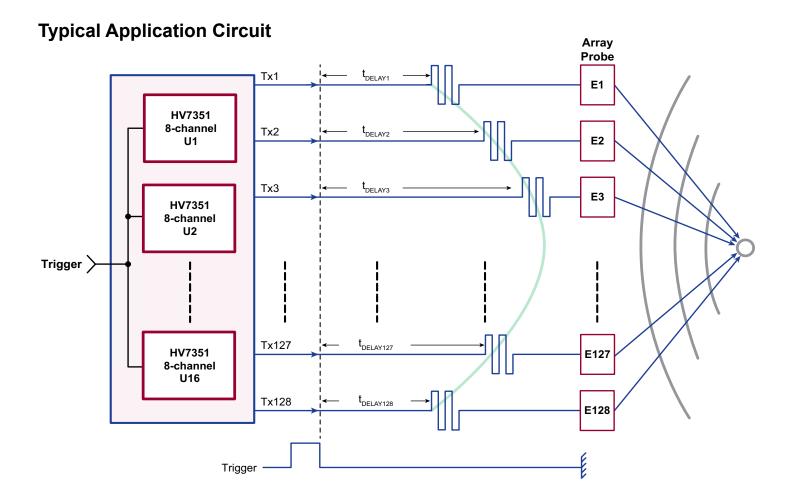
Eight Channel Programmable High Voltage Ultrasound Transmit Beamformer

Features

- Eight channels with return to zero
- ▶ Up to ±70V output voltage
- ▶ ±3.0A output current
- Store up to four different patterns
- ▶ Independent programmable delays
- Single 11x11 QFN-80 package


Application

- Medical ultrasound imaging
- NDT, non-destructive testing
- Arbitrary pattern generator
- High speed PIN diode driver

General Description

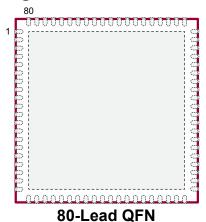
The Supertex HV7351 is an 8-channel programmable high voltage ultrasound transmit beamformer. Each channel is capable of swinging up to ±70V with an active discharge back to 0V. The outputs can source and sink more than 3.0A to achieve fast output rise and fall times. The active discharge is also capable of sourcing and sinking 3.0A for a fast return to ground. The topology of the HV7351 will significantly reduce the number of I/O logic control lines needed.

Each pulser has four associated 64-bit shift registers for storing pre-determined transmit patterns and a 10-bit delay counter for controlling the transmit time. One of four arbitrary patterns can be transmitted with adjustable delay, depending on the data loaded into these shift registers and the delay counter. The delay counter can be clocked up to 200MHz, allowing incremental delays down to 5ns.

Ordering Information

Part Number	Package Option	Packing
HV7351K6-G	80-Lead QFN (11x11)	176/Tray

⁻G denotes a lead (Pb)-free / RoHS compliant package


Absolute Maximum Ratings

Parameter	Value
V _{LL} , Positive logic supply	-0.5V to 5.5V
DV _{DD} , Positive logic supply voltage	-0.5V to 5.5V
PV _{DD} , Positive gate drive supply voltage	-0.5V to 5.5V
AV _{DD} , Positive analog supply voltage	-0.5V to 5.5V
PV _{ss} , Negative gate drive supply voltage	+0.5V to -5.5V
V _{pp} , High voltage positive supply voltage	-0.5V to +80V
$V_{_{\mathrm{NN}}}$, High voltage negative supply voltage	+0.5V to -80V
$(V_{PP} - V_{NN})$, Differential high voltage supply	+160V
V _{PF} , Positive floating supply voltage	V_{PP} - 6.0V to V_{PP}
V _{NF} , Negative floating supply voltage	V_{NN} to V_{NN} +6.0V
V_{RP} , Positive supply for V_{NF} regulator	0V to 15V
V_{RN} , Negative supply for V_{PF} regulator	0V to -15V
Operating temperature	-40°C to +125°C
Storage temperature	-65°C to +150°C


Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied. Continuous operation of the device at the absolute rating level may affect device reliability. All voltages are referenced to device ground.

Pin Configuration

Package Marking

(top view)

Package may or may not include the following marks: Si or

80-Lead QFN

Typical Thermal Resistance

Package	$oldsymbol{ heta}_{ja}$
80-Lead QFN	14°C/W

Operating Supply Voltages

(T, = 25°C unless otherwise specified)

Sym	Parameter	Min	Тур	Max	Units	Conditions	
V _{PP}	Positive high voltage supply	3.0	-	70	V		
V _{NN}	Negative high voltage supply	-70	-	-3.0	V		
V _{LL}	Logic interface voltage	2.85	3.30	3.6	V		
AV _{DD}	Low voltage positive analog supply voltage	4.75	5.00	5.25	V		
DV _{DD}	Low voltage positive digital supply voltage	4.75	5.00	5.25	V		
PV _{DD}	Low voltage positive gate drive supply voltage	4.75	5.00	5.25	V		
PV _{ss}	Low voltage negative gate drive supply voltage	-5.25	-5.00	-4.75	V		

Operating Supply Voltages (cont.) $(T_J = 25^{\circ}\text{C unless otherwise specified})$

Sym	Parameter	Min	Тур	Max	Units	Conditions
V _{RP}	Low voltage positive supply for VNF regulator	4.75	-	12	V	
V _{RN}	Low voltage negative supply for VPF regulator	-12	-	-4.75	V	
TCK	Reference voltage logic trip point for TCK pin	0.4V _{LL}	0.5V _{LL}	0.6V _{LL}	V	
I _{TCK}	TCK input current	-	-	±10	μA	$V_{\overline{TCK}} = 0 \text{ to } V_{LL}$

Regulator Outputs (Operating conditions unless otherwise specified, $V_{LL} = 3.3V$, $AV_{DD} = DV_{DD} = PV_{DD} = V_{RP} = 5.0V$, $PV_{SS} = V_{RN} = -5.0V$, $V_{PP} = +70V$, $V_{NN} = -70V$, $V_{J} = 25^{\circ}$ C)

Sym	Parameter	Min	Тур	Max	Units	Conditions
V_{PF}	Positive floating gate drive voltage	V _{PP} -5.25	V _{PP} -5.00	V _{PP} -4.00	V	4.0 μ F ceramic capacitor across V_{PF} and V_{PP}
$V_{_{\mathrm{NF}}}$	Negative floating gate drive voltage	V _{NN} +4.00	V _{NN} +5.00	V _{NN} +5.25	V	4.0 μ F ceramic capacitor across V_{NF} and V_{NN}

