don’t care bit. Any value can be shifted in, and output data should be ignored.

32058K AVR32-01/12

751

AT32UC3A

bold text. I.e. given the pattern "aaaaaaar xxxxxxxx xxxxxxxx xxxxxxxx xx", the shift register is
34 bits, but the test or debug unit may choose to shift only 8 bits "aaaaaaar".

The following describes how to interpret the fields in the instruction description tables:

36.9.2 NEXUS_ACCESS
This instruction allows Nexus-compliant access to on-chip debug registers through the SAB.
OCD registers are addressed by their register index, as listed in the AVR32 Technical Reference
Manual. The 7-bit register index and a read/write control bit, and the 32-bit data is accessed
through the JTAG port.

The data register is alternately interpreted by the SAB as an address register and a data regis-
ter. The SAB starts in address mode after the NEXUS_ACCESS instruction is selected, and
toggles between address and data mode each time a data scan completes with the busy bit
cleared.

Starting in Run-Test/Idle, OCD registers are accessed in the following way:

1. Select the DR Scan path.
2. Scan in the 7-bit address for the OCD register and a direction bit (1=read, 0=write).
3. Go to Update-DR and re-enter Select-DR Scan.
4. For a read operation, scan out the contents of the addressed register. For a write oper-

ation, scan in the new contents of the register.
5. Return to Run-Test/Idle.

Table 36-4. Instruction description

Instruction Description

IR input value

Shows the bit pattern to shift into IR in the Shift-IR state in order to select this
instruction. The pattern is show both in binary and in hexadecimal form for
convenience.
Example: 10000 (0x10)

IR output value
Shows the bit pattern shifted out of IR in the Shift-IR state when this instruction is
active.
Example: peb01

DR Size
Shows the number of bits in the data register chain when this instruction is active.
Example: 34 bits

DR input value

Shows which bit pattern to shift into the data register in the Shift-DR state when this
instruction is active. Multiple such lines may exist, e.g. to distinguish between reads
and writes.
Example: aaaaaaar xxxxxxxx xxxxxxxx xxxxxxxx xx

DR output value

Shows the bit pattern shifted out of the data register in the Shift-DR state when this
instruction is active. Multiple such lines may exist, e.g. to distinguish between reads
and writes.
Example: xx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxeb

32058K AVR32-01/12

752

AT32UC3A

For any operation, the full 7 bits of the address must be provided. For write operations, 32 data
bits must be provided, or the result will be undefined. For read operations, shifting may be termi-
nated once the required number of bits have been acquired.

36.9.3 MEMORY_SERVICE
This instruction allows access to registers in an optional Memory Service unit. Memory Service
registers are addressed by their register index, as listed in the Memory Service documentation.
The 7-bit register index and a read/write control bit, and the 32-bit data is accessed through the
JTAG port.

The Memory Service unit may offer features such as CRC calculation of memory, debug trace
support, and test features. Please refer to the Memory Service Unit documentation and the part
specific documentation for details.

The data register is alternately interpreted by the SAB as an address register and a data regis-
ter. The SAB starts in address mode after the MEMORY_SERVICE instruction is selected, and
toggles between address and data mode each time a data scan completes with the busy bit
cleared.

Starting in Run-Test/Idle, Memory Service registers are accessed in the following way:

1. Select the DR Scan path.
2. Scan in the 7-bit address for the Memory Service register and a direction bit (1=read,

0=write).
3. Go to Update-DR and re-enter Select-DR Scan.
4. For a read operation, scan out the contents of the addressed register. For a write oper-

ation, scan in the new contents of the register.
5. Return to Run-Test/Idle.

Table 36-5. NEXUS_ACCESS details

Instructions Details

IR input value 10000 (0x10)

IR output value peb01

DR Size 34 bits

DR input value (Address phase) aaaaaaar xxxxxxxx xxxxxxxx xxxxxxxx xx

DR input value (Data read phase) xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xx

DR input value (Data write phase) dddddddd dddddddd dddddddd dddddddd xx

DR output value (Address phase) xx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxeb

DR output value (Data read phase) eb dddddddd dddddddd dddddddd dddddddd

DR output value (Data write phase) xx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxeb

32058K AVR32-01/12

753

AT32UC3A

For any operation, the full 7 bits of the address must be provided. For write operations, 32 data
bits must be provided, or the result will be undefined. For read operations, shifting may be termi-
nated once the required number of bits have been acquired.

36.9.4 MEMORY_SIZED_ACCESS
This instruction allows access to the entire Service Access Bus data area. Data are accessed
through a 36-bit byte index, a 2-bit size, a direction bit, and 8, 16, or 32 bits of data. Not all units
mapped on the SAB bus may support all sizes of accesses, e.g. some may only support word
accesses.

The data register is alternately interpreted by the SAB as an address register and a data regis-
ter. The SAB starts in address mode after the MEMORY_SIZED_ACCESS instruction is
selected, and toggles between address and data mode each time a data scan completes with
the busy bit cleared.

The size field is encoded as i Table 36-7.

Table 36-6. MEMORY_SERVICE details

Instructions Details

IR input value 10100 (0x14)

IR output value peb01

DR Size 34 bits

DR input value (Address phase) aaaaaaar xxxxxxxx xxxxxxxx xxxxxxxx xx

DR input value (Data read phase) xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xx

DR input value (Data write phase) dddddddd dddddddd dddddddd dddddddd xx

DR output value (Address phase) xx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxeb

DR output value (Data read phase) eb dddddddd dddddddd dddddddd dddddddd

DR output value (Data write phase) xx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxeb

Table 36-7. Size Field Semantics

Size field value Access size Data alignment

00 Byte (8 bits)

Address modulo 4 : data alignment
0: dddddddd xxxxxxxx xxxxxxxx xxxxxxxx
1: xxxxxxxx dddddddd xxxxxxxx xxxxxxxx
2: xxxxxxxx xxxxxxxx dddddddd xxxxxxxx
3: xxxxxxxx xxxxxxxx xxxxxxxx dddddddd

32058K AVR32-01/12

754

AT32UC3A

Starting in Run-Test/Idle, SAB data are accessed in the following way:

1. Select the DR Scan path.
2. Scan in the 36-bit address of the data to access, a 2-bit access size, and a direction bit

(1=read, 0=write).
3. Go to Update-DR and re-enter Select-DR Scan.
4. For a read operation, scan out the contents of the addressed area. For a write opera-

tion, scan in the new contents of the area.
5. Return to Run-Test/Idle.

For any operation, the full 36 bits of the address must be provided. For write operations, 32 data
bits must be provided, or the result will be undefined. For read operations, shifting may be termi-
nated once the required number of bits have been acquired.

36.9.5 MEMORY_WORD_ACCESS
This instruction allows access to the entire Service Access Bus data area. Data are accessed
through a 34-bit word index, a direction bit, and 32 bits of data. This instruction is identical to
MEMORY_SIZED_ACCESS except that it always does word sized accesses. The size field is
implied, and the two lowest address bits are removed.

01 Halfword (16 bits)

Address modulo 4 : data alignment
0: dddddddd dddddddd xxxxxxxx xxxxxxxx
1: Not allowed
2: xxxxxxxx xxxxxxxx dddddddd dddddddd
3: Not allowed

10 Word (32 bits)

Address modulo 4 : data alignment
0: dddddddd dddddddd dddddddd dddddddd
1: Not allowed
2: Not allowed
3: Not allowed

11 Reserved N/A

Table 36-8. MEMORY_SIZED_ACCESS details

Instructions Details

IR input value 10101 (0x15)

IR output value peb01

DR Size 39 bits

DR input value (Address phase) aaaaaaaa aaaaaaaa aaaaaaaa aaaaaaaa aaaassr

DR input value (Data read phase) xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxx

DR input value (Data write phase) dddddddd dddddddd dddddddd dddddddd xxxxxxx

DR output value (Address phase) xxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxeb

DR output value (Data read phase) xxxxxeb dddddddd dddddddd dddddddd dddddddd

DR output value (Data write phase) xxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxeb

Table 36-7. Size Field Semantics

Size field value Access size Data alignment

32058K AVR32-01/12

755

AT32UC3A

Note: This instruction was previously known as MEMORY_ACCESS, and is provided for back-
wards compatibility.

The data register is alternately interpreted by the SAB as an address register and a data regis-
ter. The SAB starts in address mode after the MEMORY_WORD_ACCESS instruction is
selected, and toggles between address and data mode each time a data scan completes with
the busy bit cleared.

Starting in Run-Test/Idle, SAB data are accessed in the following way:

1. Select the DR Scan path.
2. Scan in the 34-bit address of the data to access, and a direction bit (1=read, 0=write).
3. Go to Update-DR and re-enter Select-DR Scan.
4. For a read operation, scan out the contents of the addressed area. For a write opera-

tion, scan in the new contents of the area.
5. Return to Run-Test/Idle.

For any operation, the full 34 bits of the address must be provided. For write operations, 32 data
bits must be provided, or the result will be undefined. For read operations, shifting may be termi-
nated once the required number of bits have been acquired.

36.9.6 MEMORY_BLOCK_ACCESS
This instruction allows access to the entire SAB data area. Up to 32 bits of data are accessed at
a time, while the address is sequentially incremented from the previously used address.

In this mode, the SAB address, size, and access direction is not provided with each access.
Instead, the previous address is auto-incremented depending on the specified size and the pre-
v ious opera t ion repea ted . The address mus t be se t up in advance w i th
MEMORY_SIZE_ACCESS or MEMORY_WORD_ACCESS. It is allowed, but not required, to
shift data after shifting the address.

This instruction is primarily intended to speed up large quantities of sequential word accesses. It
is possible to use it also for byte and halfword accesses, but the overhead in this is case much
larger as 32 bits must still be shifted for each access.

The following sequence should be used:

Table 36-9. MEMORY_WORD_ACCESS details

Instructions Details

IR input value 10001 (0x11)

IR output value peb01

DR Size 35 bits

DR input value (Address phase) aaaaaaaa aaaaaaaa aaaaaaaa aaaaaaaa aar

DR input value (Data read phase) xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxx

DR input value (Data write phase) dddddddd dddddddd dddddddd dddddddd xxx

DR output value (Address phase) xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xeb

DR output value (Data read phase) xeb dddddddd dddddddd dddddddd dddddddd

DR output value (Data write phase) xxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxeb

32058K AVR32-01/12

756

AT32UC3A

1. Use the MEMORY_SIZE_ACCESS or MEMORY_WORD_ACCESS to read or write the
first location.

2. Apply MEMORY_BLOCK_ACCESS in the IR Scan path.
3. Select the DR Scan path. The address will now have incremented by 1, 2, or 4 (corre-

sponding to the next byte, halfword, or word location).
4. For a read operation, scan out the contents of the next addressed location. For a write

operation, scan in the new contents of the next addressed location.
5. Go to Update-DR.
6. If the block access is not complete, return to Select-DR Scan and repeat the access.
7. If the block access is complete, return to Run-Test/Idle.

For write operations, 32 data bits must be provided, or the result will be undefined. For read
operations, shifting may be terminated once the required number of bits have been acquired.

The overhead using block word access is 4 cycles per 32 bits of data, resulting in an 88% trans-
fer efficiency, or 2.1 MBytes per second with a 20 MHz TCK frequency.

36.9.7 CANCEL_ACCESS
If a very slow memory location is accessed during a SAB memory access, it could take a very
long time until the busy bit is cleared, and the SAB becomes ready for the next operation. The
CANCEL_ACCESS instruction provides a possibility to abort an ongoing transfer and report a
timeout to the user.

When the CANCEL_ACCESS instruction is selected, the current access will be terminated as
soon as possible. There are no guarantees about how long this will take, as the hardware may
not always be able to cancel the access immediately. The SAB is ready to respond to a new
command when the busy bit clears.

Table 36-10. MEMORY_BLOCK_ACCESS details

Instructions Details

IR input value 10010 (0x12)

IR output value peb01

DR Size 34 bits

DR input value (Data read phase) xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xx

DR input value (Data write phase) dddddddd dddddddd dddddddd dddddddd xx

DR output value (Data read phase) eb dddddddd dddddddd dddddddd dddddddd

DR output value (Data write phase) xx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxeb

Table 36-11. CANCEL_ACCESS details

Instructions Details

IR input value 10011 (0x13)

IR output value peb01

DR Size 1

DR input value x

DR output value 0

32058K AVR32-01/12

757

AT32UC3A

36.9.8 SYNC
This instruction allows external debuggers and testers to measure the ratio between the external
JTAG clock and the internal system clock. The SYNC data register is a 16-bit counter that
counts down to zero using the internal system clock. The busy bit stays high until the counter
reaches zero.

Starting in Run-Test/Idle, SYNC instruction is used in the following way:

1. Select the DR Scan path.
2. Scan in an 16-bit counter value.
3. Go to Update-DR and re-enter Select-DR Scan.
4. Scan out the busy bit, and retry until the busy bit clears.
5. Calculate an approximation to the internal clock speed using the elapsed time and the

counter value.
6. Return to Run-Test/Idle.

The full 16-bit counter value must be provided when starting the synch operation, or the result
will be undefined. When reading status, shifting may be terminated once the required number of
bits have been acquired.

36.9.9 AVR_RESET
This instruction allows a debugger or tester to directly control separate reset domains inside the
chip. The shift register contains one bit for each controllable reset domain. Setting a bit to one
resets that domain and holds it in reset. Setting a bit to zero releases the reset for that domain.

See the device specific documentation for the number of reset domains, and what these
domains are.

For any operation, all bits must be provided or the result will be undefined.

36.9.10 CHIP_ERASE
This instruction allows a programmer to completely erase all nonvolatile memories in a chip.
This will also clear any security bits that are set, so the device can be accessed normally. In

Table 36-12. SYNC_ACCESS details

Instructions Details

IR input value 10111 (0x17)

IR output value peb01

DR Size 16 bits

DR input value dddddddd dddddddd

DR output value xxxxxxxx xxxxxxeb

Table 36-13. AVR_RESET details

Instructions Details

IR input value 01100 (0x0C)

IR output value p0001

DR Size Device specific.

DR input value Device specific.

DR output value Device specific.

32058K AVR32-01/12

758

AT32UC3A

devices without non-volatile memories this instruction does nothing, and appears to complete
immediately.

The erasing of non-volatile memories starts as soon as the CHIP_ERASE instruction is selected.
The CHIP_ERASE instruction selects a 1 bit bypass data register.

A chip erase operation should be performed as:

1. Scan in the HALT instruction
2. Scan in the value 1 to halt the CPU
3. Stay in Run-Test/Idle for 10 TCK cycles to let the halt command propagate properly
4. Scan in the CHIP_ERASE instruction
5. Keep scanning the CHIP_ERASE instruction until the busy bit is cleared and the pro-

tection bit is cleared.
6. Scan in the HALT instruction
7. Scan in the value 0 to release the CPU
8. Return to Run-Test/Idle
9. Stay in Run-Test/Idle for 10 TCK cycles to let the halt command propagate properly.

36.9.11 HALT
This instruction allows a programmer to easily stop the CPU to ensure that it does not execute
invalid code during programming.

This instruction selects a 1-bit halt register. Setting this bit to one halts the CPU. Setting this bit
to zero releases the CPU to run normally. The value shifted out from the data register is one if
the CPU is halted.

The HALT instruction can be used in the following way:

10. Scan in the value 1 to halt the CPU
11. Stay in Run-Test/Idle for 10 TCK cycles to let the command propagate properly
12. Use any MEMORY_* instructions to program the device
13. Scan in the HALT instruction
14. Scan in the value 0 to release the CPU
15. Return to Run-Test/Idle

Table 36-14. CHIP_ERASE details

Instructions Details

IR input value 01111 (0x0F)

IR output value
p0b01
Where b is the busy bit.

DR Size 1 bit

DR input value x

DR output value 0

32058K AVR32-01/12

759

AT32UC3A

16. Stay in Run-Test/Idle for 10 TCK cycles to let the command propagate properly - the
device now runs with the new code.

Table 36-15. HALT details

Instructions Details

IR input value 11100 (0x1C)

IR output value p0001

DR Size 1 bit

DR input value d

DR output value d

32058K AVR32-01/12

760

AT32UC3A

36.10 JTAG Data Registers

The following device specific registers can be selected as JTAG scan chain depending on the
instruction loaded in the JTAG Instruction Register. Additional registers exist, but are implicitly
described in the functional description of the relevant instructions.

36.10.1 Device Identification Register

The Device Identification Register contains a unique identifier for each product. The register is
selected by the IDCODE instruction, which is the default instruction after a JTAG reset.

36.10.1.1 Device specific ID codes

The different device configurations have different JTAG ID codes, as shown in Table 36-16.
Note that if the flash controller is statically reset, the ID code will be undefined.

36.10.2 Reset register

The reset register is selected by the AVR_RESET instruction and contains one bit for each reset
domain in the device. Setting each bit to one will keep that domain reset until the bit is cleared.

MS
B LSB

Bit 31 28 27 12 11 1 0

Device ID Revision Part Number Manufacturer ID 1

4 bits 16 bits 11 bits 1 bit

Revision This is a 4 bit number identifying the revision of the component.
Rev A = 0x0, B = 0x1, etc.

Part Number The part number is a 16 bit code identifying the component.
Manufacturer ID The Manufacturer ID is a 11 bit code identifying the manufacturer.

The JTAG manufacturer ID for ATMEL is 0x01F.

Table 36-16. Device and JTAG ID

Device name JTAG ID code (r is the revision number)

AT32UC3A0512 0xr1EDC03F

AT32UC3A0256 0xr1EDF03F

AT32UC3A0128 0xr1EE203F

AT32UC3A1512 0xr1EDD03F

AT32UC3A1256 0xr1EE003F

AT32UC3A1128 0xr1EE303F

LSB

Bit 4 3 2 1 0

Device ID OCD APP RESERVED RESERVED CPU

32058K AVR32-01/12

761

AT32UC3A

Note: This register is primarily intended for compatibility with other AVR32 devices. Certain oper-
ations may not function correctly when parts of the system are reset. It is generally
recommended to only write 0x11111 or 0x00000 to these bits to ensure no unintended side
effects occur.

36.10.3 Boundary-Scan Chain

The Boundary-Scan Chain has the capability of driving and observing the logic levels on the dig-
ital I/O pins, as well as driving and observing the logic levels between the digital I/O pins and the
internal logic. Typically, output value, output enable, and input data are all available in the
boundary scan chain.

The boundary scan chain is described in the BDSL (Boundary Scan Description Language) file
available at the Atmel web site.

36.11 SAB address map

The Service Access Bus (SAB) gives the user access to the internal address space and other
features through a 36 bits address space. The 4 MSBs identify the slave number, while the 32
LSBs are decoded within the slave’s address space. The SAB slaves are shown in Table 36-17.

CPU CPU
APP HSB and PB buses
OCD On-Chip Debug logic and registers
RSERVED No effect

Table 36-17. SAB Slaves, addresses and descriptions.

Slave Address [35:32] Description

Unallocated 0x0 Intentionally unallocated

OCD 0x1 OCD registers

HSB 0x4 HSB memory space, as seen by the CPU

HSB 0x5 Alternative mapping for HSB space, for compatibility with
other AVR32 devices.

Memory Service
Unit 0x6 Memory Service Unit registers

Reserved Other Unused

32058K AVR32-01/12

762

AT32UC3A

37. Boot Sequence

This chapter summarizes the boot sequence of the AT32UC3A. The behaviour after power-up is
controlled by the Power Manager. For specific details, refer to Section 13. ”Power Manager
(PM)” on page 53.

37.1 Starting of clocks

After power-up, the device will be held in a reset state by the Power-On Reset circuitry, until the
power has stabilized throughout the device. Once the power has stabilized, the device will use
the internal RC Oscillator as clock source.

On system start-up, the PLLs are disabled. All clocks to all modules are running. No clocks have
a divided frequency, all parts of the system recieves a clock with the same frequency as the
internal RC Oscillator.

37.2 Fetching of initial instructions

After reset has been released, the AVR32 UC CPU starts fetching instructions from the reset
address, which is 0x8000_0000. This address points to the first address in the internal Flash.

The code read from the internal Flash is free to configure the system to use for example the
PLLs, to divide the frequency of the clock routed to some of the peripherals, and to gate the
clocks to unused peripherals.