Electrical Characteristics

(Operating conditions unless otherwise specified $V = 3.3V \text{ AV} = DV = PV = V = 5.0V \text{ PV} = V = -5.0V \text{ V} = +70V \text{ V} = -70V \text{ T} = 25^{\circ}\text{C}$)

	g conditions unless otherwise specified, V				100 7.11	1
Sym	Parameter	Min	Тур	Max	Units	Conditions
I _{VLLQ}	V _{LL} quiescent current	-	384	500	μA	EN = Low, all inputs are static
I _{AVDDQ}	AV _{DD} quiescent current	-	12	30		
I _{DVDDQ}	DV _{DD} quiescent current	-	12	30	μA	EN = Low, all inputs are static
I _{PVDDQ}	PV _{DD} quiescent current	-	70	100		
I _{VRPQ}	V _{RP} quiescent current	-	0.3	6.0		EN - Low all inputs are static
I _{VRNQ}	V _{RN} quiescent current	-	-0.01	6.0	μA	EN = Low, all inputs are static
I _{PVSSQ}	PV _{ss} quiescent current	-85	-45	-	μA	EN = Low, all inputs are static
l _{VPPQ}	V _{PP} quiescent current	-	2.6	6.0		EN = Low, all inputs are static
I _{VNNQ}	V _{NN} quiescent current	-	-1.6	6.0	μA	
I _{VLLEN}	V _{LL} enabled quiescent current	-	390	500	μA	EN = High, all inputs are static
I _{AVDDEN}	AV _{DD} enabled quiescent current	-	600	800		
I _{DVDDEN}	DV _{DD} enabled quiescent current	-	22	55	μA	EN = High, all inputs are static
I _{PVDDEN}	PV _{DD} enabled quiescent current	-	44	100	μA	EN = High, all inputs are static
I _{VRPEN}	V _{RP} enabled quiescent current	-	450	650		EN Illiah allianata ana atatia
I _{VRNEN}	V _{RN} enabled quiescent current	-650	-350	-	μA	EN = High, all inputs are static
I _{PVSSEN}	PV _{ss} enabled quiescent current	-100	-44	-	μA	EN = High, all inputs are static
I _{VPPEN}	V _{PP} enabled quiescent current	-	370	620		ENI - I link all investo and at - fire
I _{VNNEN}	V _{NN} enabled quiescent current	-620	-420	-	μA	EN = High, all inputs are static

Electrical Characteristics (cont.) (Operating conditions unless otherwise specified, V_{LL} = 3.3V, AV_{DD} = DV_{DD} = PV_{DD} = V_{RP} = 5.0V, PV_{SS} = V_{RN} = -5.0V, V_{PP} = +70V, V_{NN} = -70V, T_{J} = 25°C)

Sym	Parameter	Min	Тур	Max	Units	Conditions
I _{VLLCW}	V _{LL} current at TCK = 80MHz	-	500	-	μA	\(- +5.0\(\) - 5.0\(\) EN - High
I _{DVDDCW}	DV _{DD} current at CW = 5MHz	-	25	-	mA	V_{PP} = +5.0V, V_{NN} = -5.0V, EN = High, $CW = H$ igh, 80MHz on TCK, 0.5V,
I _{VPPCW}	V _{PP} current at CW = 5MHz	-	141	-	mA	on TCK, all 8 channels active at
I _{VNNCW}	V _{NN} current at CW = 5MHz	-	98	-	mA	5.0MHz, No load

AC Electrical Characteristics

Sym	Parameter	Min	Тур	Max	Units	Conditions
\mathbf{f}_{TCK}	Transmit clock frequency	0	-	200	MHz	
£	Social clock fraguency	0	-	80	MHz	No daisy chain
f _{SCK}	Serial clock frequency	0	-	70	IVITIZ	Daisy chained
$t_{\scriptscriptstyle{\text{SU-DIN}}}$	Set-up time data in to SCK	2.0	1.0	-	ns	
$t_{\scriptscriptstyle{\text{H-DIN}}}$	Hold time SCK to data in	2.0	1.0	-	ns	
t _{SU-CS1}	Set-up time CS1 low to SCK	2.0	-	-	ns	
t _{SU-CS2}	Set-up time CS2 low to SCK	2.0	-	-	ns	
t _{su-TRIG}	Set-up time TRIG low to TCK	2.0	-	-	ns	
t _{w-TRIG}	TRIG pulse width	2TCK	-	-	-	
	SCK to data out low to high	3.0	9.0	12	200	For D _{OUT} 1
t _{LHDO}	delay time	3.0	9.0	10	ns	For D _{OUT} 2
1	SCK to data out high to low	3.0	9.0	12		For D _{OUT} 1
t _{HLDO}	delay time	3.0	9.0	10	ns	For D _{OUT} 2
t _{wa1A0}	A1A0 pulse width	t _{w-TRIG} +40	-	-		
t _{SUA1A0}	Set-up time A1A0 to TRIG rising edge	-	20	-	ns	
t _{HA1A0}	Hold time A1A0 to TRIG falling edge	-	20	-		
t _{EN-ON}	Device enable time	-	1.0	-	ms	1.0µF capacitor on every VPF and VNF pin.
$t_{\text{EN-OFF}}$	Device disable time	-	-	100	ns	
t _{r1}	Output rise time from 0V to +HV	-	9.0	13		
t _{f1}	Output fall time from 0V to -HV	-	9.0	13		
t _{r2}	Damping output rise time from -HV to 0V	-	9.0	13		Lood = 220pF//2 5kO
t _{f2}	Damping output fall time from +HV to 0V	-	9.0	13	ns	Load = 330pF//2.5kΩ
t _{r3}	Output rise time from -HV to +HV	-	17	23		
t _{f3}	Output fall time from +HV to -HV	-	17	23		
t _{rcw}	CW output rise time	-	9.0	16		$V_{PP} = +5.0V, V_{NN} = -5.0V,$
t _{fcw}	CW output fall time	-	9.0	16	ns	Load = $330 \text{pF}/2.5 \text{k}\Omega$

AC Electrical Characteristics (cont.)

(Operating conditions unless otherwise specified, V_{LL} =3.3V, AV_{DD} = DV_{DD} = V_{RP} = 5.0V, PV_{SS} = V_{RN} = -5.0V, V_{PP} = +70V, V_{NN} = -70V, V_{J} = 25°C)

Sym	Parameter	Min	Тур	Max	Units	Conditions
t _{dr1}	Output propagation delay rise time 1	10.85	13.35	15.85		
t _{df1}	Output propagation delay fall time 1	11.35	13.85	16.35		
t _{dr2}	Output propagation delay rise time 2	11.25	13.75	16.25	ns	No Load.
t _{df2}	Output propagation delay fall time 2	11.75	14.25	16.75	115	NO LOAU.
t _{dr3}	Output propagation delay rise time 3	11.35	13.85	16.35		
t _{df3}	Output propagation delay fall time 3	11.45	13.95	16.45		
t _{dcwlh}	CW output propagation delay time from low to high	10.45	12.95	15.45		$V_{PP} = +5.0V, V_{NN} = -5.0V,$
t _{dcwhl}	CW output propagation delay time from high to low	10.35	12.85	15.35	ns	No Load
Δt_{dcwhl}	Delay time matching	-	±0.7	-	ns	P to N, channel-to-channel matching
t _{JCW}	Delay jitter on rise or fall		13	-	ps	V_{pp} = +5.0V, V_{NN} = -5.0V, Load = 50 Ω
LAT	Latency	3.5TCK	3.5TCK	3.5TCK	-	

Output P-channel MOSFET to V_{PP} , CW = 0

I _{OUT}	Output saturation current	2.2	3.2	-	Α	
R _{on}	Output ON-resistance	-	4.2	-	Ω	I _{OUT} = 100mA
C _{oss}	Output capacitance	-	62	-	pF	V _{PP} - V _{OUT} = 25V, f = 1.0MHz

Output N-channel MOSFET to V_{NN} , CW = 0

I _{out}	Output saturation current	-	-3.2	-2.2	Α	
R_{on}	Output ON-resistance	-	2.4	-	Ω	I _{OUT} = -100mA
C _{oss}	Output capacitance	-	50	-	pF	V _{NN} - V _{OUT} = -25V, f = 1.0MHz

Output P-channel MOSFET to V_{pp} , CW = 1

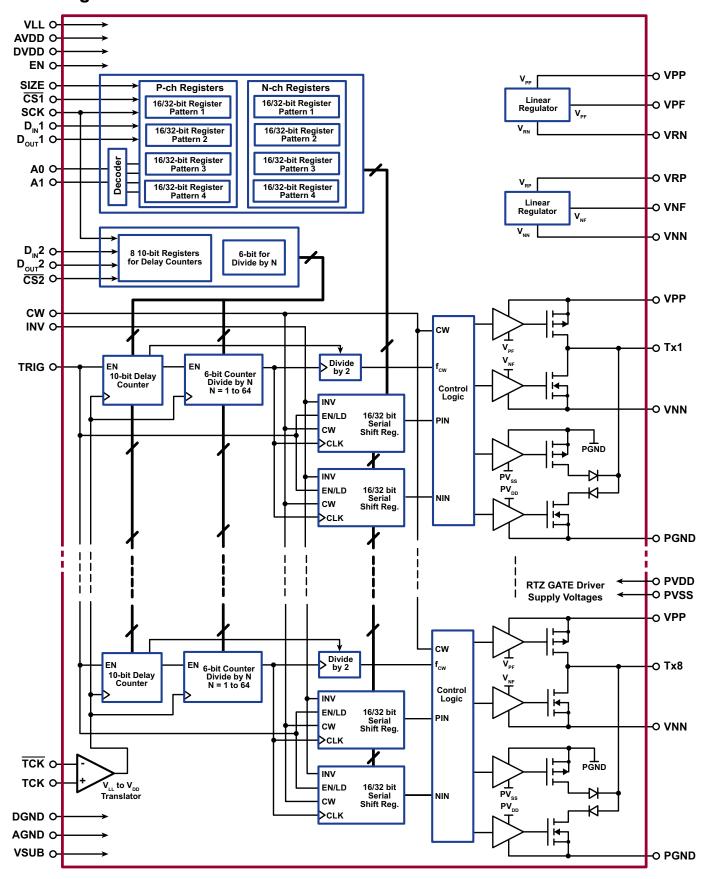
I _{OUT}	Output saturation current	1.2	1.5	-	Α	
R _{on}	Output ON-resistance	-	8.0	-	Ω	I _{OUT} = 100mA
C _{oss}	Output capacitance	-	62	-	pF	V _{PP} - V _{OUT} = 25V, f = 1.0MHz

Output N-channel MOSFET to V_{NN} , CW = 1

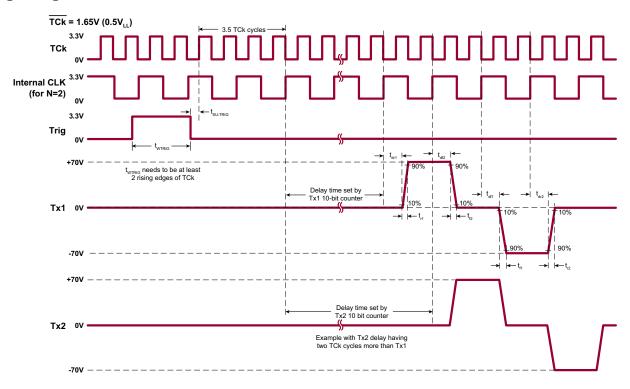
I _{OUT}	Output saturation current	-	-1.5	-1.2	Α	
R _{on}	Output ON-resistance	-	6.6	-	Ω	I _{OUT} = -100mA
C _{oss}	Output capacitance	-	50	-	pF	V _{NN} - V _{OUT} = -25V, f = 1.0MHz

AC Electrical Characteristics (cont.) (Operating conditions unless otherwise specified, V_{LL} = 3.3V, AV_{DD} = DV_{DD} = PV_{DD} = V_{RP} = 5.0V, PV_{SS} = V_{RN} = -5.0V, V_{PP} = +70V, V_{NN} = -70V, T_{J} = 25°C)

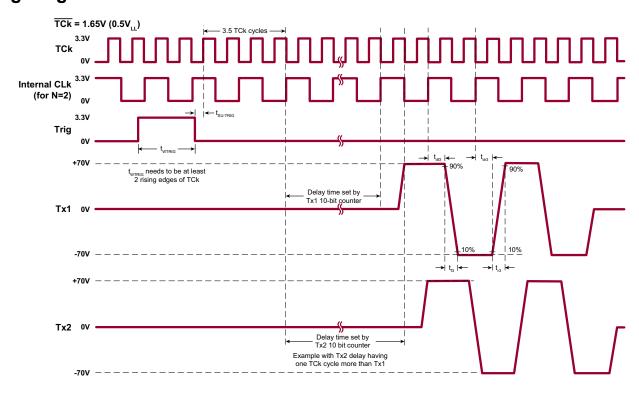
Sym	Parameter	Min	Тур	Max	Units	Conditions
Damp	oing P-channel MOSFE	T to PGI	ND			
I _{OUT}	Output saturation current	2.2	3.2	-	Α	
R _{on}	Output ON-resistance	-	4.0	-	Ω	I _{OUT} = 100mA
C _{oss}	Output capacitance	-	62	-	pF	V _{PP} - V _{OUT} = 25V, f = 1.0MHz
Damp	oing N-channel MOSFE	T to PG	ND			
I _{OUT}	Output saturation current	-	-3.2	-2.2	Α	
R _{on}	Output ON-resistance	-	2.3	-	Ω	I _{OUT} = -100mA
C _{oss}	Output capacitance	-	50	-	pF	V _{NN} - V _{OUT} = -25V, f = 1.0MHz