32058K AVR32-01/12

763

AT32UC3A

38. Electrical Characteristics

38.1 Absolute Maximum Ratings*
Operating Temperature. -40⋅C to +85⋅C *NOTICE:

Stresses beyond those listed under “Absolute
Maximum Ratings” may cause permanent dam-
age to the device. This is a stress rating only and
functional operation of the device at these or
other conditions beyond those indicated in the
operational sections of this specification is not
implied. Exposure to absolute maximum rating
conditions for extended periods may affect
device reliability.

Storage Temperature . -60°C to +150°C

Voltage on Input Pin
with respect to Ground except for PC00, PC01, PC02, PC03,
PC04, PC05..-0.3V to 5.5V
Voltage on Input Pin
with respect to Ground for PC00, PC01, PC02, PC03, PC04,
PC05...-0.3V to 3.6V

Maximum Operating Voltage (VDDCORE, VDDPLL) . 1.95V

Maximum Operating Voltage (VDDIO, VDDIN, VDDANA).3.6V

Total DC Output Current on all I/O Pin
for TQFP100 package . 370 mA
for LQGP144 package . 470 mA

32058K AVR32-01/12

764

AT32UC3A

38.2 DC Characteristics

The following characteristics are applicable to the operating temperature range: TA = -40°C to 85°C, unless otherwise spec-
ified and are certified for a junction temperature up to TJ = 100°C.

Table 38-1. DC Characteristics

Symbol Parameter Condition Min. Typ. Max Units

VVDDCOR

E
DC Supply Core 1.65 1.95 V

VVDDPLL DC Supply PLL 1.65 1.95 V

VVDDIO DC Supply Peripheral I/Os 3.0 3.6 V

VREF Analog reference voltage 2.6 3.6 V

VIL Input Low-level Voltage -0.3 +0.8 V

VIH Input High-level Voltage
All GPIOS except for PC00, PC01, PC02,
PC03, PC04, PC05. 2.0 5.5V V

 PC00, PC01, PC02, PC03, PC04, PC05. 2.0 3.6V V

VOL Output Low-level Voltage

IOL=-4mA for PA0-PA20, PB0, PB4-PB9,
PB11-PB18, PB24-PB26, PB29-PB31,
PX0-PX39

0.4 V

IOL=-8mA for PA21-PA30, PB1-PB3,
PB10, PB19-PB23, PB27-PB28, PC0-
PC5

0.4 V

VOH Output High-level Voltage

IOH=4mA for PA0-PA20, PB0, PB4-PB9,
PB11-PB18, PB24-PB26, PB29-PB31,
PX0-PX39

VVDDIO-
0.4 V

IOH=8mA for PA21-PA30, PB1-PB3,
PB10, PB19-PB23, PB27-PB28, PC0-
PC5

VVDDIO-
0.4 V

IOL Output Low-level Current

PA0-PA20, PB0, PB4-PB9, PB11-PB18,
PB24-PB26, PB29-PB31, PX0-PX39 -4 mA

PA21-PA30, PB1-PB3, PB10, PB19-
PB23, PB27-PB28, PC0-PC5 -8 mA

IOH Output HIgh-level Current

PA0-PA20, PB0, PB4-PB9, PB11-PB18,
PB24-PB26, PB29-PB31, PX0-PX39 4 mA

PA21-PA30, PB1-PB3, PB10, PB19-
PB23, PB27-PB28, PC0-PC5 8 mA

ILEAK Input Leakage Current Pullup resistors disabled 1 µA

CIN

Input Capacitance

TQFP100 Package 7 pF

LQFP144 Package 7 pF

RPULLUP Pull-up Resistance All GPIO and RESET_N pin. 10K 15K Ohm

32058K AVR32-01/12

765

AT32UC3A

38.3 Regulator characteristics

Table 38-2. Electrical characteristics

Table 38-3. Decoupling requirements

38.4 Analog characteristics

Table 38-4. Electrical characteristics

Table 38-5. Decoupling requirements

38.4.1 BOD

Table 38-6. BODLEVEL Values

The values in Table 38-6 describes the values of the BODLEVEL in the flash FGPFR register.

Symbol Parameter Condition Min. Typ. Max. Units

VVDDIN Supply voltage (input) 3 3.3 3.6 V

VVDDOUT Supply voltage (output) 1.81 1.85 1.89 V

IOUT

Maximum DC output current with VVDDIN = 3.3V 100 mA

Maximum DC output current with VVDDIN = 2.7V 90 mA

ISCR Static Current of internal regulator Low Power mode (stop, deep stop
or static) at TA =25°C 10 µA

Symbol Parameter Condition Typ. Techno. Units

CIN1 Input Regulator Capacitor 1 1 NPO nF

CIN2 Input Regulator Capacitor 2 4.7 X7R uF

COUT1 Output Regulator Capacitor 1 470 NPO pF

COUT2 Output Regulator Capacitor 2 2.2 X7R uF

Symbol Parameter Condition Min. Typ. Max. Units

VADVREF Analog voltage reference (input) 2.6 3.6 V

Symbol Parameter Condition Typ.
Techno

. Units

CVREF1 Voltage reference Capacitor 1 10 - nF

CVREF2 Voltage reference Capacitor 2 1 - uF

BODLEVEL Value Typ. Typ. Typ. Units.

00 0000b 1.40 1.47 1.55 V

01 0111b 1.45 1.52 1.6 V

01 1111b 1.55 1.6 1.65 V

10 0111b 1.65 1.69 1.75 V

32058K AVR32-01/12

766

AT32UC3A

Table 38-7. BOD Timing

38.4.2 POR

Table 38-8. Electrical Characteristic

Symbol Parameter Test Conditions Typ. Max. Units.

TBOD

Minimum time with
VDDCORE < VBOD to
detect power failure

Falling VDDCORE
from 1.8V to 1.1V 300 800 ns

Symbol Parameter Test Conditions Min. Typ. Max. Units.

VDDRR VDDCORE rise rate to ensure power-on-reset 0.01 V/ms

VSSFR VDDCORE fall rate to ensure power-on-reset 0.01 400 V/ms

VPOR+

Rising threshold voltage: voltage up to which
device is kept under reset by POR on rising
VDDCORE

Rising VDDCORE:
VRESTART -> VPOR+

1.35 1.5 1.6 V

VPOR-
Falling threshold voltage: voltage when POR
resets device on falling VDDCORE

Falling VDDCORE:
1.8V -> VPOR+

1.25 1.3 1.4 V

VRESTART

On falling VDDCORE, voltage must go down to
this value before supply can rise again to ensure
reset signal is released at VPOR+

Falling VDDCORE:
1.8V -> VRESTART

-0.1 0.5 V

TPOR Minimum time with VDDCORE < VPOR-
Falling VDDCORE:
1.8V -> 1.1V

15 us

TRST Time for reset signal to be propagated to system 200 400 us

32058K AVR32-01/12

767

AT32UC3A

38.5 Power Consumption

The values in Table 38-9 and Table 38-10 on page 769 are measured values of power con-
sumption with operating conditions as follows:

•VDDIO = 3.3V
•VDDCORE = VDDPLL = 1.8V
•TA = 25°C, TA = 85°C
•I/Os are configured in input, pull-up enabled.

Figure 38-1. Measurement setup

Internal
Voltage

Regulator

Amp0

Amp1

VDDANA

VDDIO

VDDIN

VDDOUT

VDDCORE

VDDPLL

32058K AVR32-01/12

768

AT32UC3A

These figures represent the power consumption measured on the power supplies.

Table 38-9. Power Consumption for Different Modes

Mode Conditions Typ. Unit

Active

Typ : Ta =25 °C
CPU running from flash (1).
VDDIN=3.3 V. VDDCORE =1.8V.
CPU clocked from PLL0 at f MHz
Voltage regulator is on.
XIN0 : external clock. (1)

XIN1 stopped. XIN32 stopped
PLL0 running
All peripheral clocks activated.
GPIOs on internal pull-up.
JTAG unconnected with ext pull-up.

f = 12 MHz 9 mA

f = 24 MHz 15 mA

f = 36MHz 20 mA

f = 50 MHz 28 mA

f = 66 MHz 36.3 mA

Idle

Typ : Ta = 25 °C
CPU running from flash (1).
VDDIN=3.3 V. VDDCORE =1.8V.
CPU clocked from PLL0 at f MHz
Voltage regulator is on.
XIN0 : external clock.
XIN1 stopped. XIN32 stopped
PLL0 running
All peripheral clocks activated.
GPIOs on internal pull-up.
JTAG unconnected with ext pull-up.

f = 12 MHz 5 mA

f = 24 MHz 10 mA

f = 36MHz 14 mA

f = 50 MHz 19 mA

f = 66 MHz 25.5 mA

Frozen

Typ : Ta = 25 °C
CPU running from flash (1).
CPU clocked from PLL0 at f MHz
Voltage regulator is on.
XIN0 : external clock.
XIN1 stopped. XIN32 stopped
PLL0 running
All peripheral clocks activated.
GPIOs on internal pull-up.
JTAG unconnected with ext pull-up.

f = 12 MHz 3 mA

f = 24 MHz 6 mA

f = 36MHz 9 mA

f = 50 MHz 13 mA

f = 66 MHz 16.8 mA

Standby

Typ : Ta = 25 °C
CPU running from flash (1).
CPU clocked from PLL0 at f MHz
Voltage regulator is on.
XIN0 : external clock.
XIN1 stopped. XIN32 stopped
PLL0 running
All peripheral clocks activated.
GPIOs on internal pull-up.
JTAG unconnected with ext pull-up.

f = 12 MHz 1 mA

f = 24 MHz 2 mA

f = 36MHz 3 mA

f = 50 MHz 4 mA

f = 66 MHz 4.8 mA

32058K AVR32-01/12

769

AT32UC3A

38.6 Clock Characteristics

These parameters are given in the following conditions:

Stop

Typ : Ta = 25 °C.
CPU is in stop mode
GPIOs on internal pull-up.
All peripheral clocks de-activated.
DM and DP pins connected to ground.
XIN0,Xin1 and XIN2 are stopped

on Amp0 47 uA

on Amp1 40 uA

Deepstop

Typ : Ta = 25 °C.CPU is in deepstop mode
GPIOs on internal pull-up.
All peripheral clocks de-activated.
DM and DP pins connected to ground.
XIN0,Xin1 and XIN2 are stopped

on Amp0 36 uA

on Amp1 28 uA

Static

Typ : Ta = 25 °C. CPU is in static mode
GPIOs on internal pull-up.
All peripheral clocks de-activated.
DM and DP pins connected to ground.
XIN0,Xin1 and XIN2 are stopped

on Amp0 25 uA

on Amp1 14 uA

1. Core frequency is generated from XIN0 using the PLL so that 140 MHz < fpll0 < 160 MHz and 10 MHz < fxin0
< 12MHz

Table 38-9. Power Consumption for Different Modes

Mode Conditions Typ. Unit

Table 38-10. Power Consumption by Peripheral in Active Mode

Peripheral Typ. Unit

GPIO 37

µA/MHz

SMC 10

SDRAMC 4

ADC 18

EBI 31

INTC 25

TWI 14

MACB 45

PDCA 30

PWM 36

RTC 7

SPI 13

SSC 13

TC 10

USART 35

USB 45

32058K AVR32-01/12

770

AT32UC3A

• VDDCORE = 1.8V
• Ambient Temperature = 25°C

38.6.1 CPU/HSB Clock Characteristics

38.6.2 PBA Clock Characteristics

38.6.3 PBB Clock Characteristics

38.7 Crystal Oscillator Characteristis

The following characteristics are applicable to the operating temperature range: TA = -40°C to 85°C and worst case of
power supply, unless otherwise specified.

38.7.1 32 KHz Oscillator Characteristics

Note: 1. CL is the equivalent load capacitance.

Table 38-11. Core Clock Waveform Parameters

Symbol Parameter Conditions Min Max Units

1/(tCPCPU) CPU Clock Frequency 66 MHz

tCPCPU CPU Clock Period 15,15 ns

Table 38-12. PBA Clock Waveform Parameters

Symbol Parameter Conditions Min Max Units

1/(tCPPBA) PBA Clock Frequency 66 MHz

tCPPBA PBA Clock Period 15,15 ns

Table 38-13. PBB Clock Waveform Parameters

Symbol Parameter Conditions Min Max Units

1/(tCPPBB) PBB Clock Frequency 66 MHz

tCPPBB PBB Clock Period 15,15 ns

Table 38-14. 32 KHz Oscillator Characteristics

Symbol Parameter Conditions Min Typ Max Unit

1/(tCP32KHz) Crystal Oscillator Frequency 32 768 Hz

 CL Equivalent Load Capacitance 6 12.5 pF

tST Startup Time
CL = 6pF(1)

CL = 12.5pF(1)
600

1200 ms

IOSC Current Consumption
Active mode 1.8 µA

Standby mode 0.1 µA

32058K AVR32-01/12

771

AT32UC3A

38.7.2 Main Oscillators Characteristics

38.7.3 PLL Characteristics

Table 38-15. Main Oscillator Characteristics

Symbol Parameter Conditions Min Typ Max Unit

1/(tCPMAIN) Crystal Oscillator Frequency 0.45 16 MHz

CL1, CL2
Internal Load Capacitance
(CL1 = CL2)

12 pF

Duty Cycle 40 50 60 %

tST Startup Time 8 MHz 4 ms

1/(tCPXIN) XIN Clock Frequency
External clock 50 MHz

Crystal 0.45 16 MHz

tCHXIN XIN Clock High Half-period 0.4 x
tCPXIN

0.6 x
tCPXIN

tCLXIN XIN Clock Low Half-period 0.4 x
tCPXIN

0.6 x
tCPXIN

CIN XIN Input Capacitance 7 pF

Table 38-16. Phase Lock Loop Characteristics

Symbol Parameter Conditions Min Typ Max Unit

FOUT Output Frequency 80 240 MHz

FIN Input Frequency 4 16 MHz

IPLL Current Consumption
active mode (Fout=80Mhz) 250 µA

active mode (Fout=240Mhz) 600 µA

32058K AVR32-01/12

772

AT32UC3A

38.8 ADC Characteristics

Notes: 1. Corresponds to 13 clock cycles at 5 MHz: 3 clock cycles for track and hold acquisition time and 10 clock cycles for
conversion.

2. Corresponds to 15 clock cycles at 8 MHz: 5 clock cycles for track and hold acquisition time and 10 clock cycles for
conversion.

Note: ADVREF should be connected to GND to avoid extra consumption in case ADC is not used.

Table 38-17. Channel Conversion Time and ADC Clock
Parameter Conditions Min Typ Max Units

ADC Clock Frequency 10-bit resolution mode 5 MHz

ADC Clock Frequency 8-bit resolution mode 8 MHz

Startup Time Return from Idle Mode 20 µs

Track and Hold Acquisition Time 600 ns

Conversion Time ADC Clock = 5 MHz 2 µs

Conversion Time ADC Clock = 8 MHz 1.25 µs

Throughput Rate ADC Clock = 5 MHz 384(1) kSPS

Throughput Rate ADC Clock = 8 MHz 533(2) kSPS

Table 38-18. External Voltage Reference Input
Parameter Conditions Min Typ Max Units

ADVREF Input Voltage Range 2.6 VDDANA V

ADVREF Average Current On 13 samples with ADC Clock = 5 MHz 200 250 µA

Current Consumption on VDDANA 1.25 mA

Table 38-19. Analog Inputs
Parameter Min Typ Max Units

Input Voltage Range 0 VADVREF

Input Leakage Current 1 µA

Input Capacitance 17 pF

Table 38-20. Transfer Characteristics in 8-bit mode
Parameter Conditions Min Typ Max Units

Resolution 8 Bit

Absolute Accuracy
f=5MHz 0.8 LSB

f=8MHz 1.5 LSB

Integral Non-linearity
f=5MHz 0.35 0.5 LSB

f=8MHz 0.5 1.0 LSB

Differential Non-linearity f=5MHz 0.3 0.5 LSB

f=8MHz 0.5 1.0 LSB

Offset Error f=5MHz -0.5 0.5 LSB

Gain Error f=5MHz -0.5 0.5 LSB

32058K AVR32-01/12

773

AT32UC3A

Table 38-21. Transfer Characteristics in 10-bit mode
Parameter Conditions Min Typ Max Units

Resolution 10 Bit

Absolute Accuracy f=5MHz 3 LSB

Integral Non-linearity f=5MHz 1.5 2 LSB

Differential Non-linearity
f=5MHz 1 2 LSB

f=2.5MHz 0.6 1 LSB

Offset Error f=5MHz -2 2 LSB

Gain Error f=5MHz -2 2 LSB

32058K AVR32-01/12

774

AT32UC3A

38.9 EBI Timings
These timings are given for worst case process, T = 85⋅C, VDDCORE = 1.65V, VDDIO = 3V and 40 pF load capacitance.

Note: 1. The maximum frequency of the SMC interface is the same as the max frequency for the HSB.

Note: 1. hold length = total cycle duration - setup duration - pulse duration. “hold length” is for “ncs rd hold length” or “nrd hold length”.

Table 38-22. SMC Clock Signal.

Symbol Parameter Max(1) Units

1/(tCPSMC) SMC Controller Clock Frequency 1/(tcpcpu) MHz

Table 38-23. SMC Read Signals with Hold Settings

Symbol Parameter Min Units

NRD Controlled (READ_MODE = 1)

SMC1 Data Setup before NRD High 12

ns

SMC2 Data Hold after NRD High 0

SMC3 NRD High to NBS0/A0 Change(1) nrd hold length * tCPSMC - 1.3

SMC4 NRD High to NBS1 Change(1) nrd hold length * tCPSMC - 1.3

SMC5 NRD High to NBS2/A1 Change(1) nrd hold length * tCPSMC - 1.3

SMC6 NRD High to NBS3 Change(1) nrd hold length * tCPSMC - 1.3

SMC7 NRD High to A2 - A25 Change(1) nrd hold length * tCPSMC - 1.3

SMC8 NRD High to NCS Inactive(1) (nrd hold length - ncs rd hold length) * tCPSMC - 2.3

SMC9 NRD Pulse Width nrd pulse length * tCPSMC - 1.4

NRD Controlled (READ_MODE = 0)

SMC10 Data Setup before NCS High 11.5

ns

SMC11 Data Hold after NCS High 0

SMC12 NCS High to NBS0/A0 Change(1) ncs rd hold length * tCPSMC - 2.3

SMC13 NCS High to NBS0/A0 Change(1) ncs rd hold length * tCPSMC - 2.3

SMC14 NCS High to NBS2/A1 Change(1) ncs rd hold length * tCPSMC - 2.3

SMC15 NCS High to NBS3 Change(1) ncs rd hold length * tCPSMC - 2.3

SMC16 NCS High to A2 - A25 Change(1) ncs rd hold length * tCPSMC - 4

SMC17 NCS High to NRD Inactive(1) ncs rd hold length - nrd hold length)* tCPSMC - 1.3

SMC18 NCS Pulse Width ncs rd pulse length * tCPSMC - 3.6

32058K AVR32-01/12

775

AT32UC3A

Note: 1. hold length = total cycle duration - setup duration - pulse duration. “hold length” is for “ncs wr hold length” or “nwe hold
length"

Table 38-24. SMC Read Signals with no Hold Settings

Symbol Parameter Min Units

NRD Controlled (READ_MODE = 1)

SMC19 Data Setup before NRD High 13.7
ns

SMC20 Data Hold after NRD High 1

NRD Controlled (READ_MODE = 0)

SMC21 Data Setup before NCS High 13.3
ns

SMC22 Data Hold after NCS High 0

Table 38-25. SMC Write Signals with Hold Settings

Symbol Parameter Min Units

NRD Controlled (READ_MODE = 1)

SMC23 Data Out Valid before NWE High (nwe pulse length - 1) * tCPSMC - 0.9

ns

SMC24 Data Out Valid after NWE High(1) nwe hold length * tCPSMC - 6

SMC25 NWE High to NBS0/A0 Change(1) nwe hold length * tCPSMC - 1.9

SMC26 NWE High to NBS1 Change(1) nwe hold length * tCPSMC - 1.9

SMC29 NWE High to NBS2/A1 Change(1) nwe hold length * tCPSMC - 1.9

SMC30 NWE High to NBS3 Change(1) nwe hold length * tCPSMC - 1.9

SMC31 NWE High to A2 - A25 Change(1) nwe hold length * tCPSMC - 1.7

SMC32 NWE High to NCS Inactive(1) (nwe hold length - ncs wr hold length)* tCPSMC - 2.9

SMC33 NWE Pulse Width nwe pulse length * tCPSMC - 0.9

NRD Controlled (READ_MODE = 0)

SMC34 Data Out Valid before NCS High (ncs wr pulse length - 1)* tCPSMC - 4.6

nsSMC35 Data Out Valid after NCS High(1) ncs wr hold length * tCPSMC - 5.8

SMC36 NCS High to NWE Inactive(1) (ncs wr hold length - nwe hold length)* tCPSMC - 0.6

32058K AVR32-01/12

776

AT32UC3A

Figure 38-2. SMC Signals for NCS Controlled Accesses.

Table 38-26. SMC Write Signals with No Hold Settings (NWE Controlled only).

Symbol Parameter Min Units

SMC37 NWE Rising to A2-A25 Valid 5.4

ns

SMC38 NWE Rising to NBS0/A0 Valid 5

SMC39 NWE Rising to NBS1 Change 5

SMC40 NWE Rising to A1/NBS2 Change 5

SMC41 NWE Rising to NBS3 Change 5

SMC42 NWE Rising to NCS Rising 5.1

SMC43 Data Out Valid before NWE Rising (nwe pulse length - 1) * tCPSMC - 1.2

SMC44 Data Out Valid after NWE Rising 5

SMC45 NWE Pulse Width nwe pulse length * tCPSMC - 0.9

NRD

NCS

D0 - D15

NWE

A2-A25

A0/A1/NBS[3:0]

SMC34 SMC35SMC10 SMC11

SMC16

SMC15

SMC22SMC21

SMC17

SMC18

SMC14
SMC13
SMC12

SMC18

SMC17

SMC16

SMC15
SMC14
SMC13
SMC12

SMC18

SMC36

SMC16

SMC15
SMC14
SMC13
SMC12

32058K AVR32-01/12

777

AT32UC3A

Figure 38-3. SMC Signals for NRD and NRW Controlled Accesses.

38.9.1 SDRAM Signals

These timings are given for 10 pF load on SDCK and 40 pF on other signals.

Note: 1. The maximum frequency of the SDRAMC interface is the same as the max frequency for the
HSB.

NRD

NCS

D0 - D15

NWE

A2-A25

A0/A1/NBS[3:0]

SMC7

SMC19 SMC20 SMC43

SMC37

SMC42 SMC8

SMC1 SMC2 SMC23 SMC24

SMC32

SMC7

SMC8

SMC6
SMC5
SMC4
SMC3

SMC9

SMC41
SMC40
SMC39
SMC38

SMC45

SMC9

SMC6
SMC5
SMC4
SMC3

SMC33

SMC30
SMC29
SMC26
SMC25

SMC31

SMC44

Table 38-27. SDRAM Clock Signal.

Symbol Parameter Max(1) Units

1/(tCPSDCK) SDRAM Controller Clock Frequency 1/(tcpcpu) MHz

Table 38-28. SDRAM Clock Signal.

Symbol Parameter Min Units

SDRAMC1 SDCKE High before SDCK Rising Edge 7.4 ns

SDRAMC2 SDCKE Low after SDCK Rising Edge 3.2

SDRAMC3 SDCKE Low before SDCK Rising Edge 7

SDRAMC4 SDCKE High after SDCK Rising Edge 2.9

SDRAMC5 SDCS Low before SDCK Rising Edge 7.5

SDRAMC6 SDCS High after SDCK Rising Edge 1.6

SDRAMC7 RAS Low before SDCK Rising Edge 7.2

SDRAMC8 RAS High after SDCK Rising Edge 2.3

SDRAMC9 SDA10 Change before SDCK Rising Edge 7.6

SDRAMC10 SDA10 Change after SDCK Rising Edge 1.9

32058K AVR32-01/12

778

AT32UC3A

SDRAMC11 Address Change before SDCK Rising Edge 6.2

ns

SDRAMC12 Address Change after SDCK Rising Edge 2.2

SDRAMC13 Bank Change before SDCK Rising Edge 6.3

SDRAMC14 Bank Change after SDCK Rising Edge 2.4

SDRAMC15 CAS Low before SDCK Rising Edge 7.4

SDRAMC16 CAS High after SDCK Rising Edge 1.9

SDRAMC17 DQM Change before SDCK Rising Edge 6.4

SDRAMC18 DQM Change after SDCK Rising Edge 2.2

SDRAMC19 D0-D15 in Setup before SDCK Rising Edge 9

SDRAMC20 D0-D15 in Hold after SDCK Rising Edge 0

SDRAMC23 SDWE Low before SDCK Rising Edge 7.6

SDRAMC24 SDWE High after SDCK Rising Edge 1.8

SDRAMC25 D0-D15 Out Valid before SDCK Rising Edge 7.1

SDRAMC26 D0-D15 Out Valid after SDCK Rising Edge 1.5

Table 38-28. SDRAM Clock Signal.

Symbol Parameter Min Units

32058K AVR32-01/12

779

AT32UC3A

Figure 38-4. SDRAMC Signals relative to SDCK.

RAS

A0 - A9,
A11 - A13

D0 - D15
Read

SDCK

SDA10

D0 - D15
to Write

SDRAMC1

SDCKE

SDRAMC2 SDRAMC3 SDRAMC4

SDCS

SDRAMC5 SDRAMC6 SDRAMC5 SDRAMC6 SDRAMC5 SDRAMC6

SDRAMC7 SDRAMC8

CAS

SDRAMC15 SDRAMC16 SDRAMC15 SDRAMC16

SDWE

SDRAMC23 SDRAMC24

SDRAMC9 SDRAMC10SDRAMC9 SDRAMC10SDRAMC9 SDRAMC10

SDRAMC11 SDRAMC12 SDRAMC11 SDRAMC12SDRAMC11 SDRAMC12

BA0/BA1

SDRAMC13 SDRAMC14 SDRAMC13 SDRAMC14 SDRAMC13 SDRAMC14

SDRAMC17 SDRAMC18SDRAMC17 SDRAMC18

DQM0 -
DQM3

SDRAMC19 SDRAMC20

SDRAMC25 SDRAMC26

32058K AVR32-01/12

780

AT32UC3A

38.10 JTAG Timings

38.10.1 JTAG Interface Signals

Note: 1. VVDDIO from 3.0V to 3.6V, maximum external capacitor = 40pF

Table 38-29. JTAG Interface Timing specification
Symbol Parameter Conditions Min Max Units

JTAG0 TCK Low Half-period (1) 6 ns

JTAG1 TCK High Half-period (1) 3 ns

JTAG2 TCK Period (1) 9 ns

JTAG3 TDI, TMS Setup before TCK High (1) 1 ns

JTAG4 TDI, TMS Hold after TCK High (1) 0 ns

JTAG5 TDO Hold Time (1) 4 ns

JTAG6 TCK Low to TDO Valid (1) 6 ns

JTAG7 Device Inputs Setup Time (1) ns

JTAG8 Device Inputs Hold Time (1) ns

JTAG9 Device Outputs Hold Time (1) ns

JTAG10 TCK to Device Outputs Valid (1) ns

32058K AVR32-01/12

781

AT32UC3A

Figure 38-5. JTAG Interface Signals

38.11 SPI Characteristics

Figure 38-6. SPI Master mode with (CPOL = NCPHA = 0) or (CPOL= NCPHA= 1)

TCK

JTAG9

TMS/TDI

TDO

Device
Outputs

JTAG5

JTAG4JTAG3

 JTAG
0 JTAG1

JTAG2

JTAG10

Device
 Inputs

JTAG8JTAG7

JTAG6

SPCK

MISO

MOSI

SPI2

SPI0 SPI1

32058K AVR32-01/12

782

AT32UC3A

Figure 38-7. SPI Master mode with (CPOL=0 and NCPHA=1) or (CPOL=1 and NCPHA=0)

Figure 38-8. SPI Slave mode with (CPOL=0 and NCPHA=1) or (CPOL=1 and NCPHA=0)

Figure 38-9. SPI Slave mode with (CPOL = NCPHA = 0) or (CPOL= NCPHA= 1)

SPCK

MISO

MOSI

SPI5

SPI3 SPI4

SPCK

MISO

MOSI

SPI6

SPI7 SPI8

SPCK

MISO

MOSI

SPI9

SPI10 SPI11

32058K AVR32-01/12

783

AT32UC3A

Notes: 1. 3.3V domain: VVDDIO from 3.0V to 3.6V, maximum external capacitor = 40 pF.
2. tCPMCK: Master Clock period in ns.

38.12 MACB Characteristics

Notes: 1. f: MCK frequency (MHz)
2. VVDDIO from 3.0V to 3.6V, maximum external capacitor = 20 pF

Table 38-30. SPI Timings

Symbol Parameter Conditions Min Max Units

SPI0 MISO Setup time before SPCK rises (master) 3.3V domain(1) 22 + (tCPMCK)/2(2) ns

SPI1 MISO Hold time after SPCK rises (master) 3.3V domain(1) 0 ns

SPI2 SPCK rising to MOSI Delay (master) 3.3V domain(1) 7 ns

SPI3 MISO Setup time before SPCK falls (master) 3.3V domain(1) 22 + (tCPMCK)/2(2) ns

SPI4 MISO Hold time after SPCK falls (master) 3.3V domain (1) 0 ns

SPI5 SPCK falling to MOSI Delay (master) 3.3V domain (1) 7 ns

SPI6 SPCK falling to MISO Delay (slave) 3.3V domain (1) 26.5 ns

SPI7 MOSI Setup time before SPCK rises (slave) 3.3V domain (1) 0 ns

SPI8 MOSI Hold time after SPCK rises (slave) 3.3V domain (1) 1.5 ns

SPI9 SPCK rising to MISO Delay (slave) 3.3V domain (1) 27 ns

SPI10 MOSI Setup time before SPCK falls (slave) 3.3V domain (1) 0 ns

SPI11 MOSI Hold time after SPCK falls (slave) 3.3V domain (1) 1 ns

Table 38-31. Ethernet MAC Signals

Symbol Parameter Conditions Min (ns) Max (ns)

EMAC1 Setup for EMDIO from EMDC rising Load: 20pF(2)

EMAC2 Hold for EMDIO from EMDC rising Load: 20pF(2)

EMAC3 EMDIO toggling from EMDC falling Load: 20pF(2)

Table 38-32. Ethernet MAC MII Specific Signals

Symbol Parameter Conditions Min (ns) Max (ns)

EMAC4 Setup for ECOL from ETXCK rising Load: 20pF (1) 3

EMAC5 Hold for ECOL from ETXCK rising Load: 20pF (1) 0

EMAC6 Setup for ECRS from ETXCK rising Load: 20pF (1) 3

EMAC7 Hold for ECRS from ETXCK rising Load: 20pF (1) 0

EMAC8 ETXER toggling from ETXCK rising Load: 20pF (1) 15

EMAC9 ETXEN toggling from ETXCK rising Load: 20pF (1) 15

EMAC10 ETX toggling from ETXCK rising Load: 20pF (1) 15

EMAC11 Setup for ERX from ERXCK Load: 20pF (1) 1

32058K AVR32-01/12

784

AT32UC3A

Note: 1. VVDDIO from 3.0V to 3.6V, maximum external capacitor = 20 pF

Figure 38-10. Ethernet MAC MII Mode

EMAC12 Hold for ERX from ERXCK Load: 20pF (1) 1.5

EMAC13 Setup for ERXER from ERXCK Load: 20pF (1) 1

EMAC14 Hold for ERXER from ERXCK Load: 20pF (1) 0.5

EMAC15 Setup for ERXDV from ERXCK Load: 20pF (1) 1.5

EMAC16 Hold for ERXDV from ERXCK Load: 20pF (1) 1

Table 38-32. Ethernet MAC MII Specific Signals

Symbol Parameter Conditions Min (ns) Max (ns)

EMDC

EMDIO

ECOL

ECRS

ETXCK

ETXER

ETXEN

ETX[3:0]

ERXCK

ERX[3:0]

ERXER

ERXDV

EMAC3EMAC1 EMAC2

EMAC4 EMAC5

EMAC6 EMAC7

EMAC8

EMAC9

EMAC10

EMAC11 EMAC12

EMAC13 EMAC14

EMAC15 EMAC16

32058K AVR32-01/12

785

AT32UC3A

Figure 38-11. Ethernet MAC RMII Mode

38.13 Flash Characteristics

The following table gives the device maximum operating frequency depending on the field FWS
of the Flash FSR register. This field defines the number of wait states required to access the
Flash Memory.

Table 38-33. Ethernet MAC RMII Specific Signals

Symbol Parameter Min (ns) Max (ns)

EMAC21 ETXEN toggling from EREFCK rising 7 14.5

EMAC22 ETX toggling from EREFCK rising 7 14.7

EMAC23 Setup for ERX from EREFCK 1.5

EMAC24 Hold for ERX from EREFCK 0

EMAC25 Setup for ERXER from EREFCK 1.5

EMAC26 Hold for ERXER from EREFCK 0

EMAC27 Setup for ECRSDV from EREFCK 1.5

EMAC28 Hold for ECRSDV from EREFCK 0

EREFCK

ETXEN

ETX[1:0]

ERX[1:0]

ERXER

ECRSDV

EMAC21

EMAC22

EMAC23 EMAC24

EMAC25 EMAC26

EMAC27 EMAC28

Table 38-34. Flash Wait States

FWS Read Operations Maximum Operating Frequency (MHz)

0 1 cycle 33

1 2 cycles 66

32058K AVR32-01/12

786

AT32UC3A

Table 38-35. Programming Time

Temperature Operating Range
Part Page Programming Time (ms) Chip Erase Time (ms)

Industrial 4 4

Automotive 16 16

32058K AVR32-01/12

787

AT32UC3A

39. Mechanical Characteristics

39.1 Thermal Considerations

39.1.1 Thermal Data
Table 39-1 summarizes the thermal resistance data depending on the package.

39.1.2 Junction Temperature

The average chip-junction temperature, TJ, in °C can be obtained from the following:

1.
2.

where:

• θJA = package thermal resistance, Junction-to-ambient (°C/W), provided in Table 39-1 on page
787.

• θJC = package thermal resistance, Junction-to-case thermal resistance (°C/W), provided in
Table 39-1 on page 787.

• θHEAT SINK = cooling device thermal resistance (°C/W), provided in the device datasheet.
• PD = device power consumption (W) estimated from data provided in the section ”Power

Consumption” on page 767.
• TA = ambient temperature (°C).
From the first equation, the user can derive the estimated lifetime of the chip and decide if a
cooling device is necessary or not. If a cooling device is to be fitted on the chip, the second
equation should be used to compute the resulting average chip-junction temperature TJ in °C.

Table 39-1. Thermal Resistance Data

Symbol Parameter Condition Package Typ Unit

θJA Junction-to-ambient thermal resistance Still Air TQFP100 43.4
⋅C/W

θJC Junction-to-case thermal resistance TQFP100 5.5

θJA Junction-to-ambient thermal resistance Still Air LQFP144 39.8
⋅C/W

θJC Junction-to-case thermal resistance LQFP144 8.9

TJ TA PD θJA ×()+=

TJ TA P(D θ× (HEATSINK θJC))+ +=

32058K AVR32-01/12

788

AT32UC3A

39.2 Package Drawings

Figure 39-1. TQFP-100 package drawing

Table 39-2. Device and Package Maximum Weight

500 mg

Table 39-3. Package Characteristics

Moisture Sensitivity Level Jdec J-STD0-20D - MSL 3

Table 39-4. Package Reference

JEDEC Drawing Reference MS-026

JESD97 Classification E3

32058K AVR32-01/12

789

AT32UC3A

Figure 39-2. LQFP-144 package drawing

Table 39-5. Device and Package Maximum Weight

1300 mg

Table 39-6. Package Characteristics

Moisture Sensitivity Level Jdec J-STD0-20D - MSL 3

Table 39-7. Package Reference

JEDEC Drawing Reference MS-026

JESD97 Classification E3

32058K AVR32-01/12

790

AT32UC3A

Figure 39-3. FFBGA-144 package drawing

Table 39-8. Device and Package Maximum Weight

1300 mg

Table 39-9. Package Characteristics

Moisture Sensitivity Level MSL3

Table 39-10. Package Reference

JEDEC Drawing Reference MS-026

JESD97 Classification E3

32058K AVR32-01/12

791

AT32UC3A

39.3 Soldering Profile
Table 39-11 gives the recommended soldering profile from J-STD-20.

Note: It is recommended to apply a soldering temperature higher than 250°C.
A maximum of three reflow passes is allowed per component.

Table 39-11. Soldering Profile

Profile Feature Green Package

Average Ramp-up Rate (217°C to Peak) 3°C/sec

Preheat Temperature 175°C ±25°C Min. 150 °C, Max. 200 °C

Time Maintained Above 217°C 60-150 sec

Time within 5⋅C of Actual Peak Temperature 30 sec

Peak Temperature Range 260 °C

Ramp-down Rate 6 °C/sec

Time 25⋅C to Peak Temperature Max. 8 minutes

32058K AVR32-01/12

792

AT32UC3A

40. Ordering Information

40.1 Automotive Quality Grade

The AT32UC3A have been developed and manufactured according to the most stringent
requirements of the international standard ISO-TS-16949. This data sheet will contain limit val-
ues extracted from the results of extensive characterization (Temperature and Voltage). The
quality and reliability of the AT32UC3A is verified during regular product qualification as per
AEC-Q100 grade 3.

As indicated in the ordering information paragraph, the product is available in only one tempera-
ture grade T: -40°C / + 85°C.

Table 40-1. Ordering Information
Device Ordering Code Package Conditioning Temperature Operating Range

AT32UC3A0512 AT32UC3A0512-ALUT 144 LQFP Tray Industrial (-40⋅C to 85⋅C)

AT32UC3A0512-ALUR 144 LQFP Reel Industrial (-40⋅C to 85⋅C)

AT32UC3A0512-ALTRA 144 LQFP Reel Automotive (-40⋅C to 85⋅C)

AT32UC3A0512-ALTTA 144 LQFP Tray Automotive (-40⋅C to 85⋅C)

AT32UC3A0512-CTUT 144 FFBGA Tray Industrial (-40⋅C to 85⋅C)

AT32UC3A0512-CTUR 144 FFBGA Reel Industrial (-40⋅C to 85⋅C)

AT32UC3A0256 AT32UC3A0256-ALUT 144 LQFP Tray Industrial (-40⋅C to 85⋅C)

AT32UC3A0256-ALUR 144 LQFP Reel Industrial (-40⋅C to 85⋅C)

AT32UC3A0256-CTUT 144 FFBGA Tray Industrial (-40⋅C to 85⋅C)

AT32UC3A0256-CTUR 144 FFBGA Reel Industrial (-40⋅C to 85⋅C)

AT32UC3A0128 AT32UC3A0128-ALUT 144 LQFP Tray Industrial (-40⋅C to 85⋅C)

AT32UC3A0128-ALUR 144 LQFP Reel Industrial (-40⋅C to 85⋅C)

AT32UC3A0128-CTUT 144 FFBGA Tray Industrial (-40⋅C to 85⋅C)

AT32UC3A0128-CTUR 144 FFBGA Reel Industrial (-40⋅C to 85⋅C)

AT32UC3A1512 AT32UC3A1512-AUT 100 TQFP Tray Industrial (-40⋅C to 85⋅C)

AT32UC3A1512-AUR 100 TQFP Reel Industrial (-40⋅C to 85⋅C)

AT32UC3A1256 AT32UC3A1256-AUT 100 TQFP Tray Industrial (-40⋅C to 85⋅C)

AT32UC3A1256-AUR 100 TQFP Reel Industrial (-40⋅C to 85⋅C)

AT32UC3A1128 AT32UC3A1128-AUT 100 TQFP Tray Industrial (-40⋅C to 85⋅C)

AT32UC3A1128-AUR 100 TQFP Reel Industrial (-40⋅C to 85⋅C)

32058K AVR32-01/12

793

AT32UC3A

41. Errata

All industrial parts labelled with -UES (engineering samples) are revision E parts.
All automotive parts labelled with AT32UC3A0512-ALTRA or AT32UC3A0512-ALTTA are revi-
sion K parts.

41.1 Rev. K, L, M

41.1.1 PWM

1. PWM channel interrupt enabling triggers an interrupt
When enabling a PWM channel that is configured with center aligned period (CALG=1), an
interrupt is signalled.

Fix/Workaround
When using center aligned mode, enable the channel and read the status before channel
interrupt is enabled.