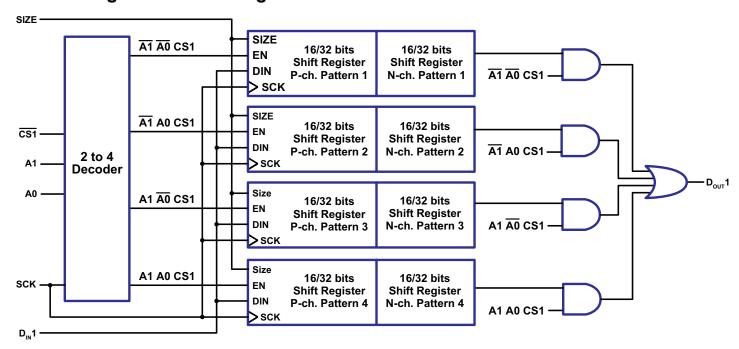

Logic Inputs

- 5	·pa.to					
I _{TCK}	Input current for TCK	-	±1.0	-	μΑ	$V_{\overline{TCK}} = 0 \text{ to } V_{LL}$
V _{IH}	Input logic high voltage for TCK	TCK +0.15	TCK	V _{LL}	>	Only for $\overline{\text{TCK}}$ input, TCK = $0.5V_{LL}$
V _{IL}	Input logic low voltage for TCK	0	TCK	TCK -0.15	V	Only for $\overline{\text{TCK}}$ input, TCK = $0.5V_{LL}$
V _{IH}	Input logic high voltage	$0.8V_{\scriptscriptstyle LL}$	-	V _{LL}	V	For all logic inputs except TCK
V _{IL}	Input logic low voltage	0	-	0.2V _{LL}	V	For all logic inputs except TCK
I _{IH}	Input logic high current	-	-	1.0	μΑ	
I _{IL}	Input logic low current	-1.0	-	-	μΑ	
V _{OL}	Output logic low voltage	0	-	0.7	V	I _{OUT} = 0 to -10mA
V _{OH}	Output logic high voltage	V _{LL} -0.7	-	V _{LL}	V	I _{OUT} = 0 to 10mA
C _{IN}	Input logic capacitance	-	-	5.0	pF	


Logic Truth Table

			Input	s			(Output	5	
Mode	EN	cw	10-bit Counter	INV	NIN	PIN	N-ch	P-ch	RTZ	Comments
	1	0	x	х	0	0	OFF	OFF	ON	RTZ (return-to-zero) is activated when NIN and PIN are both low. Output is pulled to ground through a series diode.
Non-CW mode. Outputs not inverted. Outputs are con-	1	0	X	0	0	1	OFF	ON	OFF	Not inverted. Logic 1 in the P-channel register turns on the output P-channel MOSFET.
trolled by data in the shift registers	1	0	X	0	1	0	ON	OFF	OFF	Not inverted. Logic 1 in the N-channel register turns on the output N-channel MOSFET.
	1	0	Х	x	1	1	OFF	OFF	OFF	Avoids cross over current. A logic 1 in both P- and N-channel registers will put the output in a Hi-Z state.
Non-CW mode. Outputs are inverted. Outputs are con-	1	0	X	1	0	1	ON	OFF	OFF	Inverted, for harmonic imaging
trolled by data in the shift registers	1	0	X	1	1	0	OFF	ON	OFF	Inverted, for harmonic imaging
CW mode.	1	Х	All 1	Х	Х	Х	OFF	OFF	OFF	Off channels are the ones with all 1's in their respective 10-bit counters. Output follows the f _{cw}
Output follows fcw	1	1	Not all 1	X	X	Х	OFF/ ON	ON/ OFF	OFF	signal. Shift registers for NIN and PIN should remain static to save power.
Device Disabled	0	Х	Х	Х	Х	Х	OFF	OFF	OFF	Hi-Z state


Block Diagram


Timing Diagram 1

Timing Diagram 2

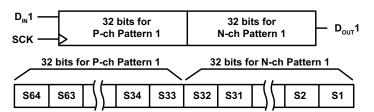
Pattern Register Circuit Diagram

Loading Data into the Four 16/32 bit Pattern Registers

A detailed circuit diagram of the pattern registers is shown above. There are 4 programmable patterns that can be stored. One of four patterns can be selected via the two input logic decoder pins, A1 and A0. Data can be loaded on the selected pattern. Each pattern can be either 16 or 32 bits wide. The SIZE pin determines whether they are 16 or 32 bits wide. SIZE = H will set the pattern to be 32 bits wide while SIZE = L will set it to 16 bits wide. D_{IN} 1 is the input data for the register. When $\overline{CS1}$ is high, data will not be shifted in. Data is shifted in only when $\overline{CS1}$ is low.

With SIZE = H, the circuit is effectively a 64-bit serial shift register. The data first enters into the P-channel register and continues to be shifted though to the N-channel register. Data is clocked in during the rising edge of the clock. There is no activity during the falling edge of the clock. The data, $D_{IN}1$, enters from the P-channel register and exits from the N-channel register from $D_{OUT}1$.

For size = High, 32 bits wide (size = Low, 16-bits wide)


A1 = A0 = Low, Pattern 1 selected

CS1 = Low, data can be shifted in

64-bit serial shift register: 32 bits for the P-channel and

32 bits for the N-channel

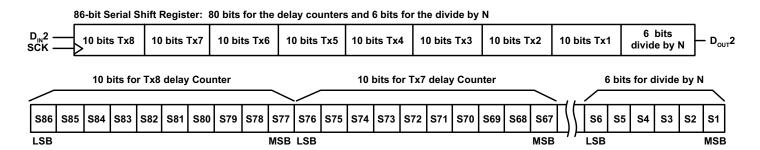
Data is shifted in during the rising edge of the clock. S1 is the first bit shifted in, entering the P-channel register. After 64 clock cycles, S1 will be located in the N-channel register as shown below. It will also be clocked out to D_{out} 1.

A 2-to-4 decoder is provided to select which of the four patterns is to be used for all of the outputs. Logic inputs A1 and A0 determine which patterns are selected per the decoder truth table shown below. Once A1 and A0 are set, a rising edge on the trigger logic input pin will automatically load the selected pattern to all of the outputs.

Decoder Truth Table

Logic Dec	Logic Decoder Input								
A1	Α0	Pattern Selected							
0	0	1							
0	1	2							
1	0	3							
1	1	4							

Loading Data into the Delay Counters and the Divide-by-N Counter


Each output channel, TX, has its own programmable 10-bit delay counter. For 8 channels, 80 bits are needed. A 6-bit divide-by-N counter is also provided to program the desired TX frequency. To program all the individual delay counters and the divide-by-N counter, an 86-bit serial shift register is provided. It uses the same clock input that the pattern registers uses. DIN2 is the input data for this register. When CS2 is high, data will not be shifted in. Data is shifted in only when CS2 is low.

As shown below, the data first enters into the 10-bit register for the TX8 delay counter and continues to be shifted

though to the 6-bit register for the divide by N counter. Data is clocked in during the rising edge of the clock. There is no activity during the falling edge of the clock. The MSB bit in the 6-bit divide-by-N register is clocked out into DOUT2 for cascading multiple devices if desired.

10-Bit Delay Counter

The input clock for the 10-bit delay counter is the TCK pin. The TCK pin is the only pin that is capable of high frequency, 200MHz. This helps maximum delay time resolution. The counter counts upward. Please refer to the table below.

Delay Counter Table

MSB									LSB	Delay Time
0	0	0	0	0	0	0	0	0	0	1023 TCK cycles
0	0	0	0	0	0	0	0	0	1	1022 TCK cycles
0	0	0	0	0	0	0	0	1	0	1021 TCK cycles
0	0	0	0	0	0	0	0	1	1	1020 TCK cycles
I	I	I	I	I	I	I	ı	I	I	
ı	I	I	I	I	I	I	I	I	I	I
I	I	I	I	I	I	I	I	I	I	I
1	1	1	1	1	1	1	1	0	0	3 TCK cycles
1	1	1	1	1	1	1	1	0	1	2 TCK cycles
1	1	1	1	1	1	1	1	1	0	1 TCK cycle
1	1	1	1	1	1	1	1	1	1	No trigger

6-Bit Divide-by-N Counter

The input clock for the 6-bit divide-by-N counter is the TCK pin. It generates the clock frequency for the 16/32 bit serial shift register for the output P- and N-channel patterns. Each

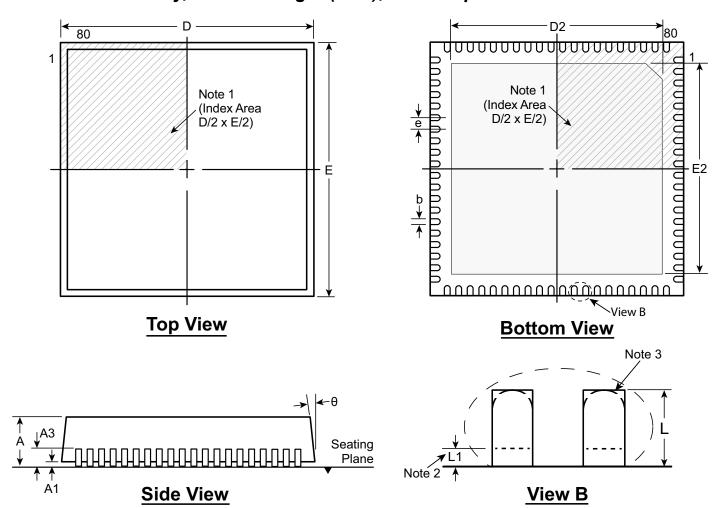
clock cycle will set the TX output to be either at V_{PP} , V_{NN} , ground, or high impedance depending on what was preprogrammed in their corresponding registers.

MSB					LSB	Output Shift Register Clock Frequency
0	0	0	0	0	0	f _{τcκ} ÷ 64
0	0	0	0	0	1	f _{TCK} ÷ 63
0	0	0	0	1	0	f _{TCK} ÷ 62
0	0	0	0	1	1	f _{TCK} ÷ 61
I	I	I	I	I	I	I
I	I	I	I	I	I	l
I	I	I	I	I	I	I
1	1	1	1	0	0	f _{τcκ} ÷4
1	1	1	1	0	1	f _{TCK} ÷3
1	1	1	1	1	0	f _{TCK} ÷ 2
1	1	1	1	1	1	f _{TCK} ÷ 1

Pin Description

Pin	Name	Description
1	AVDD	Positive analog supply voltage (+5.0V).
2	DIN2	Serial data in for delay counters and frequency divider.
3	CS2	Activates DIN2. Input logic high = off, input logic low = on.
4	SIZE	Sets pattern width to either 16-bits or 32-bits. Logic low = 16-bits, logic high = 32-bits.
5	INV	Inverts the TX output waveform. See logic truth table for details.
6	CW	Activates CW mode. Logic low = non-CW mode, logic high = CW mode. See logic truth table for details.
7	DOUT2	Data out for delay counters and frequency divider.
8	EN	Enables and disables device. Logic low = off, logic high = on.
9	SCK	Serial clock input for serial shift registers.
10	DVDD	Positive digital supply voltage (+5.0V).
11	DGND	Digital ground.
12	TRIG	Toggles all TX outputs to transmit. Needs to be high for 2 rising edges of TCK. Delay counters will start on the rising edge of the TCK pin right after the falling edge of the TRIG signal. See timing diagram for details.
13	TCK	Transmitter clock for the delay counters and input frequency for the divide by N. Can be CMOS, LVDS, or SSTL.
14	TCK	Logic trip point TCK. Can be set to a DC value from 0.4V _{LL} to 0.6V _{LL} or driven differentially with TCK.
15	VLL	Logic interface supply voltage (3.0V or 3.3V).
16	CS1	Activates DIN1. Input logic high = off, input logic low = on.
17	DOUT1	Data out for P-channel and N-channel pattern registers.

Pin Description (cont.)