2. PWM counter restarts at 0x0001
The PWM counter restarts at 0x0001 and not 0x0000 as specified. Because of this the first
PWM period has one more clock cycle.
Fix/Workaround
- The first period is 0x0000, 0x0001, ..., period
- Consecutive periods are 0x0001, 0x0002, ..., period

3. PWM update period to a 0 value does not work
It is impossible to update a period equal to 0 by the using the PWM update register
(PWM_CUPD).

Fix/Workaround
Do not update the PWM_CUPD register with a value equal to 0.

41.1.2 ADC

1. Sleep Mode activation needs additional A to D conversion
If the ADC sleep mode is activated when the ADC is idle the ADC will not enter sleep mode
before after the next AD conversion.

Fix/Workaround
Activate the sleep mode in the mode register and then perform an AD conversion.

41.1.3 SPI

1. SPI Slave / PDCA transfer: no TX UNDERRUN flag
There is no TX UNDERRUN flag available, therefore in SPI slave mode, there is no way to
be informed of a character lost in transmission.

Fix/Workaround
For PDCA transfer: none.

2. SPI FDIV option does not work
Selecting clock signal using FDIV = 1 does not work as specified.

Fix/Workaround
Do not set FDIV = 1.

32058K AVR32-01/12

794

AT32UC3A

3. SPI Bad Serial Clock Generation on 2nd chip_select when SCBR = 1, CPOL=1 and
NCPHA=0
When multiple CS are in use, if one of the baudrate equals to 1 and one of the others doesn't
equal to 1, and CPOL=1 and CPHA=0, then an aditional pulse will be generated on SCK.
Fix/workaround
When multiple CS are in use, if one of the baudrate equals 1, the other must also equal 1 if
CPOL=1 and CPHA=0.

4. SPI Glitch on RXREADY flag in slave mode when enabling the SPI or during the first
transfer
In slave mode, the SPI can generate a false RXREADY signal during enabling of the SPI or
during the first transfer.

Fix/Workaround
1. Set slave mode, set required CPOL/CPHA.
2. Enable SPI.
3. Set the polarity CPOL of the line in the opposite value of the required one.
4. Set the polarity CPOL to the required one.
5. Read the RXHOLDING register.
Transfers can now befin and RXREADY will now behave as expected.

5. SPI Disable does not work in Slave mode
Fix/workaround
Read the last received data then perform a Software reset.

41.1.4 Power Manager

1. If the BOD level is higher than VDDCORE, the part is constantly under reset
If the BOD level is set to a value higher than VDDCORE and enabled by fuses, the part will
be in constant reset.

Fix/Workaround
Apply an external voltage on VDDCORE that is higher than the BOD level and is lower than
VDDCORE max and disable the BOD.

41.1.5 PDCA

1. Wrong PDCA behavior when using two PDCA channels with the same PID.
Fix/Workaround
The same PID should not be assigned to more than one channel.

41.1.6 TWI

1. The TWI RXRDY flag in SR register is not reset when a software reset is performed.
Fix/Workaround
After a Software Reset, the register TWI RHR must be read.

41.1.7 USART

1. ISO7816 info register US_NER cannot be read
The NER register always returns zero.
Fix/Workaround
None

41.1.8 Processor and Architecture

1. LDM instruction with PC in the register list and without ++ increments Rp

32058K AVR32-01/12

795

AT32UC3A

For LDM with PC in the register list: the instruction behaves as if the ++ field is always set, ie
the pointer is always updated. This happens even if the ++ field is cleared. Specifically, the
increment of the pointer is done in parallel with the testing of R12.
Fix/Workaround
None.

41.1.9 FLASHC

1. Reading from on-chip flash may fail after a flash fuse write operation (FLASHC LP,
UP, WGPB, EGPB, SSB, PGPFB, EAGPF commands).
After a flash fuse write operation (FLASHC LP, UP, WGPB, EGPB, SSB, PGPFB, EAGPF
commands), the following flash read access may return corrupted data. This erratum does
not affect write operations to regular flash memory.
Fix/Workaround
The flash fuse write operation (FLASHC LP, UP, WGPB, EGPB, SSB, PGPFB, EAGPF
commands) must be issued from internal RAM. After the write operation, perform a dummy
flash page write operation (FLASHC WP). Content and location of this page is not important
and filling the write buffer with all one (FFh) will leave the current flash content unchanged. It
is then safe to read and fetch code from the flash.

32058K AVR32-01/12

796

AT32UC3A

41.2 Rev. J

41.2.1 PWM

1. PWM channel interrupt enabling triggers an interrupt
When enabling a PWM channel that is configured with center aligned period (CALG=1), an
interrupt is signalled.

Fix/Workaround
When using center aligned mode, enable the channel and read the status before channel
interrupt is enabled.

2. PWM counter restarts at 0x0001
The PWM counter restarts at 0x0001 and not 0x0000 as specified. Because of this the first
PWM period has one more clock cycle.
Fix/Workaround
- The first period is 0x0000, 0x0001, ..., period
- Consecutive periods are 0x0001, 0x0002, ..., period

3. PWM update period to a 0 value does not work
It is impossible to update a period equal to 0 by the using the PWM update register
(PWM_CUPD).

Fix/Workaround
Do not update the PWM_CUPD register with a value equal to 0.

41.2.2 ADC

1. Sleep Mode activation needs additional A to D conversion
If the ADC sleep mode is activated when the ADC is idle the ADC will not enter sleep mode
before after the next AD conversion.

Fix/Workaround
Activate the sleep mode in the mode register and then perform an AD conversion.

41.2.3 SPI

1. SPI Slave / PDCA transfer: no TX UNDERRUN flag
There is no TX UNDERRUN flag available, therefore in SPI slave mode, there is no way to
be informed of a character lost in transmission.

Fix/Workaround
For PDCA transfer: none.

2. SPI FDIV option does not work
Selecting clock signal using FDIV = 1 does not work as specified.

Fix/Workaround
Do not set FDIV = 1.

3. SPI Bad Serial Clock Generation on 2nd chip_select when SCBR = 1, CPOL=1 and
NCPHA=0
When multiple CS are in use, if one of the baudrate equals to 1 and one of the others doesn't
equal to 1, and CPOL=1 and CPHA=0, then an aditional pulse will be generated on SCK.
Fix/workaround

32058K AVR32-01/12

797

AT32UC3A

When multiple CS are in use, if one of the baudrate equals 1, the other must also equal 1 if
CPOL=1 and CPHA=0.

4. SPI Glitch on RXREADY flag in slave mode when enabling the SPI or during the first
transfer
In slave mode, the SPI can generate a false RXREADY signal during enabling of the SPI or
during the first transfer.

Fix/Workaround
1. Set slave mode, set required CPOL/CPHA.
2. Enable SPI.
3. Set the polarity CPOL of the line in the opposite value of the required one.
4. Set the polarity CPOL to the required one.
5. Read the RXHOLDING register.
Transfers can now befin and RXREADY will now behave as expected.

5. SPI Disable does not work in Slave mode
Fix/workaround
Read the last received data then perform a Software reset.

41.2.4 Power Manager

1. If the BOD level is higher than VDDCORE, the part is constantly under reset
If the BOD level is set to a value higher than VDDCORE and enabled by fuses, the part will
be in constant reset.

Fix/Workaround
Apply an external voltage on VDDCORE that is higher than the BOD level and is lower than
VDDCORE max and disable the BOD.

41.2.5 PDCA

1. Wrong PDCA behavior when using two PDCA channels with the same PID.
Fix/Workaround
The same PID should not be assigned to more than one channel.

41.2.6 TWI

1. The TWI RXRDY flag in SR register is not reset when a software reset is performed.
Fix/Workaround
After a Software Reset, the register TWI RHR must be read.

41.2.7 SDRAMC

1. Code execution from external SDRAM does not work
Code execution from SDRAM does not work.

Fix/Workaround
Do not run code from SDRAM.

41.2.8 GPIO

1. PA29 (TWI SDA) and PA30 (TWI SCL) GPIO VIH (input high voltage) is 3.6V max
instead of 5V tolerant
The following GPIOs are not 5V tolerant : PA29 and PA30.
Fix/Workaround

32058K AVR32-01/12

798

AT32UC3A

None.
41.2.9 USART

1. ISO7816 info register US_NER cannot be read
The NER register always returns zero.
Fix/Workaround
None

41.2.10 Processor and Architecture

1. LDM instruction with PC in the register list and without ++ increments Rp
For LDM with PC in the register list: the instruction behaves as if the ++ field is always set, ie
the pointer is always updated. This happens even if the ++ field is cleared. Specifically, the
increment of the pointer is done in parallel with the testing of R12.
Fix/Workaround
None.

2. RETE instruction does not clear SREG[L] from interrupts.
The RETE instruction clears SREG[L] as expected from exceptions.
Fix/Workaround
When using the STCOND instruction, clear SREG[L] in the stacked value of SR before
returning from interrupts with RETE.

3. Exceptions when system stack is protected by MPU
RETS behaves incorrectly when MPU is enabled and MPU is configured so that
system stack is not readable in unprivileged mode.
Fix/Woraround
Workaround 1: Make system stack readable in unprivileged mode,
or
Workaround 2: Return from supervisor mode using rete instead of rets. This
requires :
1. Changing the mode bits from 001b to 110b before issuing the instruction.
Updating the mode bits to the desired value must be done using a single mt-
sr instruction so it is done atomically. Even if this step is described in general
as not safe in the UC technical reference guide, it is safe in this very
specific case.
2. Execute the RETE instruction.

1. Reading from on-chip flash may fail after a flash fuse write operation (FLASHC LP,
UP, WGPB, EGPB, SSB, PGPFB, EAGPF commands).
After a flash fuse write operation (FLASHC LP, UP, WGPB, EGPB, SSB, PGPFB, EAGPF
commands), the following flash read access may return corrupted data. This erratum does
not affect write operations to regular flash memory.
Fix/Workaround
The flash fuse write operation (FLASHC LP, UP, WGPB, EGPB, SSB, PGPFB, EAGPF
commands) must be issued from internal RAM. After the write operation, perform a dummy
flash page write operation (FLASHC WP). Content and location of this page is not important
and filling the write buffer with all one (FFh) will leave the current flash content unchanged. It
is then safe to read and fetch code from the flash.

41.2.11 FLASHC

32058K AVR32-01/12

799

AT32UC3A

41.3 Rev. I

41.3.1 PWM

1. PWM channel interrupt enabling triggers an interrupt
When enabling a PWM channel that is configured with center aligned period (CALG=1), an
interrupt is signalled.

Fix/Workaround
When using center aligned mode, enable the channel and read the status before channel
interrupt is enabled.

2. PWM counter restarts at 0x0001
The PWM counter restarts at 0x0001 and not 0x0000 as specified. Because of this the first
PWM period has one more clock cycle.
Fix/Workaround
- The first period is 0x0000, 0x0001, ..., period
- Consecutive periods are 0x0001, 0x0002, ..., period

3. PWM update period to a 0 value does not work
It is impossible to update a period equal to 0 by the using the PWM update register
(PWM_CUPD).

Fix/Workaround
Do not update the PWM_CUPD register with a value equal to 0.

41.3.2 ADC

1. Sleep Mode activation needs additional A to D conversion
If the ADC sleep mode is activated when the ADC is idle the ADC will not enter sleep mode
before after the next AD conversion.

Fix/Workaround
Activate the sleep mode in the mode register and then perform an AD conversion.

41.3.3 SPI

1. SPI Slave / PDCA transfer: no TX UNDERRUN flag
There is no TX UNDERRUN flag available, therefore in SPI slave mode, there is no way to
be informed of a character lost in transmission.

Fix/Workaround
For PDCA transfer: none.

2. SPI FDIV option does not work
Selecting clock signal using FDIV = 1 does not work as specified.

Fix/Workaround
Do not set FDIV = 1.

3. SPI Bad Serial Clock Generation on 2nd chip_select when SCBR = 1, CPOL=1 and
NCPHA=0
When multiple CS are in use, if one of the baudrate equals to 1 and one of the others doesn't
equal to 1, and CPOL=1 and CPHA=0, then an aditional pulse will be generated on SCK.
Fix/workaround

32058K AVR32-01/12

800

AT32UC3A

When multiple CS are in use, if one of the baudrate equals 1, the other must also equal 1 if
CPOL=1 and CPHA=0.

4. SPI Glitch on RXREADY flag in slave mode when enabling the SPI or during the first
transfer
In slave mode, the SPI can generate a false RXREADY signal during enabling of the SPI or
during the first transfer.

Fix/Workaround
1. Set slave mode, set required CPOL/CPHA.
2. Enable SPI.
3. Set the polarity CPOL of the line in the opposite value of the required one.
4. Set the polarity CPOL to the required one.
5. Read the RXHOLDING register.
Transfers can now befin and RXREADY will now behave as expected.

5. SPI Disable does not work in Slave mode
Fix/workaround
Read the last received data then perform a Software reset.

41.3.4 Power Manager

1. If the BOD level is higher than VDDCORE, the part is constantly under reset
If the BOD level is set to a value higher than VDDCORE and enabled by fuses, the part will
be in constant reset.

Fix/Workaround
Apply an external voltage on VDDCORE that is higher than the BOD level and is lower than
VDDCORE max and disable the BOD.

41.3.5 Flashc

1. On AT32UC3A0512 and AT32UC3A1512, corrupted read in flash after FLASHC WP,
EP, EA, WUP, EUP commands may happen
- After a FLASHC Write Page (WP) or Erase Page (EP) command applied to a page in a
given half of the flash (first or last 256 kB of flash), reading (data read or code fetch) the
other half of the flash may fail. This may lead to an exception or to other errors derived from
this corrupted read access.
- After a FLASHC Erase All (EA) command, reading (data read or code fetch) the flash may
fail. This may lead to an exception or to other errors derived from this corrupted read access.
- After a FLASHC Write User Page (WUP) or Erase User Page (EUP) command, reading
(data read or code fetch) the second half (last 256 kB) of the flash may fail. This may lead to
an exception or to other errors derived from this corrupted read access.

Fix/Workaround
Flashc WP, EP, EA, WUP, EUP commands: these commands must be issued from RAM or
through the EBI. After these commands, read twice one flash page initialized to 00h in each
half part of the flash.

41.3.6 PDCA

1. Wrong PDCA behavior when using two PDCA channels with the same PID.

32058K AVR32-01/12

801

AT32UC3A

Workaround/fix
The same PID should not be assigned to more than one channel.

41.3.7 GPIO

1. Some GPIO VIH (input high voltage) are 3.6V max instead of 5V tolerant
Only 11 GPIOs remain 5V tolerant (VIHmax=5V):PB01, PB02, PB03, PB10, PB19, PB20,
PB21, PB22, PB23, PB27, PB28.
Workaround/fix
None.

41.3.8 USART

1. ISO7816 info register US_NER cannot be read
The NER register always returns zero.
Fix/Workaround
None.

41.3.9 TWI

1. The TWI RXRDY flag in SR register is not reset when a software reset is performed.
Fix/Workaround
After a Software Reset, the register TWI RHR must be read.

41.3.10 SDRAMC

1. Code execution from external SDRAM does not work
Code execution from SDRAM does not work.

Fix/Workaround
Do not run code from SDRAM.

41.3.11 Processor and Architecture

1. LDM instruction with PC in the register list and without ++ increments Rp
For LDM with PC in the register list: the instruction behaves as if the ++ field is always set, ie
the pointer is always updated. This happens even if the ++ field is cleared. Specifically, the
increment of the pointer is done in parallel with the testing of R12.
Fix/Workaround
None.

2. RETE instruction does not clear SREG[L] from interrupts.
The RETE instruction clears SREG[L] as expected from exceptions.
Fix/Workaround
When using the STCOND instruction, clear SREG[L] in the stacked value of SR before
returning from interrupts with RETE.

3. Exceptions when system stack is protected by MPU
RETS behaves incorrectly when MPU is enabled and MPU is configured so that
system stack is not readable in unprivileged mode.
Fix/Woraround
Workaround 1: Make system stack readable in unprivileged mode,
or
Workaround 2: Return from supervisor mode using rete instead of rets. This
requires :
1. Changing the mode bits from 001b to 110b before issuing the instruction.
Updating the mode bits to the desired value must be done using a single mtsr
instruction so it is done atomically. Even if this step is described in general
as not safe in the UC technical reference guide, it is safe in this very

32058K AVR32-01/12

802

AT32UC3A

specific case.
2. Execute the RETE instruction.

1. Reading from on-chip flash may fail after a flash fuse write operation (FLASHC LP,
UP, WGPB, EGPB, SSB, PGPFB, EAGPF commands).
After a flash fuse write operation (FLASHC LP, UP, WGPB, EGPB, SSB, PGPFB, EAGPF
commands), the following flash read access may return corrupted data. This erratum does
not affect write operations to regular flash memory.
Fix/Workaround
The flash fuse write operation (FLASHC LP, UP, WGPB, EGPB, SSB, PGPFB, EAGPF
commands) must be issued from internal RAM. After the write operation, perform a dummy
flash page write operation (FLASHC WP). Content and location of this page is not important
and filling the write buffer with all one (FFh) will leave the current flash content unchanged. It
is then safe to read and fetch code from the flash.

41.3.12 FLASHC

32058K AVR32-01/12

803

AT32UC3A

41.4 Rev. H

41.4.1 PWM

1. PWM channel interrupt enabling triggers an interrupt
When enabling a PWM channel that is configured with center aligned period (CALG=1), an
interrupt is signalled.

Fix/Workaround
When using center aligned mode, enable the channel and read the status before channel
interrupt is enabled.

2. PWM counter restarts at 0x0001
The PWM counter restarts at 0x0001 and not 0x0000 as specified. Because of this the first
PWM period has one more clock cycle.
Fix/Workaround
- The first period is 0x0000, 0x0001, ..., period
- Consecutive periods are 0x0001, 0x0002, ..., period

3. PWM update period to a 0 value does not work
It is impossible to update a period equal to 0 by the using the PWM update register
(PWM_CUPD).

Fix/Workaround
Do not update the PWM_CUPD register with a value equal to 0.

41.4.2 ADC

1. Sleep Mode activation needs additional A to D conversion
If the ADC sleep mode is activated when the ADC is idle the ADC will not enter sleep mode
before after the next AD conversion.

Fix/Workaround
Activate the sleep mode in the mode register and then perform an AD conversion.

41.4.3 SPI

1. SPI Slave / PDCA transfer: no TX UNDERRUN flag
There is no TX UNDERRUN flag available, therefore in SPI slave mode, there is no way to
be informed of a character lost in transmission.

Fix/Workaround
For PDCA transfer: none.

2. SPI FDIV option does not work
Selecting clock signal using FDIV = 1 does not work as specified.

Fix/Workaround
Do not set FDIV = 1

3. SPI disable does not work in SLAVE mode.
Fix/Workaround
Read the last received data, then perform a Software Reset.

32058K AVR32-01/12

804

AT32UC3A

4. SPI Bad Serial Clock Generation on 2nd chip_select when SCBR = 1, CPOL=1 and
NCPHA=0
When multiple CS are in use, if one of the baudrate equals to 1 and one of the others doesn't
equal to 1, and CPOL=1 and CPHA=0, then an aditional pulse will be generated on SCK.
Fix/workaround
When multiple CS are in use, if one of the baudrate equals 1, the other must also equal 1 if
CPOL=1 and CPHA=0.

5. SPI Glitch on RXREADY flag in slave mode when enabling the SPI or during the first
transfer
In slave mode, the SPI can generate a false RXREADY signal during enabling of the SPI or
during the first transfer.

Fix/Workaround
1. Set slave mode, set required CPOL/CPHA.
2. Enable SPI.
3. Set the polarity CPOL of the line in the opposite value of the required one.
4. Set the polarity CPOL to the required one.
5. Read the RXHOLDING register.
Transfers can now befin and RXREADY will now behave as expected.

6. SPI Disable does not work in Slave mode
Fix/workaround
Read the last received data then perform a Software reset.

41.4.4 Power Manager

1. Wrong reset causes when BOD is activated
Setting the BOD enable fuse will cause the Reset Cause Register to list BOD reset as the
reset source even though the part was reset by another source.

Fix/Workaround
Do not set the BOD enable fuse, but activate the BOD as soon as your program starts.

2. If the BOD level is higher than VDDCORE, the part is constantly under reset
If the BOD level is set to a value higher than VDDCORE and enabled by fuses, the part will
be in constant reset.