18 A0 19 A1 20 DIN1 Serial data in for P-channel and N-channel pattern registers. 21 VRN Negative supply for VPF regulator (-5.0V). 22 PVDD Positive gate drive supply voltage for RTZ output transistors (+5.0V). 23 PGND 24 PGND 25 PVSS Negative gate drive supply voltage for RTZ output transistors (-5.0V). 26 VPF Linear regulator output gate drive voltage for the P-channel output transistors. A low voltage 1.0µF ceramic capacitor needs to be connected across every VPF and VPP pin. There are four in total. 27 NC No connection. 28 VNF Linear regulator output gate drive voltage for the N-channel output transistors. A low voltage 1.0µF ceramic capacitor needs to be connected across every VNF to VNN pins. There are four in total. 29 VNN Negative high voltage supply (-3.0V to -70V). 30 TX1 Transmit pulser outputs for channel 1. 31 VPP 32 VPP 33 TX2 Transmit pulser outputs for channel 2. 34 VNN Negative high voltage supply (-3.0V to -70V). 35 VNN Negative high voltage supply (-3.0V to -70V). 36 TX3 Transmit pulser outputs for channel 3. 37 VPP 38 VPP 39 TX4 Transmit pulser outputs for channel 3. 40 VNN Negative high voltage supply (-3.0V to -70V). 41 VNN Negative high voltage supply (-3.0V to -70V). 42 VNF Linear regulator output gate drive voltage for the N-channel output transistors. A low voltage 1.0µF ceramic capacitor needs to be connected across every VNF to VNN pins. There are four in total. 44 VPP Positive high voltage supply (-3.0V to -70V). 45 VFF Linear regulator output gate drive voltage for the N-channel output transistors. A low voltage 1.0µF ceramic capacitor needs to be connected across every VNF to VNN pins. There are four in total. 46 PGND Power ground path for RTZ output transistors.	Pin	Name	Description
Decoded to select 1 of 4 patterns to be loaded. 19	18	A0	
21 VRN Negative supply for VPF regulator (-5.0V). 22 PVDD Positive gate drive supply voltage for RTZ output transistors (+5.0V). 23 PGND 24 PGND 25 PVSS Negative gate drive supply voltage for RTZ output transistors (-5.0V). 26 VPF Linear regulator output gate drive voltage for RTZ output transistors (-5.0V). 27 NC No connection. 28 VNF Linear regulator output gate drive voltage for the P-channel output transistors. A low voltage 1.0µF ceramic capacitor needs to be connected across every VPF and VPP pin. There are four in total. 29 VNN Negative high voltage supply (-3.0V to -70V). 30 TX1 Transmit pulser outputs for channel 1. 31 VPP Positive high voltage supply (+3.0V to +70V). 33 TX2 Transmit pulser outputs for channel 2. 34 VNN Negative high voltage supply (-3.0V to -70V). 35 VNN Negative high voltage supply (-3.0V to -70V). 36 TX3 Transmit pulser outputs for channel 3. 37 VPP Positive high voltage supply (+3.0V to +70V). 39 TX4 Transmit pulser outputs for channel 4. 40 VNN Negative high voltage supply (-3.0V to -70V). 41 VNN Negative high voltage supply (-3.0V to -70V). 42 VF Ceramic capacitor output gate drive voltage for the N-channel output transistors. A low voltage 1.0µF ceramic capacitor needs to be connected across every VNF to VNN pins. There are four in total. 44 VPP Positive high voltage supply (-3.0V to -70V). 45 VPF Linear regulator output gate drive voltage for the N-channel output transistors. A low voltage 1.0µF ceramic capacitor needs to be connected across every VNF to VNN pins. There are four in total. 46 PGND Power ground path for RTZ output transistors. 47 PVSS Negative gate drive supply voltage for RTZ output transistors (-5.0V).			Decoded to select 1 of 4 patterns to be loaded.
PVDD Positive gate drive supply voltage for RTZ output transistors (+5.0V). PGND Power ground path for RTZ output transistors. Power ground path for RTZ output transistors. Power ground path for RTZ output transistors. Power ground path for RTZ output transistors (-5.0V). Linear regulator output gate drive voltage for the P-channel output transistors. A low voltage 1.0µF ceramic capacitor needs to be connected across every VPF and VPP pin. There are four in total. No connection. Linear regulator output gate drive voltage for the N-channel output transistors. A low voltage 1.0µF ceramic capacitor needs to be connected across every VNF to VNN pins. There are four in total. No connection. Linear regulator output gate drive voltage for the N-channel output transistors. A low voltage 1.0µF ceramic capacitor needs to be connected across every VNF to VNN pins. There are four in total. Transmit pulser outputs for channel 1. Positive high voltage supply (+3.0V to +70V). Transmit pulser outputs for channel 2. Negative high voltage supply (-3.0V to +70V). Regative high voltage supply (-3.0V to -70V). Positive high voltage supply (+3.0V to +70V). Transmit pulser outputs for channel 3. VPP Positive high voltage supply (+3.0V to +70V). Transmit pulser outputs for channel 4. Negative high voltage supply (-3.0V to +70V). Linear regulator output gate drive voltage for the N-channel output transistors. A low voltage 1.0µF ceramic capacitor needs to be connected across every VNF to VNN pins. There are four in total. Positive high voltage supply (+3.0V to +70V). Linear regulator output gate drive voltage for the N-channel output transistors. A low voltage 1.0µF ceramic capacitor needs to be connected across every VNF to VNN pins. There are four in total. Positive high voltage supply (+3.0V to +70V). Linear regulator output gate drive voltage for the P-channel output transistors. A low voltage 1.0µF ceramic capacitor needs to be connected across every VPF and VPP pin. There are four in total.	20	DIN1	Serial data in for P-channel and N-channel pattern registers.
PGND Power ground path for RTZ output transistors. Poss Power ground path for RTZ output transistors.	21	VRN	Negative supply for VPF regulator (-5.0V).
Power ground path for RTZ output transistors. Power ground path for RTZ output transistors. Power ground path for RTZ output transistors (-5.0V). Power ground path for RTZ output transistors (-5.0V). Linear regulator output gate drive voltage for the P-channel output transistors. A low voltage 1.0µF ceramic capacitor needs to be connected across every VPF and VPP pin. There are four in total. No connection. No connection. No connection. No connection. There are guilator output gate drive voltage for the N-channel output transistors. A low voltage 1.0µF ceramic capacitor needs to be connected across every VNF to VNN pins. There are four in total. Negative high voltage supply (-3.0V to -70V). Transmit pulser outputs for channel 1. VPP Positive high voltage supply (+3.0V to +70V). Negative high voltage supply (-3.0V to -70V). Transmit pulser outputs for channel 3. VPP Negative high voltage supply (+3.0V to +70V). Transmit pulser outputs for channel 4. VPP Positive high voltage supply (-3.0V to -70V). Linear regulator output gate drive voltage for the N-channel output transistors. A low voltage 1.0µF ceramic capacitor needs to be connected across every VNF to VNN pins. There are four in total. VPP Positive high voltage supply (+3.0V to +70V). Linear regulator output gate drive voltage for the N-channel output transistors. A low voltage 1.0µF ceramic capacitor needs to be connected across every VPF and VPP pin. There are four in total. PPOSD Power ground path for RTZ output transistors.	22	PVDD	Positive gate drive supply voltage for RTZ output transistors (+5.0V).