Fix/Workaround
Apply an external voltage on VDDCORE that is higher than the BOD level and is lower than
VDDCORE max and disable the BOD.

41.4.5 FLASHC

1. On AT32UC3A0512 and AT32UC3A1512, corrupted read in flash after FLASHC WP,
EP, EA, WUP, EUP commands may happen
- After a FLASHC Write Page (WP) or Erase Page (EP) command applied to a page in a
given half of the flash (first or last 256 kB of flash), reading (data read or code fetch) the
other half of the flash may fail. This may lead to an exception or to other errors derived from
this corrupted read access.
- After a FLASHC Erase All (EA) command, reading (data read or code fetch) the flash may
fail. This may lead to an exception or to other errors derived from this corrupted read access.
- After a FLASHC Write User Page (WUP) or Erase User Page (EUP) command, reading

32058K AVR32-01/12

805

AT32UC3A

(data read or code fetch) the second half (last 256 kB) of the flash may fail. This may lead to
an exception or to other errors derived from this corrupted read access.

Fix/Workaround
Flashc WP, EP, EA, WUP, EUP commands: these commands must be issued from RAM or
through the EBI. After these commands, read twice one flash page initialized to 00h in each
half part of the flash.

41.4.6 PDCA

1. Wrong PDCA behavior when using two PDCA channels with the same PID.
Workaround/fix
The same PID should not be assigned to more than one channel.

41.4.7 TWI

1. The TWI RXRDY flag in SR register is not reset when a software reset is performed.
Fix/Workaround
After a Software Reset, the register TWI RHR must be read.

41.4.8 SDRAMC

1. Code execution from external SDRAM does not work
Code execution from SDRAM does not work.

Fix/Workaround
Do not run code from SDRAM.

41.4.9 GPIO

1. Some GPIO VIH (input high voltage) are 3.6V max instead of 5V tolerant
Only 11 GPIOs remain 5V tolerant (VIHmax=5V):PB01, PB02, PB03, PB10, PB19, PB20,
PB21, PB22, PB23, PB27, PB28.
Workaround/fix
None.

41.4.10 USART

1. ISO7816 info register US_NER cannot be read
The NER register always returns zero.
Fix/Workaround
None.

41.4.11 Processor and Architecture

1. LDM instruction with PC in the register list and without ++ increments Rp
For LDM with PC in the register list: the instruction behaves as if the ++ field is always set, ie
the pointer is always updated. This happens even if the ++ field is cleared. Specifically, the
increment of the pointer is done in parallel with the testing of R12.
Fix/Workaround
None.

2. RETE instruction does not clear SREG[L] from interrupts.
The RETE instruction clears SREG[L] as expected from exceptions.
Fix/Workaround
When using the STCOND instruction, clear SREG[L] in the stacked value of SR before
returning from interrupts with RETE.

3. Exceptions when system stack is protected by MPU

32058K AVR32-01/12

806

AT32UC3A

RETS behaves incorrectly when MPU is enabled and MPU is configured so that
system stack is not readable in unprivileged mode.
Fix/Woraround
Workaround 1: Make system stack readable in unprivileged mode,
or
Workaround 2: Return from supervisor mode using rete instead of rets. This
requires :
1. Changing the mode bits from 001b to 110b before issuing the instruction.
Updating the mode bits to the desired value must be done using a single mtsr
instruction so it is done atomically. Even if this step is described in general
as not safe in the UC technical reference guide, it is safe in this very
specific case.
2. Execute the RETE instruction.

1. Reading from on-chip flash may fail after a flash fuse write operation (FLASHC LP,
UP, WGPB, EGPB, SSB, PGPFB, EAGPF commands).
After a flash fuse write operation (FLASHC LP, UP, WGPB, EGPB, SSB, PGPFB, EAGPF
commands), the following flash read access may return corrupted data. This erratum does
not affect write operations to regular flash memory.
Fix/Workaround
The flash fuse write operation (FLASHC LP, UP, WGPB, EGPB, SSB, PGPFB, EAGPF
commands) must be issued from internal RAM. After the write operation, perform a dummy
flash page write operation (FLASHC WP). Content and location of this page is not important
and filling the write buffer with all one (FFh) will leave the current flash content unchanged. It
is then safe to read and fetch code from the flash.

41.4.12 FLASHC

32058K AVR32-01/12

807

AT32UC3A

41.5 Rev. E

41.5.1 SPI

1. SPI FDIV option does not work
Selecting clock signal using FDIV = 1 does not work as specified.

Fix/Workaround
Do not set FDIV = 1.

2. SPI Slave / PDCA transfer: no TX UNDERRUN flag
There is no TX UNDERRUN flag available, therefore in SPI slave mode, there is no way to
be informed of a character lost in transmission.

Fix/Workaround
For PDCA transfer: none.

3. SPI Bad serial clock generation on 2nd chip select when SCBR=1, CPOL=1 and
CNCPHA=0
When multiple CS are in use, if one of the baudrate equals to 1 and one of the others
doesn’t equal to 1, and CPOL=1 and CPHA=0, then an additional pulse will be generated on
SCK.

Fix/Workaround
When multiple CS are in use, if one of the baudrate equals to 1, the other must also equal 1
if CPOL=1 and CPHA=0.

4. SPI Glitch on RXREADY flag in slave mode when enabling the SPI or during the first
transfer
In slave mode, the SPI can generate a false RXREADY signal during enabling of the SPI or
during the first transfer.

Fix/Workaround
1. Set slave mode, set required CPOL/CPHA.
2. Enable SPI.
3. Set the polarity CPOL of the line in the opposite value of the required one.
4. Set the polarity CPOL to the required one.
5. Read the RXHOLDING register.
Transfers can now befin and RXREADY will now behave as expected.

5. SPI CSNAAT bit 2 in register CSR0...CSR3 is not available.
Fix/Workaround

Do not use this bit.

6. SPI disable does not work in SLAVE mode.
Fix/Workaround
Read the last received data, then perform a Software Reset.

7. SPI Bad Serial Clock Generation on 2nd chip_select when SCBR = 1, CPOL=1 and
NCPHA=0
When multiple CS are in use, if one of the baudrate equals to 1 and one of the others doesn't
equal to 1, and CPOL=1 and CPHA=0, then an aditional pulse will be generated on SCK.

32058K AVR32-01/12

808

AT32UC3A

Fix/workaround
When multiple CS are in use, if one of the baudrate equals 1, the other must also equal 1 if
CPOL=1 and CPHA=0.

41.5.2 PWM

1. PWM counter restarts at 0x0001
The PWM counter restarts at 0x0001 and not 0x0000 as specified. Because of this the first
PWM period has one more clock cycle.

Fix/Workaround
- The first period is 0x0000, 0x0001, ..., period

- Consecutive periods are 0x0001, 0x0002, ..., period

2. PWM channel interrupt enabling triggers an interrupt
When enabling a PWM channel that is configured with center aligned period (CALG=1), an
interrupt is signalled.

Fix/Workaround
When using center aligned mode, enable the channel and read the status before channel
interrupt is enabled.

3. PWM update period to a 0 value does not work
It is impossible to update a period equal to 0 by the using the PWM update register
(PWM_CUPD).

Fix/Workaround
Do not update the PWM_CUPD register with a value equal to 0.

4. PWM channel status may be wrong if disabled before a period has elapsed
Before a PWM period has elapsed, the read channel status may be wrong. The CHIDx-bit
for a PWM channel in the PWM Enable Register will read '1' for one full PWM period even if
the channel was disabled before the period elapsed. It will then read '0' as expected.

Fix/Workaround
Reading the PWM channel status of a disabled channel is only correct after a PWM period
has elapsed.

41.5.3 SSC

1. SSC does not trigger RF when data is low
The SSC cannot transmit or receive data when CKS = CKDIV and CKO = none, in TCMR or
RCMR respectively.

Fix/Workaround
Set CKO to a value that is not "none" and bypass the output of the TK/RK pin with the PIO.

2. SSC Data is not sent unless clock is set as output
The SSC cannot transmit or receive data when CKS = CKDIV and CKO = none, in TCMR or
RCMR respectively.

Fix/Workaround
Set CKO to a value that is not "none" and bypass the output of the TK/RK pin with the PIO.

32058K AVR32-01/12

809

AT32UC3A

41.5.4 USB

1. USB No end of host reset signaled upon disconnection
In host mode, in case of an unexpected device disconnection whereas a usb reset is being
sent by the usb controller, the UHCON.RESET bit may not been cleared by the hardware at
the end of the reset.

Fix/Workaround
A software workaround consists in testing (by polling or interrupt) the disconnection
(UHINT.DDISCI == 1) while waiting for the end of reset (UHCON.RESET == 0) to avoid
being stuck.

2. USBFSM and UHADDR1/2/3 registers are not available.
Do not use USBFSM register.

Fix/Workaround
Do not use USBFSM register and use HCON[6:0] field instead for all the pipes.

41.5.5 Processor and Architecture

1. Incorrect Processor ID
The processor ID reads 0x01 and not 0x02 as it should.

Fix/Workaround
None.

2. Bus error should be masked in Debug mode
If a bus error occurs during debug mode, the processor will not respond to debug com-
mands through the DINST register.

Fix/Workaround
A reset of the device will make the CPU respond to debug commands again.

3. Read Modify Write (RMW) instructions on data outside the internal RAM does not
work.
Read Modify Write (RMW) instructions on data outside the internal RAM does not work.

Fix/Workaround
Do not perform RMW instructions on data outside the internal RAM.

4. CRC calculation of a locked device will calculate CRC for 512 kB of flash memory,
even though the part has less flash.
Fix/Workaround
The flash address space is wrapping, so it is possible to use the CRC value by calculating
CRC of the flash content concatenated with itself N times. Where N is 512 kB/flash size.

5. Need two NOPs instruction after instructions masking interrupts
The instructions following in the pipeline the instruction masking the interrupt through SR
may behave abnormally.

Fix/Workaround
Place two NOPs instructions after each SSRF or MTSR instruction setting IxM or GM in SR.

32058K AVR32-01/12

810

AT32UC3A

6. CPU Cycle Counter does not reset the COUNT system register on COMPARE match.
The device revision E does not reset the COUNT system register on COMPARE match. In
this revision, the COUNT register is clocked by the CPU clock, so when the CPU clock
stops, so does incrementing of COUNT.
Fix/Workaround
None.

7. Memory Protection Unit (MPU) is non functional.
Fix/Workaround
Do not use the MPU.

8. The following alternate GPIO function C are not available in revE
MACB-WOL on GPIO9 (PA09), MACB-WOL on GPIO18 (PA18), USB-USB_ID on GPIO21
(PA21), USB-USB_VBOF on GPIO22 (PA22), and all function B and C on GPIO70 to
GPIO101 (PX00 to PX39).
Fix/Workaround
Do not use these alternate B and C functions on the listed GPIO pins.

9. Clock connection table on Rev E

Here is the table of Rev E

Figure 41-1. Timer/Counter clock connections on RevE

10. Local Bus fast GPIO not available in RevE.
Fix/Workaround
Do not use on this silicon revision.

11. Spurious interrupt may corrupt core SR mode to exception
If the rules listed in the chapter `Masking interrupt requests in peripheral modules' of the
AVR32UC Technical Reference Manual are not followed, a spurious interrupt may occur. An
interrupt context will be pushed onto the stack while the core SR mode will indicate an
exception. A RETE instruction would then corrupt the stack..

Fix/Workaround
Follow the rules of the AVR32UC Technical Reference Manual. To increase software
robustness, if an exception mode is detected at the beginning of an interrupt handler,
change the stack interrupt context to an exception context and issue a RETE instruction.

Source Name Connection

Internal TIMER_CLOCK1 32 KHz Oscillator

TIMER_CLOCK2 PBA Clock / 4

TIMER_CLOCK3 PBA Clock / 8

TIMER_CLOCK4 PBA Clock / 16

TIMER_CLOCK5 PBA Clock / 32

External XC0

XC1

XC2

32058K AVR32-01/12

811

AT32UC3A

12. CPU cannot operate on a divided slow clock (internal RC oscillator)
Fix/Workaround
Do not run the CPU on a divided slow clock.

13. LDM instruction with PC in the register list and without ++ increments Rp
For LDM with PC in the register list: the instruction behaves as if the ++ field is always set, ie
the pointer is always updated. This happens even if the ++ field is cleared. Specifically, the
increment of the pointer is done in parallel with the testing of R12.
Fix/Workaround
None.

14. RETE instruction does not clear SREG[L] from interrupts.
The RETE instruction clears SREG[L] as expected from exceptions.
Fix/Workaround
When using the STCOND instruction, clear SREG[L] in the stacked value of SR before
returning from interrupts with RETE.

15. Exceptions when system stack is protected by MPU
RETS behaves incorrectly when MPU is enabled and MPU is configured so that
system stack is not readable in unprivileged mode.
Fix/Woraround
Workaround 1: Make system stack readable in unprivileged mode,
or
Workaround 2: Return from supervisor mode using rete instead of rets. This
requires :
1. Changing the mode bits from 001b to 110b before issuing the instruction.
Updating the mode bits to the desired value must be done using a single mtsr
instruction so it is done atomically. Even if this step is described in general
as not safe in the UC technical reference guide, it is safe in this very
specific case.

2. Execute the RETE instruction.

41.5.6 SDRAMC

1. Code execution from external SDRAM does not work
Code execution from SDRAM does not work.

Fix/Workaround
Do not run code from SDRAM.

2. SDRAM SDCKE rise at the same time as SDCK while exiting self-refresh mode
SDCKE rise at the same time as SDCK while exiting self-refresh mode.

Fix/Workaround
None.

41.5.7 USART

1. USART Manchester Encoder Not Working
Manchester encoding/decoding is not working.

Fix/Workaround
Do not use manchester encoding.

32058K AVR32-01/12

812

AT32UC3A

2. USART RXBREAK problem when no timeguard
In asynchronous mode the RXBREAK flag is not correctly handled when the timeguard is 0
and the break character is located just after the stop bit.

Fix/Workaround
If the NBSTOP is 1, timeguard should be different from 0.

3. USART Handshaking: 2 characters sent / CTS rises when TX
If CTS switches from 0 to 1 during the TX of a character, if the Holding register is not empty,
the TXHOLDING is also transmitted.

Fix/Workaround
None.

4. USART PDC and TIMEGUARD not supported in MANCHESTER
Manchester encoding/decoding is not working.

Fix/Workaround
Do not use manchester encoding.

5. USART SPI mode is non functional on this revision.
Fix/Workaround
Do not use the USART SPI mode.

6. DCD is active High instead of Low.
In modem mode the DCD signal is assumed to be active high by the USART, butshould
have been active low.
Fix/Workaround
Add an external inverter to the DCD line.

7. ISO7816 info register US_NER cannot be read
The NER register always returns zero.
Fix/Workaround
None.

41.5.8 Power Manager

1. Voltage regulator input and output is connected to VDDIO and VDDCORE inside the
device
The voltage regulator input and output is connected to VDDIO and VDDCORE respectively
inside the device.

Fix/Workaround
Do not supply VDDCORE externally, as this supply will work in paralell with the regulator.

2. Wrong reset causes when BOD is activated
Setting the BOD enable fuse will cause the Reset Cause Register to list BOD reset as the
reset source even though the part was reset by another source.

Fix/Workaround
Do not set the BOD enable fuse, but activate the BOD as soon as your program starts.

3. PLL0/1 Lock control does not work
Lock Control does not work for PLL0 and PLL1.

32058K AVR32-01/12

813

AT32UC3A

Fix/Workaround
In PLL0/1 Control register, the bit 7 should be set in order to prevent unexpected behaviour.

4. Peripheral Bus A maximum frequency is 33MHz instead of 66MHz.
Fix/Workaround
Do not set PBA frequency higher than 33 MHz.

5. PCx pins go low in stop mode
In sleep mode stop all PCx pins will be controlled by GPIO module instead of oscillators.
This can cause drive contention on the XINx in worst case.

Fix/Workaround
Before entering stop mode set all PCx pins to input and GPIO controlled.

6. On some rare parts, the maximum HSB and CPU speed is 50MHz instead of 66MHz.
Fix/Workaround
Do not set the HSB/CPU speed higher than 50MHz when the firmware generate exceptions.

7. If the BOD level is higher than VDDCORE, the part is constantly under reset
If the BOD level is set to a value higher than VDDCORE and enabled by fuses, the part will
be in constant reset.

Fix/Workaround
Apply an external voltage on VDDCORE that is higher than the BOD level and is lower than
VDDCORE max and disable the BOD.

8. System Timer mask (Bit 16) of the PM CPUMASK register is not available.
Fix/Workaround
Do not use this bit.

41.5.9 HMatrix

1. HMatrix fixed priority arbitration does not work
Fixed priority arbitration does not work.

Fix/Workaround
Use Round-Robin arbitration instead.

41.5.10 ADC

1. ADC possible miss on DRDY when disabling a channel
The ADC does not work properly when more than one channel is enabled.

Fix/Workaround
Do not use the ADC with more than one channel enabled at a time.

2. ADC OVRE flag sometimes not reset on Status Register read
The OVRE flag does not clear properly if read simultaneously to an end of conversion.

Fix/Workaround
None.

3. Sleep Mode activation needs additional A to D conversion

32058K AVR32-01/12

814

AT32UC3A

If the ADC sleep mode is activated when the ADC is idle the ADC will not enter sleep mode
before after the next AD conversion.

Fix/Workaround
Activate the sleep mode in the mode register and then perform an AD conversion.

41.5.11 ABDAC

1. Audio Bitstream DAC is not functional.
Fix/Workaround
Do not use the ABDAC on revE.

41.5.12 FLASHC

1. The address of Flash General Purpose Fuse Register Low (FGPFRLO) is 0xFFFE140C
on revE instead of 0xFFFE1410.
Fix/Workaround
None.

2. The command Quick Page Read User Page(QPRUP) is not functional.
Fix/Workaround
None.

3. PAGEN Semantic Field for Program GP Fuse Byte is WriteData[7:0], ByteAddress[1:0]
on revision E instead of WriteData[7:0], ByteAddress[2:0].
Fix/Workaround
None.

4. On AT32UC3A0512 and AT32UC3A1512, corrupted read in flash after FLASHC WP,
EP, EA, WUP, EUP commands may happen
- After a FLASHC Write Page (WP) or Erase Page (EP) command applied to a page in a
given half of the flash (first or last 256 kB of flash), reading (data read or code fetch) the
other half of the flash may fail. This may lead to an exception or to other errors derived from
this corrupted read access.
- After a FLASHC Erase All (EA) command, reading (data read or code fetch) the flash may
fail. This may lead to an exception or to other errors derived from this corrupted read access.
- After a FLASHC Write User Page (WUP) or Erase User Page (EUP) command, reading
(data read or code fetch) the second half (last 256 kB) of the flash may fail. This may lead to
an exception or to other errors derived from this corrupted read access.

Fix/Workaround
Flashc WP, EP, EA, WUP, EUP commands: these commands must be issued from RAM or
through the EBI. After these commands, read twice one flash page initialized to 00h in each
half part of the flash.

41.5.13 RTC

1. Writes to control (CTRL), top (TOP) and value (VAL) in the RTC are discarded if the
RTC peripheral bus clock (PBA) is divided by a factor of four or more relative to the
HSB clock.
Fix/Workaround
Do not write to the RTC registers using the peripheral bus clock (PBA) divided by a factor of
four or more relative to the HSB clock.

32058K AVR32-01/12

815

AT32UC3A

2. The RTC CLKEN bit (bit number 16) of CTRL register is not available.
Fix/Workaround
Do not use the CLKEN bit of the RTC on Rev E.

41.5.14 OCD

1. Stalled memory access instruction writeback fails if followed by a HW breakpoint.
Consider the following assembly code sequence:
A
B
If a hardware breakpoint is placed on instruction B, and instruction A is a memory access
instruction, register file updates from instruction A can be discarded.
Fix/Workaround
Do not place hardware breakpoints, use software breakpoints instead.
Alternatively, place a hardware breakpoint on the instruction before the memory
access instruction and then single step over the memory access instruction.

41.5.15 PDCA

1. Wrong PDCA behavior when using two PDCA channels with the same PID.
Workaround/fix
The same PID should not be assigned to more than one channel.

41.5.16 TWI

1. The TWI RXRDY flag in SR register is not reset when a software reset is performed.
Fix/Workaround
After a Software Reset, the register TWI RHR must be read.