24 PGND 25 PVSS Negative gate drive supply voltage for RTZ output transistors (-5.0V). 26 VPF Linear regulator output gate drive voltage for the P-channel output transistors. A low voltage 1.0µF ceramic capacitor needs to be connected across every VPF and VPP pin. There are four in total. 27 NC No connection. 28 VNF Linear regulator output gate drive voltage for the N-channel output transistors. A low voltage 1.0µF ceramic capacitor needs to be connected across every VNF to VNN pins. There are four in total. 29 VNN Negative high voltage supply (-3.0V to -70V). 30 TX1 Transmit pulser outputs for channel 1. 31 VPP 32 VPP 33 TX2 Transmit pulser outputs for channel 2. 34 VNN 35 VNN 36 TX3 Transmit pulser outputs for channel 3. 37 VPP 38 VPP 39 TX4 Transmit pulser outputs for channel 4. 40 VNN 41 VNN 41 VNN 42 VNF Linear regulator output gate drive voltage for the N-channel output transistors. A low voltage 1.0µF ceramic capacitor needs to be connected across every VNF to VNN pins. There are four in total. 43 DGND Digital ground. 44 VPP Positive high voltage supply (+3.0V to +70V). 45 VPF ceramic capacitor needs to be connected across every VNF to VNN pins. There are four in total. 46 PGND Power ground path for RTZ output transistors. 47 PVSS Negative gate drive supply voltage for RTZ output transistors.	23	PGND	D
VPF Linear regulator output gate drive voltage for the P-channel output transistors. A low voltage 1.0µF ceramic capacitor needs to be connected across every VPF and VPP pin. There are four in total. No connection. Linear regulator output gate drive voltage for the N-channel output transistors. A low voltage 1.0µF ceramic capacitor needs to be connected across every VNF to VNN pins. There are four in total. VNN Negative high voltage supply (-3.0V to -70V). Transmit pulser outputs for channel 1. VPP	24	PGND	Power ground path for R12 output transistors.
VPF ceramic capacitor needs to be connected across every VPF and VPP pin. There are four in total. No connection. Linear regulator output gate drive voltage for the N-channel output transistors. A low voltage 1.0µF ceramic capacitor needs to be connected across every VNF to VNN pins. There are four in total. Negative high voltage supply (-3.0V to -70V). Transmit pulser outputs for channel 1. VPP VPP Solitive high voltage supply (+3.0V to +70V). Transmit pulser outputs for channel 2. Negative high voltage supply (-3.0V to -70V). Negative high voltage supply (-3.0V to -70V). Transmit pulser outputs for channel 3. VPP Negative high voltage supply (+3.0V to +70V). Transmit pulser outputs for channel 3. VPP Negative high voltage supply (+3.0V to +70V). VPP Negative high voltage supply (-3.0V to -70V). Linear regulator output gate drive voltage for the N-channel output transistors. A low voltage 1.0µF ceramic capacitor needs to be connected across every VNF to VNN pins. There are four in total. VPP Linear regulator output gate drive voltage for the P-channel output transistors. A low voltage 1.0µF ceramic capacitor needs to be connected across every VPF and VPP pin. There are four in total. VPP Linear regulator output gate drive voltage for the P-channel output transistors. A low voltage 1.0µF ceramic capacitor needs to be connected across every VPF and VPP pin. There are four in total. VPP Linear regulator output gate drive voltage for the P-channel output transistors. A low voltage 1.0µF ceramic capacitor needs to be connected across every VPF and VPP pin. There are four in total. POSND Power ground path for RTZ output transistors.	25	PVSS	Negative gate drive supply voltage for RTZ output transistors (-5.0V).
VNF Linear regulator output gate drive voltage for the N-channel output transistors. A low voltage 1.0µF ceramic capacitor needs to be connected across every VNF to VNN pins. There are four in total. VNN Negative high voltage supply (-3.0V to -70V). Transmit pulser outputs for channel 1. VPP Positive high voltage supply (+3.0V to +70V). VPP Positive high voltage supply (+3.0V to +70V). Regative high voltage supply (-3.0V to -70V). Regative high voltage supply (-3.0V to -70V). Positive high voltage supply (-3.0V to -70V). Positive high voltage supply (+3.0V to +70V). Transmit pulser outputs for channel 3. VPP Positive high voltage supply (+3.0V to +70V). Regative high voltage supply (+3.0V to +70V). Regative high voltage supply (-3.0V to -70V). Regative high voltage supply (-3.0V to -70V). Linear regulator output gate drive voltage for the N-channel output transistors. A low voltage 1.0µF ceramic capacitor needs to be connected across every VNF to VNN pins. There are four in total. VPP Positive high voltage supply (+3.0V to +70V). Linear regulator output gate drive voltage for the P-channel output transistors. A low voltage 1.0µF ceramic capacitor needs to be connected across every VPF and VPP pin. There are four in total. VPF Positive high voltage supply voltage for RTZ output transistors (-5.0V). Regative gate drive supply voltage for RTZ output transistors (-5.0V).	26	VPF	
VNP ceramic capacitor needs to be connected across every VNF to VNN pins. There are four in total. VNN Negative high voltage supply (-3.0V to -70V). Transmit pulser outputs for channel 1. VPP Positive high voltage supply (+3.0V to +70V). Transmit pulser outputs for channel 2. VNN Negative high voltage supply (-3.0V to -70V). Transmit pulser outputs for channel 2. VNN Negative high voltage supply (-3.0V to -70V). Transmit pulser outputs for channel 3. Transmit pulser outputs for channel 3. VPP Positive high voltage supply (+3.0V to +70V). Transmit pulser outputs for channel 4. VNN Negative high voltage supply (-3.0V to -70V). Linear regulator output gate drive voltage for the N-channel output transistors. A low voltage 1.0µF ceramic capacitor needs to be connected across every VNF to VNN pins. There are four in total. VPP Positive high voltage supply (+3.0V to +70V). Linear regulator output gate drive voltage for the P-channel output transistors. A low voltage 1.0µF ceramic capacitor needs to be connected across every VNF and VPP pin. There are four in total. VPF Linear regulator output gate drive voltage for the P-channel output transistors. A low voltage 1.0µF ceramic capacitor needs to be connected across every VPF and VPP pin. There are four in total. POSND Power ground path for RTZ output transistors. Negative gate drive supply voltage for RTZ output transistors (-5.0V).	27	NC	No connection.