1. Reading from on-chip flash may fail after a flash fuse write operation (FLASHC LP,
UP, WGPB, EGPB, SSB, PGPFB, EAGPF commands).
After a flash fuse write operation (FLASHC LP, UP, WGPB, EGPB, SSB, PGPFB, EAGPF
commands), the following flash read access may return corrupted data. This erratum does
not affect write operations to regular flash memory.
Fix/Workaround
The flash fuse write operation (FLASHC LP, UP, WGPB, EGPB, SSB, PGPFB, EAGPF
commands) must be issued from internal RAM. After the write operation, perform a dummy
flash page write operation (FLASHC WP). Content and location of this page is not important
and filling the write buffer with all one (FFh) will leave the current flash content unchanged. It
is then safe to read and fetch code from the flash.

41.5.17 FLASHC

32058K AVR32-01/12

816

AT32UC3A

42. Datasheet Revision History

Please note that the referring page numbers in this section are referred to this document. The
referring revision in this section are referring to the document revision.

42.2 Rev. I – 11/09

42.3 Rev. H – 03/09

42.4 Rev. G – 01/09

42.5 Rev. F – 08/08

1. Remove ordering code for automotive engineering samples

2. Replace old automotive odering codes AT32UC3A0512-ALTR (revision I) by
AT32UC3A0512-ALTRA (revision K).
Replace old automotive odering codes AT32UC3A0512-ALTT (revision I) by
AT32UC3A0512-ALTTA (revision K).

1. Update ”Errata” on page 779.

2. Update eletrical characteristic in ”DC Characteristics” on page 2.

3. Add BGA144 package information.

1. Update ”Errata” on page 779.

2. Update GPIO eletrical characteristic in ”DC Characteristics” on page 2.

1. Add revision J to ”Errata” on page 779.

2. Update DMIPS number in ”Features” on page 1.

42.1 Rev. K – 01/12

1.

2.

Update Errata Section

Update Electrical characteristic Section

32058K AVR32-01/12

817

AT32UC3A

42.6 Rev. E – 04/08

42.7 Rev. D – 04/08

42.8 Rev. C – 10/07

42.9 Rev. B – 10/07

42.10 Rev. A – 03/07

1. Open Drain Mode removed from ”General-Purpose Input/Output Controller (GPIO)”
on page 151.

1. Updated ”Signal Description List” on page 8. Removed RXDN and TXDN from
USART section.

2. Updated ”Errata” on page 779. Rev G replaced by rev H.

1. Updated ”Signal Description List” on page 8. Removed RXDN and TXDN from
USART section.

2. Updated ”Errata” on page 779. Rev G replaced by rev H.

1. Updated ”Features” on page 1.

2. Update ”Blockdiagram” on page 4 with local bus.

3. Updated ”Peripherals” on page 34 with local bus.

4. Add SPI feature in ”Universial Synchronous/Asynchronous Receiver/Transmitter
(USART)” on page 315.

5. Updated ”USB On-The-Go Interface (USBB)” on page 517.

6. Updated ”JTAG and Boundary Scan” on page 750 with programming procedure .

7. Add description for silicon Rev G.

1. Initial revision.

32058K AVR32-01/12

i

AT32UC3A

Table of Contents

1 Description 3

2 Configuration Summary . .. 4

3 Abbreviations 4

4 Blockdiagram 5

4.1Processor and architecture6

5 Signals Description . .. 8

6 Power Considerations 13

6.1Power Supplies13

6.2Voltage Regulator14

6.3Analog-to-Digital Converter (A.D.C) reference. . ..15

7 Package and Pinout 16

8 I/O Line Considerations 20

8.1JTAG pins ...20

8.2RESET_N pin20

8.3TWI pins20

8.4GPIO pins20

9 Processor and Architecture . .. 21

9.1AVR32 Architecture . ..21

9.2The AVR32UC CPU21

9.3Programming Model25

9.4Exceptions and Interrupts29

10 Memories . .. 33

10.1Embedded Memories33

10.2Physical Memory Map . ..33

10.3Bus Matrix Connections . ..34

11 Fuses Settings . .. 36

11.1Flash General Purpose Fuse Register (FGPFRLO)36

11.2Default Fuse Value37

12 Peripherals . .. 38

12.1Peripheral address map38

12.2CPU Local Bus Mapping . ..39

32058K AVR32-01/12

ii

AT32UC3A

12.3Interrupt Request Signal Map41

12.4Clock Connections . ..43

12.5Nexus OCD AUX port connections44

12.6PDC handshake signals44

12.7Peripheral Multiplexing on I/O lines . ..45

12.8Oscillator Pinout ...48

12.9USART Configuration48

12.10GPIO49

12.11Peripheral overview . ..49

13 Power Manager (PM) . .. 53

13.1Features ...53

13.2Description . ..53

13.3Block Diagram . ..54

13.4Product Dependencies55

13.5Functional Description . ..55

13.6User Interface66

14 Real Time Counter (RTC) 86

14.1Features ...86

14.2Description . ..86

14.3Block Diagram . ..87

14.4Product Dependencies87

14.5Functional Description . ..87

14.6User Interface89

15 Watchdog Timer (WDT) 94

15.1Features ...94

15.2Description . ..94

15.3Block Diagram . ..94

15.4Product Dependencies94

15.5Functional Description . ..95

15.6User Interface96

16 Interrupt Controller (INTC) . .. 99

16.1Description . ..99

16.2Block Diagram . ..99

16.3Operation . ..99

16.4User Interface101

32058K AVR32-01/12

iii

AT32UC3A

17 External Interrupts Controller (EIC) . .. 105

17.1Features105

17.2Description . ..105

17.3Block Diagram . ..106

17.4Product Dependencies106

17.5Functional Description . ..107

17.6User Interface109

18 Flash Controller (FLASHC) . .. 115

18.1Features115

18.2Description . ..115

18.3Product dependencies . ..115

18.4Functional description116

18.5Flash commands . ..118

18.6General-purpose fuse bits . ..120

18.7Security bit . ..122

18.8User interface123

19 HSB Bus Matrix (HMATRIX) . .. 132

19.1Features132

19.2Description . ..132

19.3Memory Mapping . ..132

19.4Special Bus Granting Mechanism . ..132

19.5Arbitration133

19.6Slave and Master assignation . ..135

19.7User Interface136

20 External Bus Interface (EBI) . .. 145

20.1Features145

20.2Description . ..145

20.3Block Diagram . ..146

20.4I/O Lines Description . ..147

20.5Application Example148

20.6Product Dependencies151

20.7Functional Description . ..151

21 Peripheral DMA Controller (PDCA) 153

21.1Features153

21.2Overview153

32058K AVR32-01/12

ii
32058–AVR32–11/09

AT32UC3A

12.3Interrupt Request Signal Map ..41

12.4Clock Connections ...43

12.5Nexus OCD AUX port connections ..44

12.6PDC handshake signals ..44

12.7Peripheral Multiplexing on I/O lines ...45

12.8Oscillator Pinout ..48

12.9USART Configuration ..48

12.10GPIO ..49

12.11Peripheral overview ...49

13 Power Manager (PM) .. 53

13.1Features ..53

13.2Description ...53

13.3Block Diagram ...54

13.4Product Dependencies ..55

13.5Functional Description ...55

13.6User Interface ..66

14 Real Time Counter (RTC) ... 86

14.1Features ..86

14.2Description ...86

14.3Block Diagram ...87

14.4Product Dependencies ..87

14.5Functional Description ...87

14.6User Interface ..89

15 Watchdog Timer (WDT) ... 94

15.1Features ..94

15.2Description ...94

15.3Block Diagram ...94

15.4Product Dependencies ..94

15.5Functional Description ...95

15.6User Interface ..96

16 Interrupt Controller (INTC) .. 99

16.1Description ...99

16.2Block Diagram ...99

16.3Operation ...99

16.4User Interface ..101

v

AT32UC3A

25.1Features259

25.2Overview259

25.3Block Diagram . ..260

25.4Application Block Diagram . ..260

25.5I/O Lines Description . ..261

25.6Product Dependencies261

25.7Functional Description . ..261

25.8SSC Application Examples273

25.9User Interface275

26 Universal Synchronous/Asynchronous Receiver/Transmitter (USART) 299

26.1Features299

26.2Overview299

26.3Block Diagram . ..300

26.4Application Block Diagram . ..301

26.5I/O Lines Description 302

26.6Product Dependencies303

26.7Functional Description . ..304

26.8Universal Synchronous/Asynchronous Receiver/Transmitter (USART) User Interface 339

27 Static Memory Controller (SMC) 366

27.1Features366

27.2Overview366

27.3Block Diagram . ..367

27.4I/O Lines Description . ..367

27.5Product Dependencies368

27.6Functionnal Description . ..368

27.7User Interface403

28 SDRAM Controller (SDRAMC) 410

28.1Features410

28.2Description . ..410

28.3Block Diagram . ..411

28.4I/O Lines Description . ..411

28.5Application Example412

28.6Product Dependencies415

28.7Functional Description . ..417

28.8SDRAM Controller User Interface . ..424

32058K AVR32-01/12

vi

AT32UC3A

29 Ethernet MAC (MACB) 437

29.1Features437

29.2Description . ..437

29.3Block Diagram . ..438

29.4Product Dependencies438

29.5Functional Description . ..439

29.6Programming Interface451

29.7Ethernet MAC (MACB) User Interface . ..454

30 USB On-The-Go Interface (USBB) . .. 497

30.1Features497

30.2Description . ..497

30.3Block Diagram . ..499

30.4Application Block Diagram . ..500

30.5I/O Lines Description . ..501

30.6Product Dependencies502

30.7Functional Description . ..503

30.8USB User Interface530

31 Timer/Counter (TC) . .. 639

31.1Features639

31.2Description . ..639

31.3Block Diagram . ..640

31.4Pin Name List641

31.5Product Dependencies641

31.6Functional Description . ..641

31.7Timer Counter (TC) User Interface654

32 Pulse Width Modulation Controller (PWM) 673

32.1Features673

32.2Description . ..673

32.3Block Diagram . ..674

32.4I/O Lines Description . ..674

32.5Product Dependencies675

32.6Functional Description . ..676

32.7Pulse Width Modulation (PWM) Controller User Interface684

33 Analog-to-Digital Converter (ADC) 699

33.1Features699

32058K AVR32-01/12

vii

AT32UC3A

33.2Overview699

33.3Block Diagram . ..700

33.4I/O Lines Description . ..700

33.5Product Dependencies700

33.6Functional Description . ..702

33.7User Interface707

34 Audio Bitstream DAC (ABDAC) . .. 721

34.1Features721

34.2Description . ..721

34.3Block Diagram . ..722

34.4Pin Name List722

34.5Product Dependencies722

34.6Functional Description . ..723

34.7Audio Bitstream DAC User Interface . ..725

34.8Frequency Response733

35 On-Chip Debug 734

35.1Features734

35.2Overview734

35.3Block diagram735

35.4Functional description735

36 JTAG and Boundary Scan 741

36.1Features741

36.2Overview741

36.3Block diagram742

36.4I/O Lines Description . ..743

36.5Product Dependencies743

36.6Functional description743

36.7JTAG Instruction Summary . ..748

36.8Public JTAG instructions . ..749

36.9Private JTAG Instructions750

36.10JTAG Data Registers . ..760

36.11SAB address map761

37 Boot Sequence 762

37.1Starting of clocks ..762

37.2Fetching of initial instructions762

32058K AVR32-01/12

viii

AT32UC3A

38 Electrical Characteristics . .. 763

38.1Absolute Maximum Ratings* . ..763

38.2DC Characteristics . ..764

38.3Regulator characteristics . ..765

38.4Analog characteristics . ..765

38.5Power Consumption767

38.6Clock Characteristics . ..769

38.7Crystal Oscillator Characteristis770

38.8ADC Characteristics772

38.9EBI Timings . ..774

38.10JTAG Timings780

38.11SPI Characteristics781

38.12MACB Characteristics . ..783

38.13Flash Characteristics . ..785

39 Mechanical Characteristics 787

39.1Thermal Considerations787

39.2Package Drawings . ..788

39.3Soldering Profile791

40 Ordering Information 792

40.1Automotive Quality Grade . ..792

41 Errata 793

41.1Rev. K ...793

41.2Rev. J ...796

41.3Rev. I . ..799

41.4Rev. H ...803

41.5Rev. E ...807

42 Datasheet Revision History 816

42.1Rev. K – 01/12 ...816

42.2Rev. G – 01/09816

42.3Rev. F – 08/08 . ..816

42.4Rev. E – 04/08 . ..816

42.5Rev. D – 04/08 . ..816

42.6Rev. C – 10/07 . ..817

42.7Rev. B – 10/07 . ..817

42.8Rev. A – 03/07 . ..817

32058K AVR32-01/12

32058K -AVR32-01/12

Atmel Corporation
2325 Orchard Parkway
San Jose, CA 95131
USA
Tel: (+1)(408) 441-0311
Fax: (+1)(408) 487-2600
www.atmel.com

Atmel Asia Limited
Unit 1-5 & 16, 19/F
BEA Tower, Millennium City 5
418 Kwun Tong Road
Kwun Tong, Kowloon
HONG KONG
Tel: (+852) 2245-6100
Fax: (+852) 2722-1369

Atmel Munich GmbH
Business Campus
Parkring 4
D-85748 Garching b. Munich
GERMANY
Tel: (+49) 89-31970-0
Fax: (+49) 89-3194621

Atmel Japan
16F, Shin Osaki Kangyo Bldg.
1-6-4 Osaka Shinagawa-ku
Tokyo 104-0032
JAPAN
Tel: (+81) 3-6417-0300
Fax: (+81) 3-6417-0370

© 2012 Atmel Corporation. All rights reserved.

Atmel®, Atmel logo and combinations thereof, AVR® and others are registered trademarks or trademarks of Atmel
Corporation or its subsidiaries. Other terms and product names may be trademarks of others.

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to
any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL
TERMS AND CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY
EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT,
INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS AND PROF-
ITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL
HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or com-
pleteness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice.
Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suit-
able for, and shall not be used in, automotive applications. Atmel products are not intended, authorized, or warranted for use as components in applica-
tions intended to support or sustain life.

	Features
	1. Description
	2. Configuration Summary
	3. Abbreviations
	4. Blockdiagram
	4.1 Processor and architecture
	4.1.1 AVR32 UC CPU
	4.1.2 Debug and Test system
	4.1.3 Peripheral DMA Controller
	4.1.4 Bus system

	5. Signals Description
	6. Power Considerations
	6.1 Power Supplies
	6.2 Voltage Regulator
	6.2.1 Single Power Supply
	6.2.2 Dual Power Supply

	6.3 Analog-to-Digital Converter (A.D.C) reference.

	7. Package and Pinout
	8. I/O Line Considerations
	8.1 JTAG pins
	8.2 RESET_N pin
	8.3 TWI pins
	8.4 GPIO pins

	9. Processor and Architecture
	9.1 AVR32 Architecture
	9.2 The AVR32UC CPU
	9.2.1 Pipeline Overview
	9.2.2 AVR32A Microarchitecture Compliance
	9.2.3 Java Support
	9.2.4 Memory protection
	9.2.5 Unaligned reference handling
	9.2.6 Unimplemented instructions
	9.2.7 CPU and Architecture revision

	9.3 Programming Model
	9.3.1 Register file configuration
	9.3.2 Status register configuration
	9.3.3 Processor States
	9.3.3.1 Normal RISC State
	9.3.3.2 Debug State

	9.3.4 System registers

	9.4 Exceptions and Interrupts
	9.4.1 System stack issues
	9.4.2 Exceptions and interrupt requests
	9.4.3 Supervisor calls
	9.4.4 Debug requests
	9.4.5 Entry points for events

	10. Memories
	10.1 Embedded Memories
	10.2 Physical Memory Map
	10.3 Bus Matrix Connections

	11. Fuses Settings
	11.1 Flash General Purpose Fuse Register (FGPFRLO)
	11.2 Default Fuse Value

	12. Peripherals
	12.1 Peripheral address map
	12.2 CPU Local Bus Mapping
	12.3 Interrupt Request Signal Map
	12.4 Clock Connections
	12.4.1 Timer/Counters
	12.4.2 USARTs
	12.4.3 SPIs

	12.5 Nexus OCD AUX port connections
	12.6 PDC handshake signals
	12.7 Peripheral Multiplexing on I/O lines
	12.8 Oscillator Pinout
	12.9 USART Configuration
	12.10 GPIO
	12.11 Peripheral overview
	12.11.1 External Bus Interface
	12.11.2 Static Memory Controller
	12.11.3 SDRAM Controller
	12.11.4 USB Controller
	12.11.5 Serial Peripheral Interface
	12.11.6 Two-wire Interface
	12.11.7 USART
	12.11.8 Serial Synchronous Controller
	12.11.9 Timer Counter
	12.11.10 Pulse Width Modulation Controller
	12.11.11 Ethernet 10/100 MAC
	12.11.12 Audio Bitstream DAC

	13. Power Manager (PM)
	13.1 Features
	13.2 Description
	13.3 Block Diagram
	13.4 Product Dependencies
	13.4.1 I/O Lines
	13.4.2 Interrupt
	13.4.3 Clock implementation

	13.5 Functional Description
	13.5.1 Slow clock
	13.5.2 Oscillator 0 and 1 operation
	13.5.3 32 KHz oscillator operation
	13.5.4 PLL operation
	13.5.4.1 Enabling the PLL

	13.5.5 Synchronous clocks
	13.5.5.1 Selecting PLL or oscillator for the main clock
	13.5.5.2 Selecting synchronous clock division ratio
	13.5.5.3 Clock Ready flag

	13.5.6 Peripheral clock masking
	13.5.6.1 Cautionary note
	13.5.6.2 Mask Ready flag

	13.5.7 Sleep modes
	13.5.7.1 Entering and exiting sleep modes
	13.5.7.2 Supported sleep modes
	13.5.7.3 Precautions when entering sleep mode
	13.5.7.4 Wake up

	13.5.8 Generic clocks
	13.5.8.1 Enabling a generic clock
	13.5.8.2 Disabling a generic clock
	13.5.8.3 Changing clock frequency
	13.5.8.4 Generic clock implementation

	13.5.9 Divided PB clocks
	13.5.10 Debug operation
	13.5.11 Reset Controller
	13.5.11.1 Power-On Detector
	13.5.11.2 Brown-Out Detector
	13.5.11.3 External Reset

	13.5.12 Calibration registers

	13.6 User Interface
	13.6.1 Main Clock Control
	13.6.2 Clock Select
	13.6.3 Clock Mask
	13.6.4 PLL Control
	13.6.5 PM Oscillator 0/1 Control
	13.6.6 PM 32 KHz Oscillator Control Register
	13.6.7 Interrupt Enable/Disable/Mask/Status/Clear
	13.6.8 Power and Oscillators Status
	13.6.9 Generic Clock Control
	13.6.10 Reset Cause
	13.6.11 BOD Control
	13.6.12 RC Oscillator Calibration
	13.6.13 Bandgap Calibration
	13.6.14 PM Voltage Regulator Calibration Register
	13.6.15 General Purpose Low-power register 0/1

	14. Real Time Counter (RTC)
	14.1 Features
	14.2 Description
	14.3 Block Diagram
	14.4 Product Dependencies
	14.4.1 Power Management
	14.4.2 Interrupt
	14.4.3 Debug Operation
	14.4.4 Clocks

	14.5 Functional Description
	14.5.1 RTC operation
	14.5.1.1 Source clock
	14.5.1.2 Counter operation
	14.5.1.3 RTC Interrupt
	14.5.1.4 RTC wakeup
	14.5.1.5 Busy bit

	14.6 User Interface
	14.6.1 RTC Control
	14.6.2 RTC Value
	14.6.3 RTC Top
	14.6.4 RTC Interrupt Enable/Disable/Mask/Status/Clear

	15. Watchdog Timer (WDT)
	15.1 Features
	15.2 Description
	15.3 Block Diagram
	15.4 Product Dependencies
	15.4.1 Power Management
	15.4.2 Debug Operation
	15.4.3 Clocks

	15.5 Functional Description
	15.6 User Interface
	15.6.1 WDT Control
	15.6.2 WDT Clear

	16. Interrupt Controller (INTC)
	16.1 Description
	16.2 Block Diagram
	16.3 Operation
	16.3.1 Non maskable interrupts
	16.3.2 CPU response
	16.3.3 Clearing an interrupt request

	16.4 User Interface
	16.4.1 Memory Map
	16.4.2 Interrupt Request Map
	16.4.3 Interrupt Request Registers
	16.4.4 Interrupt Priority Registers
	16.4.5 Interrupt Cause Registers

	17. External Interrupts Controller (EIC)
	17.1 Features
	17.2 Description
	17.3 Block Diagram
	17.4 Product Dependencies
	17.4.1 I/O Lines
	17.4.2 Power Management
	17.4.3 Interrupt

	17.5 Functional Description
	17.5.1 External Interrupts
	17.5.1.1 Synchronization of external interrupts
	17.5.1.2 Wakeup

	17.5.2 Non-Maskable Interrupt
	17.5.3 Keypad scan support

	17.6 User Interface
	17.6.1 EIC Interrupt Enable/Disable/Mask/Status/Clear
	17.6.2 External Interrupt Mode/Edge/Level/Filter/Async
	17.6.3 External Interrupt Test
	17.6.4 External Interrupt Scan
	17.6.5 External Interrupt Enable/Disable/Control

	18. Flash Controller (FLASHC)
	18.1 Features
	18.2 Description
	18.3 Product dependencies
	18.3.1 Power management
	18.3.2 Interrupt

	18.4 Functional description
	18.4.1 Bus interfaces
	18.4.2 Memory organization
	18.4.3 User page
	18.4.4 Read operations
	18.4.5 Quick Page Read
	18.4.6 Write page buffer operations
	18.4.7 Writing words to a page that is not completely erased

	18.5 Flash commands
	18.5.1 Write/erase page operation
	18.5.2 Erase All operation
	18.5.3 Region lock bits

	18.6 General-purpose fuse bits
	18.7 Security bit
	18.8 User interface
	18.8.1 Address map
	18.8.2 Flash Control Register (FCR)
	18.8.3 Flash Command Register (FCMD)
	18.8.4 Flash Status Register (FSR)
	18.8.5 Flash General Purpose Fuse Register High (FGPFRHI)
	18.8.6 Flash General Purpose Fuse Register Low (FGPFRLO)

	19. HSB Bus Matrix (HMATRIX)
	19.1 Features
	19.2 Description
	19.3 Memory Mapping
	19.4 Special Bus Granting Mechanism
	19.4.1 No Default Master
	19.4.2 Last Access Master
	19.4.3 Fixed Default Master

	19.5 Arbitration
	19.5.1 Arbitration Rules
	19.5.1.1 Undefined Length Burst Arbitration
	19.5.1.2 Slot Cycle Limit Arbitration

	19.5.2 Round-Robin Arbitration
	19.5.2.1 Round-Robin Arbitration without Default Master
	19.5.2.2 Round-Robin Arbitration with Last Default Master
	19.5.2.3 Round-Robin Arbitration with Fixed Default Master

	19.5.3 Fixed Priority Arbitration

	19.6 Slave and Master assignation
	19.7 User Interface
	19.7.1 Bus Matrix Master Configuration Registers
	19.7.2 Bus Matrix Slave Configuration Registers
	19.7.3 Bus Matrix Priority Registers A For Slaves
	19.7.4 Bus Matrix Priority Registers B For Slaves
	19.7.5 Bus Matrix Master Remap Control Register
	19.7.6 Bus Matrix Special Function Registers

	20. External Bus Interface (EBI)
	20.1 Features
	20.2 Description
	20.3 Block Diagram
	20.3.1 External Bus Interface

	20.4 I/O Lines Description
	20.5 Application Example
	20.5.1 Hardware Interface
	20.5.2 Connection Examples

	20.6 Product Dependencies
	20.6.1 I/O Lines
	20.6.2 Power Management
	20.6.3 Interrupt

	20.7 Functional Description
	20.7.1 Bus Multiplexing
	20.7.2 Pull-up Control
	20.7.3 Static Memory Controller
	20.7.4 SDRAM Controller

	21. Peripheral DMA Controller (PDCA)
	21.1 Features
	21.2 Overview
	21.3 Block Diagram
	21.4 Functional Description
	21.4.1 Configuration
	21.4.2 Memory Pointer
	21.4.3 Transfer Counter
	21.4.4 Reload Registers
	21.4.5 Peripheral Selection
	21.4.6 Transfer Size
	21.4.7 Enabling and Disabling
	21.4.8 Interrupts
	21.4.9 Priority
	21.4.10 Error Handling

	21.5 User Interface
	21.5.1 Memory Map Overview
	21.5.2 Channel Memory Map
	21.5.3 PDCA Memory Address Register
	21.5.4 PDCA Peripheral Select Register
	21.5.5 PDCA Transfer Counter Register
	21.5.6 PDCA Memory Address Reload Register
	21.5.7 PDCA Transfer Counter Reload Register
	21.5.8 PDCA Control Register
	21.5.9 PDCA Mode Register
	21.5.10 PDCA Status Register
	21.5.11 PDCA Interrupt Enable Register
	21.5.12 PDCA Interrupt Disable Register
	21.5.13 PDCA Interrupt Mask Register
	21.5.14 PDCA Interrupt Status Register

	22. General-Purpose Input/Output Controller (GPIO)
	22.1 Features
	22.2 Overview
	22.3 Product dependencies
	22.3.1 Module Configuration
	22.3.2 Interrupt Lines
	22.3.3 Power and Clock Management

	22.4 Functional Description
	22.4.1 Pull-up Resistor Control
	22.4.2 I/O Line or Peripheral Function Selection
	22.4.3 Peripheral Selection
	22.4.4 Output Control
	22.4.5 Open Drain Mode
	22.4.6 Inputs
	22.4.7 Interrupts
	22.4.8 Input Glitch Filter
	22.4.9 Interrupt Timings

	22.5 General Purpose Input/Output (GPIO) User Interface
	22.5.1 Access Types
	22.5.2 GPIO Enable Register
	22.5.3 Peripheral Mux Register 0
	22.5.4 Peripheral Mux Register 1
	22.5.5 Output Driver Enable Register
	22.5.6 Output Value Register
	22.5.7 Pin Value Register
	22.5.8 Pull-up Enable Register
	22.5.9 Open Drain Mode Enable Register
	22.5.10 Interrupt Enable Register
	22.5.11 Interrupt Mode Register 0
	22.5.12 Interrupt Mode Register 1
	22.5.13 Glitch Filter Enable Register
	22.5.14 Interrupt Flag Register

	22.6 Programming Examples
	22.6.1 8-bit LED-Chaser
	22.6.2 Configuration of USART pins

	23. Serial Peripheral Interface (SPI)
	23.1 Features
	23.2 Description
	23.3 Block Diagram
	23.4 Application Block Diagram
	23.5 Signal Description
	23.6 Product Dependencies
	23.6.1 I/O Lines
	23.6.2 Power Management
	23.6.3 Interrupt

	23.7 Functional Description
	23.7.1 Modes of Operation
	23.7.2 Data Transfer
	23.7.3 Master Mode Operations
	23.7.3.1 Master Mode Block Diagram
	23.7.3.2 Master Mode Flow Diagram
	23.7.3.3 Clock Generation
	23.7.3.4 Transfer Delays
	23.7.3.5 Peripheral Selection
	23.7.3.6 Peripheral Chip Select Decoding
	23.7.3.7 Peripheral Deselection
	23.7.3.8 Mode Fault Detection

	23.7.4 SPI Slave Mode

	23.8 Serial Peripheral Interface (SPI) User Interface
	23.8.1 SPI Control Register
	23.8.2 SPI Mode Register
	23.8.3 SPI Receive Data Register
	23.8.4 SPI Transmit Data Register
	23.8.5 SPI Status Register
	23.8.6 SPI Interrupt Enable Register
	23.8.7 SPI Interrupt Disable Register
	23.8.8 SPI Interrupt Mask Register
	23.8.9 SPI Chip Select Register

	24. Two-Wire Interface (TWI)
	24.1 Features
	24.2 Overview
	24.3 List of Abbreviations
	24.4 Block Diagram
	24.5 Application Block Diagram
	24.6 I/O Lines Description
	24.7 Product Dependencies
	24.7.1 I/O Lines
	24.7.2 Power Management
	24.7.3 Interrupt

	24.8 Functional Description
	24.8.1 Transfer Format

	24.9 Modes of Operation
	24.10 Master Mode
	24.10.1 Definition
	24.10.2 Application Block Diagram
	24.10.3 Programming Master Mode
	24.10.4 Master Transmitter Mode
	24.10.5 Master Receiver Mode
	24.10.6 Internal Address
	24.10.6.1 7-bit Slave Addressing
	24.10.6.2 10-bit Slave Addressing

	24.11 Internal Address Usage Using the Peripheral DMA Controller (PDC)
	24.11.1 Data Transmit with the PDC
	24.11.2 Data Receive with the PDC
	24.11.3 Read-write Flowcharts

	24.12 Multi-master Mode
	24.12.1 Definition
	24.12.2 Different Multi-master Modes
	24.12.2.1 TWI as Master Only
	24.12.2.2 TWI as Master or Slave

	24.13 Slave Mode
	24.13.1 Definition
	24.13.2 Application Block Diagram
	24.13.3 Programming Slave Mode
	24.13.4 Receiving Data
	24.13.4.1 Read Sequence
	24.13.4.2 Write Sequence
	24.13.4.3 Clock Synchronization Sequence
	24.13.4.4 General Call
	24.13.4.5 PDC

	24.13.5 Data Transfer
	24.13.5.1 Read Operation
	24.13.5.2 Write Operation
	24.13.5.3 General Call

	24.13.6 Clock Synchronization
	24.13.6.1 Clock Synchronization in Read Mode
	24.13.6.2 Clock Synchronization in Write Mode

	24.13.7 Reversal after a Repeated Start
	24.13.7.1 Reversal of Read to Write
	24.13.7.2 Reversal of Write to Read

	24.13.8 Read Write Flowcharts

	24.14 Two-wire Interface (TWI) User Interface
	24.14.1 Register Mapping
	24.14.2 TWI Control Register
	24.14.3 TWI Master Mode Register
	24.14.4 TWI Slave Mode Register
	24.14.5 TWI Internal Address Register
	24.14.6 TWI Clock Waveform Generator Register
	24.14.7 TWI Status Register
	24.14.8 TWI Interrupt Enable Register
	24.14.9 TWI Interrupt Disable Register
	24.14.10 TWI Interrupt Mask Register
	24.14.11 TWI Receive Holding Register
	24.14.12 TWI Transmit Holding Register

	25. Synchronous Serial Controller (SSC)
	25.1 Features
	25.2 Overview
	25.3 Block Diagram
	25.4 Application Block Diagram
	25.5 I/O Lines Description
	25.6 Product Dependencies
	25.6.1 I/O Lines
	25.6.2 Power Management
	25.6.3 Interrupt

	25.7 Functional Description
	25.7.1 Clock Management
	25.7.1.1 Clock Divider
	25.7.1.2 Transmitter Clock Management
	25.7.1.3 Receiver Clock Management
	25.7.1.4 Serial Clock Ratio Considerations

	25.7.2 Transmitter Operations
	25.7.3 Receiver Operations
	25.7.4 Start
	25.7.5 Frame Sync
	25.7.5.1 Frame Sync Data
	25.7.5.2 Frame Sync Edge Detection

	25.7.6 Receive Compare Modes
	25.7.6.1 Compare Functions

	25.7.7 Data Format
	25.7.8 Loop Mode
	25.7.9 Interrupt

	25.8 SSC Application Examples
	25.9 User Interface
	25.9.1 Control Register
	25.9.2 Clock Mode Register
	25.9.3 Receive Clock Mode Register
	25.9.4 Receive Frame Mode Register
	25.9.5 Transmit Clock Mode Register
	25.9.6 Transmit Frame Mode Register
	25.9.7 SSC Receive Holding Register
	25.9.8 Transmit Holding Register
	25.9.9 Receive Synchronization Holding Register
	25.9.10 Transmit Synchronization Holding Register
	25.9.11 Receive Compare 0 Register
	25.9.12 Receive Compare 1 Register
	25.9.13 Status Register
	25.9.14 Interrupt Enable Register
	25.9.15 Interrupt Disable Register
	25.9.16 Interrupt Mask Register

	26. Universal Synchronous/Asynchronous Receiver/Transmitter (USART)
	26.1 Features
	26.2 Overview
	26.3 Block Diagram
	26.4 Application Block Diagram
	26.5 I/O Lines Description
	26.6 Product Dependencies
	26.6.1 I/O Lines
	26.6.2 Power Manager (PM)
	26.6.3 Interrupt

	26.7 Functional Description
	26.7.1 Baud Rate Generator
	26.7.1.1 Baud Rate in Asynchronous Mode
	26.7.1.2 Baud Rate Calculation Example
	26.7.1.3 Fractional Baud Rate in Asynchronous Mode
	26.7.1.4 Baud Rate in Synchronous Mode or SPI Mode
	26.7.1.5 Baud Rate in ISO 7816 Mode

	26.7.2 Receiver and Transmitter Control
	26.7.3 Synchronous and Asynchronous Modes
	26.7.3.1 Transmitter Operations
	26.7.3.2 Manchester Encoder
	26.7.3.3 Drift Compensation
	26.7.3.4 Asynchronous Receiver
	26.7.3.5 Manchester Decoder
	26.7.3.6 Radio Interface: Manchester Encoded USART Application

	26.7.4 Synchronous Receiver
	26.7.4.1 Receiver Operations
	26.7.4.2 Parity
	26.7.4.3 Multidrop Mode
	26.7.4.4 Transmitter Timeguard
	26.7.4.5 Receiver Time-out
	26.7.4.6 Framing Error
	26.7.4.7 Transmit Break
	26.7.4.8 Receive Break
	26.7.4.9 Hardware Handshaking

	26.7.5 ISO7816 Mode
	26.7.5.1 ISO7816 Mode Overview
	26.7.5.2 Protocol T = 0
	26.7.5.3 Receive Error Counter
	26.7.5.4 Receive NACK Inhibit
	26.7.5.5 Transmit Character Repetition
	26.7.5.6 Disable Successive Receive NACK
	26.7.5.7 Protocol T = 1

	26.7.6 IrDA Mode
	26.7.6.1 IrDA Modulation
	26.7.6.2 IrDA Baud Rate
	26.7.6.3 IrDA Demodulator

	26.7.7 RS485 Mode
	26.7.8 SPI Mode
	26.7.8.1 Modes of Operation
	26.7.8.2 Baud Rate
	26.7.8.3 Data Transfer
	26.7.8.4 Receiver and Transmitter Control
	26.7.8.5 Character Transmission
	26.7.8.6 Character Reception
	26.7.8.7 Receiver Timeout

	26.7.9 Test Modes
	26.7.9.1 Normal Mode
	26.7.9.2 Automatic Echo Mode
	26.7.9.3 Local Loopback Mode
	26.7.9.4 Remote Loopback Mode

	26.8 Universal Synchronous/Asynchronous Receiver/Transmitter (USART) User Interface
	26.8.1 Register Mapping
	26.8.2 USART Control Register
	26.8.3 USART Mode Register
	26.8.4 USART Interrupt Enable Register
	26.8.5 USART Interrupt Disable Register
	26.8.6 USART Interrupt Mask Register
	26.8.7 USART Channel Status Register
	26.8.8 USART Receive Holding Register
	26.8.9 USART Transmit Holding Register
	26.8.10 USART Baud Rate Generator Register
	26.8.11 USART Receiver Time-out Register
	26.8.12 USART Transmitter Timeguard Register
	26.8.13 USART FI DI RATIO Register
	26.8.14 USART Number of Errors Register
	26.8.15 USART IrDA FILTER Register
	26.8.16 USART Manchester Configuration Register
	26.8.17 USART Version Register

	27. Static Memory Controller (SMC)
	27.1 Features
	27.2 Overview
	27.3 Block Diagram
	27.4 I/O Lines Description
	27.5 Product Dependencies
	27.5.1 EBI I/O Lines

	27.6 Functionnal Description
	27.6.1 Application Example
	27.6.1.1 Hardware Interface

	27.6.2 External Memory Mapping
	27.6.3 Connection to External Devices
	27.6.3.1 Data Bus Width
	27.6.3.2 Byte Write or Byte Select Access

	27.6.4 Standard Read and Write Protocols
	27.6.4.1 Read Waveforms
	27.6.4.2 Read Mode
	27.6.4.3 Write Waveforms
	27.6.4.4 NCS Waveforms
	27.6.4.5 Write Mode
	27.6.4.6 Coding Timing Parameters
	27.6.4.7 Usage Restriction

	27.6.5 Automatic Wait States
	27.6.5.1 Chip Select Wait States
	27.6.5.2 Early Read Wait State
	27.6.5.3 Reload User Configuration Wait State
	27.6.5.4 Read to Write Wait State

	27.6.6 Data Float Wait States
	27.6.6.1 READ_MODE
	27.6.6.2 TDF Optimization Enabled (TDF_MODE = 1)
	27.6.6.3 TDF Optimization Disabled (TDF_MODE = 0)

	27.6.7 External Wait
	27.6.7.1 Restriction
	27.6.7.2 Frozen Mode
	27.6.7.3 Ready Mode
	27.6.7.4 NWAIT Latency and Read/write Timings

	27.6.8 Slow Clock Mode
	27.6.8.1 Slow Clock Mode Waveforms
	27.6.8.2 Switching from (to) Slow Clock Mode to (from) Normal Mode

	27.6.9 Asynchronous Page Mode
	27.6.9.1 Protocol and Timings in Page Mode
	27.6.9.2 Byte Access Type in Page Mode
	27.6.9.3 Page Mode Restriction
	27.6.9.4 Sequential and Non-sequential Accesses

	27.7 User Interface
	27.7.1 Setup Register
	27.7.2 Pulse Register
	27.7.3 Cycle Register
	27.7.4 MODE Register

	28. SDRAM Controller (SDRAMC)
	28.1 Features
	28.2 Description
	28.3 Block Diagram
	28.4 I/O Lines Description
	28.5 Application Example
	28.5.1 Hardware Interface
	28.5.2 Software Interface
	28.5.2.1 32-bit Memory Data Bus Width
	28.5.2.2 16-bit Memory Data Bus Width

	28.6 Product Dependencies
	28.6.1 SDRAM Device Initialization
	28.6.2 I/O Lines
	28.6.3 Interrupt

	28.7 Functional Description
	28.7.1 SDRAM Controller Write Cycle
	28.7.2 SDRAM Controller Read Cycle
	28.7.3 Border Management
	28.7.4 SDRAM Controller Refresh Cycles
	28.7.5 Power Management
	28.7.5.1 Self-refresh Mode
	28.7.5.2 Low-power Mode
	28.7.5.3 Deep Power-down Mode

	28.8 SDRAM Controller User Interface
	28.8.1 SDRAMC Mode Register
	28.8.2 SDRAMC Refresh Timer Register
	28.8.3 SDRAMC Configuration Register
	28.8.4 SDRAMC High Speed Register
	28.8.5 SDRAMC Low Power Register
	28.8.6 SDRAMC Interrupt Enable Register
	28.8.7 SDRAMC Interrupt Disable Register
	28.8.8 SDRAMC Interrupt Mask Register
	28.8.9 SDRAMC Interrupt Status Register
	28.8.10 SDRAMC Memory Device Register

	29. Ethernet MAC (MACB)
	29.1 Features
	29.2 Description
	29.3 Block Diagram
	29.4 Product Dependencies
	29.4.1 I/O Lines
	29.4.2 Power Management
	29.4.3 Interrupt

	29.5 Functional Description
	29.5.1 Memory Interface
	29.5.1.1 FIFO
	29.5.1.2 Receive Buffers
	29.5.1.3 Transmit Buffer

	29.5.2 Transmit Block
	29.5.3 Pause Frame Support
	29.5.4 Receive Block
	29.5.5 Address Checking Block
	29.5.6 Broadcast Address
	29.5.7 Hash Addressing
	29.5.8 External Address Matching
	29.5.9 Copy All Frames (or Promiscuous Mode)
	29.5.10 Type ID Checking
	29.5.11 VLAN Support
	29.5.12 PHY Maintenance
	29.5.13 Media Independent Interface
	29.5.13.1 RMII Transmit and Receive Operation

	29.6 Programming Interface
	29.6.1 Initialization
	29.6.1.1 Configuration
	29.6.1.2 Receive Buffer List
	29.6.1.3 Transmit Buffer List
	29.6.1.4 Address Matching
	29.6.1.5 Interrupts
	29.6.1.6 Transmitting Frames
	29.6.1.7 Receiving Frames

	29.7 Ethernet MAC (MACB) User Interface
	29.7.1 Network Control Register
	29.7.2 Network Configuration Register
	29.7.3 Network Status Register
	29.7.4 Transmit Status Register
	29.7.5 Receive Buffer Queue Pointer Register
	29.7.6 Transmit Buffer Queue Pointer Register
	29.7.7 Receive Status Register
	29.7.8 Interrupt Status Register
	29.7.9 Interrupt Enable Register
	29.7.10 Interrupt Disable Register
	29.7.11 Interrupt Mask Register
	29.7.12 PHY Maintenance Register
	29.7.13 Pause Time Register
	29.7.14 Hash Register Bottom
	29.7.15 Hash Register Top
	29.7.16 Specific Address 1 Bottom Register
	29.7.17 Specific Address 1 Top Register
	29.7.18 Specific Address 2 Bottom Register
	29.7.19 Specific Address 2 Top Register
	29.7.20 Specific Address 3 Bottom Register
	29.7.21 Specific Address 3 Top Register
	29.7.22 Specific Address 4 Bottom Register
	29.7.23 Specific Address 4 Top Register
	29.7.24 Type ID Checking Register
	29.7.25 Transmit Pause Quantum Register
	29.7.26 User Input/Output Register
	29.7.27 Wake-on-LAN Register
	29.7.28 MACB Statistic Registers
	29.7.28.1 Pause Frames Received Register
	29.7.28.2 Frames Transmitted OK Register
	29.7.28.3 Single Collision Frames Register
	29.7.28.4 Multicollision Frames Register
	29.7.28.5 Frames Received OK Register
	29.7.28.6 Frames Check Sequence Errors Register
	29.7.28.7 Alignment Errors Register
	29.7.28.8 Deferred Transmission Frames Register
	29.7.28.9 Late Collisions Register
	29.7.28.10 Excessive Collisions Register
	29.7.28.11 Transmit Underrun Errors Register
	29.7.28.12 Carrier Sense Errors Register
	29.7.28.13 Receive Resource Errors Register
	29.7.28.14 Receive Overrun Errors Register
	29.7.28.15 Receive Symbol Errors Register
	29.7.28.16 Excessive Length Errors Register
	29.7.28.17 Receive Jabbers Register
	29.7.28.18 Undersize Frames Register
	29.7.28.19 SQE Test Errors Register
	29.7.28.20 Received Length Field Mismatch Register
	29.7.28.21 Transmitted Pause Frames Register

	30. USB On-The-Go Interface (USBB)
	30.1 Features
	30.2 Description
	30.3 Block Diagram
	30.4 Application Block Diagram
	30.4.1 Device Mode
	30.4.1.1 Bus-Powered Device
	30.4.1.2 Self-Powered Device

	30.4.2 Host and OTG Modes

	30.5 I/O Lines Description
	30.6 Product Dependencies
	30.6.1 I/O Lines
	30.6.2 Power Management
	30.6.3 Interrupts

	30.7 Functional Description
	30.7.1 USB General Operation
	30.7.1.1 Introduction
	30.7.1.2 Power-On and Reset
	30.7.1.3 Interrupts
	30.7.1.4 MCU Power Modes
	30.7.1.5 Speed Control
	30.7.1.6 DPRAM Management
	30.7.1.7 Pad Suspend
	30.7.1.8 Customizing of OTG Timers
	30.7.1.9 Plug-In Detection
	30.7.1.10 ID Detection

	30.7.2 USB Device Operation
	30.7.2.1 Introduction
	30.7.2.2 Power-On and Reset
	30.7.2.3 USB Reset
	30.7.2.4 Endpoint Reset
	30.7.2.5 Endpoint Activation
	30.7.2.6 Address Setup
	30.7.2.7 Suspend and Wake-Up
	30.7.2.8 Detach
	30.7.2.9 Remote Wake-Up
	30.7.2.10 STALL Request
	30.7.2.11 Management of Control Endpoints
	30.7.2.12 Management of IN Endpoints
	30.7.2.13 Management of OUT Endpoints
	30.7.2.14 Underflow
	30.7.2.15 Overflow
	30.7.2.16 CRC Error
	30.7.2.17 Interrupts

	30.7.3 USB Host Operation
	30.7.3.1 Description of Pipes
	30.7.3.2 Power-On and Reset
	30.7.3.3 Device Detection
	30.7.3.4 USB Reset
	30.7.3.5 Pipe Reset
	30.7.3.6 Pipe Activation
	30.7.3.7 Address Setup
	30.7.3.8 Remote Wake-Up
	30.7.3.9 Management of Control Pipes
	30.7.3.10 Management of IN Pipes
	30.7.3.11 Management of OUT Pipes
	30.7.3.12 CRC Error
	30.7.3.13 Interrupts

	30.7.4 USB DMA Operation

	30.8 USB User Interface
	30.8.1 USB General Registers
	30.8.1.1 USB General Control Register (USBCON)
	30.8.1.2 USB General Status Register (USBSTA)
	30.8.1.3 USB General Status Clear Register (USBSTACLR)
	30.8.1.4 USB General Status Set Register (USBSTASET)
	30.8.1.5 USB IP Version Register (UVERS)
	30.8.1.6 USB IP Features Register (UFEATURES)
	30.8.1.7 USB IP PB Address Size Register (UADDRSIZE)
	30.8.1.8 USB IP Name Register 1 (UNAME1)
	30.8.1.9 USB IP Name Register 2 (UNAME2)
	30.8.1.10 USB Finite State Machine Status Register (USBFSM)

	30.8.2 USB Device Registers
	30.8.2.1 USB Device General Control Register (UDCON)
	30.8.2.2 USB Device Global Interrupt Register (UDINT)
	30.8.2.3 USB Device Global Interrupt Clear Register (UDINTCLR)
	30.8.2.4 USB Device Global Interrupt Set Register (UDINTSET)
	30.8.2.5 USB Device Global Interrupt Enable Register (UDINTE)
	30.8.2.6 USB Device Global Interrupt Enable Clear Register (UDINTECLR)
	30.8.2.7 USB Device Global Interrupt Enable Set Register (UDINTESET)
	30.8.2.8 USB Device Frame Number Register (UDFNUM)
	30.8.2.9 USB Endpoint Enable/Reset Register (UERST)
	30.8.2.10 USB Endpoint X Configuration Register (UECFGX)
	30.8.2.11 USB Endpoint X Status Register (UESTAX)
	30.8.2.12 USB Endpoint X Status Clear Register (UESTAXCLR)
	30.8.2.13 USB Endpoint X Status Set Register (UESTAXSET)
	30.8.2.14 USB Endpoint X Control Register (UECONX)
	30.8.2.15 USB Endpoint X Control Clear Register (UECONXCLR)
	30.8.2.16 USB Endpoint X Control Set Register (UECONXSET)
	30.8.2.17 USB Device DMA Channel X Next Descriptor Address Register (UDDMAX_NEXTDESC)
	30.8.2.18 USB Device DMA Channel X HSB Address Register (UDDMAX_ADDR)
	30.8.2.19 USB Device DMA Channel X Control Register (UDDMAX_CONTROL)
	30.8.2.20 USB Device DMA Channel X Status Register (UDDMAX_STATUS)

	30.8.3 USB Host Registers
	30.8.3.1 USB Host General Control Register (UHCON)
	30.8.3.2 USB Host Global Interrupt Register (UHINT)
	30.8.3.3 USB Host Global Interrupt Clear Register (UHINTCLR)
	30.8.3.4 USB Host Global Interrupt Set Register (UHINTSET)
	30.8.3.5 USB Host Global Interrupt Enable Register (UHINTE)
	30.8.3.6 USB Host Global Interrupt Enable Clear Register (UHINTECLR)
	30.8.3.7 USB Host Global Interrupt Enable Set Register (UHINTESET)
	30.8.3.8 USB Host Frame Number Register (UHFNUM)
	30.8.3.9 USB Host Frame Number Register (UHADDR1)
	30.8.3.10 USB Host Frame Number Register (UHADDR2)
	30.8.3.11 USB Pipe Enable/Reset Register (UPRST)
	30.8.3.12 USB Pipe X Configuration Register (UPCFGX)
	30.8.3.13 USB Pipe X Status Register (UPSTAX)
	30.8.3.14 USB Pipe X Status Clear Register (UPSTAXCLR)
	30.8.3.15 USB Pipe X Status Set Register (UPSTAXSET)
	30.8.3.16 USB Pipe X Control Register (UPCONX)
	30.8.3.17 USB Pipe X Control Clear Register (UPCONXCLR)
	30.8.3.18 USB Pipe X Control Set Register (UPCONXSET)
	30.8.3.19 USB Pipe X IN Request Register (UPINRQX)
	30.8.3.20 USB Pipe X Error Register (UPERRX)
	30.8.3.21 USB Host DMA Channel X Next Descriptor Address Register (UHDMAX_NEXTDESC)
	30.8.3.22 USB Host DMA Channel X HSB Address Register (UHDMAX_ADDR)
	30.8.3.23 USB Host DMA Channel X Control Register (UHDMAX_CONTROL)
	30.8.3.24 USB Host DMA Channel X Status Register (UHDMAX_STATUS)

	30.8.4 USB Pipe/Endpoint X FIFO Data Register (USB_FIFOX_DATA)

	31. Timer/Counter (TC)
	31.1 Features
	31.2 Description
	31.3 Block Diagram
	31.4 Pin Name List
	31.5 Product Dependencies
	31.5.1 I/O Lines
	31.5.2 Debug operation
	31.5.3 Power Management
	31.5.4 Interrupt

	31.6 Functional Description
	31.6.1 TC Description
	31.6.1.1 16-bit Counter
	31.6.1.2 Clock Selection
	31.6.1.3 Clock Control
	31.6.1.4 TC Operating Modes
	31.6.1.5 Trigger

	31.6.2 Capture Operating Mode
	31.6.2.1 Capture Registers A and B
	31.6.2.2 Trigger Conditions

	31.6.3 Waveform Operating Mode
	31.6.3.1 Waveform Selection
	31.6.3.2 WAVSEL = 00
	31.6.3.3 WAVSEL = 10
	31.6.3.4 WAVSEL = 01
	31.6.3.5 WAVSEL = 11
	31.6.3.6 External Event/Trigger Conditions
	31.6.3.7 Output Controller

	31.7 Timer Counter (TC) User Interface
	31.7.1 TC Block Control Register
	31.7.2 TC Block Mode Register
	31.7.3 TC Channel Control Register
	31.7.4 TC Channel Mode Register: Capture Mode
	31.7.5 TC Channel Mode Register: Waveform Mode
	31.7.6 TC Counter Value Register
	31.7.7 TC Register A
	31.7.8 TC Register B
	31.7.9 TC Register C
	31.7.10 TC Status Register
	31.7.11 TC Interrupt Enable Register
	31.7.12 TC Interrupt Disable Register
	31.7.13 TC Interrupt Mask Register

	32. Pulse Width Modulation Controller (PWM)
	32.1 Features
	32.2 Description
	32.3 Block Diagram
	32.4 I/O Lines Description
	32.5 Product Dependencies
	32.5.1 I/O Lines
	32.5.2 Debug operation
	32.5.3 Power Management
	32.5.4 Interrupt Sources

	32.6 Functional Description
	32.6.1 PWM Clock Generator
	32.6.2 PWM Channel
	32.6.2.1 Block Diagram
	32.6.2.2 Waveform Properties

	32.6.3 PWM Controller Operations
	32.6.3.1 Initialization
	32.6.3.2 Source Clock Selection Criteria
	32.6.3.3 Changing the Duty Cycle or the Period
	32.6.3.4 Interrupts

	32.7 Pulse Width Modulation (PWM) Controller User Interface
	32.7.1 Register Mapping
	32.7.2 PWM Mode Register
	32.7.3 PWM Enable Register
	32.7.4 PWM Disable Register
	32.7.5 PWM Status Register
	32.7.6 PWM Interrupt Enable Register
	32.7.7 PWM Interrupt Disable Register
	32.7.8 PWM Interrupt Mask Register
	32.7.9 PWM Interrupt Status Register
	32.7.10 PWM Channel Mode Register
	32.7.11 PWM Channel Duty Cycle Register
	32.7.12 PWM Channel Period Register
	32.7.13 PWM Channel Counter Register
	32.7.14 PWM Channel Update Register

	33. Analog-to-Digital Converter (ADC)
	33.1 Features
	33.2 Overview
	33.3 Block Diagram
	33.4 I/O Lines Description
	33.5 Product Dependencies
	33.5.1 GPIO
	33.5.2 Analog Inputs
	33.5.3 Power Manager
	33.5.4 Interrupt Controller
	33.5.5 Timer Triggers
	33.5.6 Conversion Performances

	33.6 Functional Description
	33.6.1 Analog-to-digital Conversion
	33.6.2 Conversion Reference
	33.6.3 Conversion Resolution
	33.6.4 Conversion Results
	33.6.5 Conversion Triggers
	33.6.6 Sleep Mode and Conversion Sequencer
	33.6.7 ADC Timings

	33.7 User Interface
	33.7.1 Control Register
	33.7.2 Mode Register
	33.7.3 Channel Enable Register
	33.7.4 Channel Disable Register
	33.7.5 Channel Status Register
	33.7.6 Status Register
	33.7.7 Last Converted Data Register
	33.7.8 Interrupt Enable Register
	33.7.9 Interrupt Disable Register
	33.7.10 Interrupt Mask Register
	33.7.11 Channel Data Register
	33.7.12 Version Register

	34. Audio Bitstream DAC (ABDAC)
	34.1 Features
	34.2 Description
	34.3 Block Diagram
	34.4 Pin Name List
	34.5 Product Dependencies
	34.5.1 I/O Lines
	34.5.2 Power Management
	34.5.3 Clock Management
	34.5.4 Interrupts
	34.5.5 DMA

	34.6 Functional Description
	34.6.1 Equalization Filter
	34.6.2 Interpolation filter
	34.6.3 Sigma Delta Modulator
	34.6.4 Data Format

	34.7 Audio Bitstream DAC User Interface
	34.7.1 Audio Bitstream DAC Sample Data Register
	34.7.2 Audio Bitstream DAC Control Register
	34.7.3 Audio Bitstream DAC Interrupt Mask Register
	34.7.4 Audio Bitstream DAC Interrupt Enable Register
	34.7.5 Audio Bitstream DAC Interrupt Disable Register
	34.7.6 Audio Bitstream DAC Interrupt Clear Register
	34.7.7 Audio Bitstream DAC Interrupt Status Register

	34.8 Frequency Response

	35. On-Chip Debug
	35.1 Features
	35.2 Overview
	35.3 Block diagram
	35.4 Functional description
	35.4.1 JTAG-based debug features
	35.4.1.1 Debug Communication Channel
	35.4.1.2 Breakpoints
	35.4.1.3 OCD Mode
	35.4.1.4 Monitor Mode
	35.4.1.5 Program Counter monitoring

	35.4.2 Memory Service Unit
	35.4.2.1 Cyclic Redundancy Check (CRC)
	35.4.2.2 NanoTrace

	35.4.3 AUX-based debug features
	35.4.3.1 Trace operation
	35.4.3.2 Program Trace
	35.4.3.3 Data Trace
	35.4.3.4 Ownership Trace
	35.4.3.5 Watchpoint messages
	35.4.3.6 Event In and Event Out pins
	35.4.3.7 Software Quality Analysis (SQA)

	36. JTAG and Boundary Scan
	36.1 Features
	36.2 Overview
	36.3 Block diagram
	36.4 I/O Lines Description
	36.5 Product Dependencies
	36.5.1 I/O Lines

	36.6 Functional description
	36.6.1 JTAG interface
	36.6.2 Typical sequence
	36.6.2.1 Scanning in JTAG instruction
	36.6.2.2 Scanning in/out data

	36.6.3 Boundary-Scan
	36.6.4 Service Access Bus
	36.6.4.1 Busy reporting
	36.6.4.2 Error reporting

	36.6.5 Memory programming

	36.7 JTAG Instruction Summary
	36.7.1 Security restrictions

	36.8 Public JTAG instructions
	36.8.1 IDCODE
	36.8.2 SAMPLE_PRELOAD
	36.8.3 EXTEST
	36.8.4 INTEST
	36.8.5 CLAMP
	36.8.6 BYPASS

	36.9 Private JTAG Instructions
	36.9.1 Notation
	36.9.2 NEXUS_ACCESS
	36.9.3 MEMORY_SERVICE
	36.9.4 MEMORY_SIZED_ACCESS
	36.9.5 MEMORY_WORD_ACCESS
	36.9.6 MEMORY_BLOCK_ACCESS
	36.9.7 CANCEL_ACCESS
	36.9.8 SYNC
	36.9.9 AVR_RESET
	36.9.10 CHIP_ERASE
	36.9.11 HALT

	36.10 JTAG Data Registers
	36.10.1 Device Identification Register
	36.10.1.1 Device specific ID codes

	36.10.2 Reset register
	36.10.3 Boundary-Scan Chain

	36.11 SAB address map

	37. Boot Sequence
	37.1 Starting of clocks
	37.2 Fetching of initial instructions

	38. Electrical Characteristics
	38.1 Absolute Maximum Ratings*
	38.2 DC Characteristics
	38.3 Regulator characteristics
	38.4 Analog characteristics
	38.4.1 BOD
	38.4.2 POR

	38.5 Power Consumption
	38.6 Clock Characteristics
	38.6.1 CPU/HSB Clock Characteristics
	38.6.2 PBA Clock Characteristics
	38.6.3 PBB Clock Characteristics

	38.7 Crystal Oscillator Characteristis
	38.7.1 32 KHz Oscillator Characteristics
	38.7.2 Main Oscillators Characteristics
	38.7.3 PLL Characteristics

	38.8 ADC Characteristics
	38.9 EBI Timings
	38.9.1 SDRAM Signals

	38.10 JTAG Timings
	38.10.1 JTAG Interface Signals

	38.11 SPI Characteristics
	38.12 MACB Characteristics
	38.13 Flash Characteristics

	39. Mechanical Characteristics
	39.1 Thermal Considerations
	39.1.1 Thermal Data
	39.1.2 Junction Temperature

	39.2 Package Drawings
	39.3 Soldering Profile

	40. Ordering Information
	40.1 Automotive Quality Grade

	41. Errata
	41.1 Rev. K
	41.1.1 PWM
	41.1.2 ADC
	41.1.3 SPI
	41.1.4 Power Manager
	41.1.5 PDCA
	41.1.6 TWI
	41.1.7 USART
	41.1.8 Processor and Architecture

	41.2 Rev. J
	41.2.1 PWM
	41.2.2 ADC
	41.2.3 SPI
	41.2.4 Power Manager
	41.2.5 PDCA
	41.2.6 TWI
	41.2.7 SDRAMC
	41.2.8 GPIO
	41.2.9 USART
	41.2.10 Processor and Architecture

	41.3 Rev. I
	41.3.1 PWM
	41.3.2 ADC
	41.3.3 SPI
	41.3.4 Power Manager
	41.3.5 Flashc
	41.3.6 PDCA
	41.3.7 GPIO
	41.3.8 USART
	41.3.9 TWI
	41.3.10 SDRAMC
	41.3.11 Processor and Architecture

	41.4 Rev. H
	41.4.1 PWM
	41.4.2 ADC
	41.4.3 SPI
	41.4.4 Power Manager
	41.4.5 FLASHC
	41.4.6 PDCA
	41.4.7 TWI
	41.4.8 SDRAMC
	41.4.9 GPIO
	41.4.10 USART
	41.4.11 Processor and Architecture

	41.5 Rev. E
	41.5.1 SPI
	41.5.2 PWM
	41.5.3 SSC
	41.5.4 USB
	41.5.5 Processor and Architecture
	41.5.6 SDRAMC
	41.5.7 USART
	41.5.8 Power Manager
	41.5.9 HMatrix
	41.5.10 ADC
	41.5.11 ABDAC
	41.5.12 FLASHC
	41.5.13 RTC
	41.5.14 OCD
	41.5.15 PDCA
	41.5.16 TWI

	42. Datasheet Revision History
	42.1 Rev. H – 03/09
	42.2 Rev. G – 01/09
	42.3 Rev. F – 08/08
	42.4 Rev. E – 04/08
	42.5 Rev. D – 04/08
	42.6 Rev. C – 10/07
	42.7 Rev. B – 10/07
	42.8 Rev. A – 03/07

	Table of Contents