TX1 Transmit pulser outputs for channel 1. YPP Positive high voltage supply (+3.0V to +70V). Transmit pulser outputs for channel 2. YNN Negative high voltage supply (-3.0V to -70V). Transmit pulser outputs for channel 3. YPP Positive high voltage supply (+3.0V to +70V). Transmit pulser outputs for channel 3. YPP Positive high voltage supply (+3.0V to +70V). Transmit pulser outputs for channel 4. VNN Negative high voltage supply (+3.0V to +70V). VNN Negative high voltage supply (-3.0V to -70V). Linear regulator output gate drive voltage for the N-channel output transistors. A low voltage 1.0µF ceramic capacitor needs to be connected across every VNF to VNN pins. There are four in total. DGND Digital ground. VPP Positive high voltage supply (+3.0V to +70V). VPF Linear regulator output gate drive voltage for the P-channel output transistors. A low voltage 1.0µF ceramic capacitor needs to be connected across every VPF and VPP pin. There are four in total. PGND Power ground path for RTZ output transistors. Negative gate drive supply voltage for RTZ output transistors (-5.0V). POND Power ground path for RTZ output transistors.	28	VNF	
31	29	VNN	Negative high voltage supply (-3.0V to -70V).
32 VPP Positive high voltage supply (+3.0V to +70V). 33 TX2 Transmit pulser outputs for channel 2. 34 VNN S5 VNN Negative high voltage supply (-3.0V to -70V). 36 TX3 Transmit pulser outputs for channel 3. 37 VPP Positive high voltage supply (+3.0V to +70V). 38 VPP S9 TX4 Transmit pulser outputs for channel 4. 40 VNN Negative high voltage supply (-3.0V to -70V). 41 VNN Linear regulator output gate drive voltage for the N-channel output transistors. A low voltage 1.0μF ceramic capacitor needs to be connected across every VNF to VNN pins. There are four in total. 43 DGND Digital ground. 44 VPP Positive high voltage supply (+3.0V to +70V). 45 VF Linear regulator output gate drive voltage for the P-channel output transistors. A low voltage 1.0μF ceramic capacitor needs to be connected across every VPF and VPP pin. There are four in total. 46 PGND Power ground path for RTZ output transistors. 47 PVSS Negative gate drive supply voltage for RTZ output transistors (-5.0V). 48 PGND Power ground path for RTZ output transistors.	30	TX1	Transmit pulser outputs for channel 1.
32 VPP 33 TX2 Transmit pulser outputs for channel 2. 34 VNN 35 VNN 36 TX3 Transmit pulser outputs for channel 3. 37 VPP 38 VPP 39 TX4 Transmit pulser outputs for channel 4. 40 VNN 41 VNN 42 VNF Linear regulator output gate drive voltage for the N-channel output transistors. A low voltage 1.0μF ceramic capacitor needs to be connected across every VNF to VNN pins. There are four in total. 40 VPP Positive high voltage supply (+3.0V to +70V). 41 VNN 42 VNF Linear regulator output gate drive voltage for the N-channel output transistors. A low voltage 1.0μF ceramic capacitor needs to be connected across every VNF to VNN pins. There are four in total. 43 DGND Digital ground. 44 VPP Positive high voltage supply (+3.0V to +70V). 45 VPF Linear regulator output gate drive voltage for the P-channel output transistors. A low voltage 1.0μF ceramic capacitor needs to be connected across every VPF and VPP pin. There are four in total. 46 PGND Power ground path for RTZ output transistors. 47 PVSS Negative gate drive supply voltage for RTZ output transistors (-5.0V).	31	VPP	Desitive high voltage europhy (12.0)/ to 170\/\
Negative high voltage supply (-3.0V to -70V). Negative high voltage supply (-3.0V to -70V). Negative high voltage supply (+3.0V to +70V). Negative high voltage supply (+3.0V to +70V). Negative high voltage supply (-3.0V to -70V). Negative high voltage supply (-3.0V to -70V). Negative high voltage supply (-3.0V to -70V). VNN Linear regulator output gate drive voltage for the N-channel output transistors. A low voltage 1.0µF ceramic capacitor needs to be connected across every VNF to VNN pins. There are four in total. DGND Digital ground. VPP Positive high voltage supply (+3.0V to +70V). VPF Linear regulator output gate drive voltage for the P-channel output transistors. A low voltage 1.0µF ceramic capacitor needs to be connected across every VPF and VPP pin. There are four in total. PGND Power ground path for RTZ output transistors. Negative gate drive supply voltage for RTZ output transistors (-5.0V).	32	VPP	Positive high voltage supply (+5.0v to +70v).
Negative high voltage supply (-3.0V to -70V). Negative high voltage supply (-3.0V to -70V). Transmit pulser outputs for channel 3. YPP Negative high voltage supply (+3.0V to +70V). Transmit pulser outputs for channel 4. VNN Negative high voltage supply (-3.0V to -70V). VNN Linear regulator output gate drive voltage for the N-channel output transistors. A low voltage 1.0µF ceramic capacitor needs to be connected across every VNF to VNN pins. There are four in total. DGND Digital ground. VPP Positive high voltage supply (+3.0V to +70V). VPF Linear regulator output gate drive voltage for the P-channel output transistors. A low voltage 1.0µF ceramic capacitor needs to be connected across every VPF and VPP pin. There are four in total. VPF Linear regulator output gate drive voltage for the P-channel output transistors. A low voltage 1.0µF ceramic capacitor needs to be connected across every VPF and VPP pin. There are four in total. PGND Power ground path for RTZ output transistors. PVSS Negative gate drive supply voltage for RTZ output transistors (-5.0V).	33	TX2	Transmit pulser outputs for channel 2.
35 VNN 36 TX3 Transmit pulser outputs for channel 3. 37 VPP 38 VPP Positive high voltage supply (+3.0V to +70V). 39 TX4 Transmit pulser outputs for channel 4. 40 VNN 41 VNN 42 VNF Linear regulator output gate drive voltage for the N-channel output transistors. A low voltage 1.0µF ceramic capacitor needs to be connected across every VNF to VNN pins. There are four in total. 43 DGND Digital ground. 44 VPP Positive high voltage supply (+3.0V to +70V). 45 VPF Linear regulator output gate drive voltage for the P-channel output transistors. A low voltage 1.0µF ceramic capacitor needs to be connected across every VPF and VPP pin. There are four in total. 46 PGND Power ground path for RTZ output transistors. 47 PVSS Negative gate drive supply voltage for RTZ output transistors (-5.0V). 48 PGND Power ground path for RTZ output transistors.	34	VNN	Negative high veltage cumply (3.0)/ to . 70\/)
37	35	VNN	Negative high voltage supply (-5.0v to -70v).
Positive high voltage supply (+3.0V to +70V).	36	TX3	Transmit pulser outputs for channel 3.
38 VPP 39 TX4 Transmit pulser outputs for channel 4. 40 VNN 41 VNN 42 VNF Linear regulator output gate drive voltage for the N-channel output transistors. A low voltage 1.0µF ceramic capacitor needs to be connected across every VNF to VNN pins. There are four in total. 43 DGND Digital ground. 44 VPP Positive high voltage supply (+3.0V to +70V). 45 VPF Linear regulator output gate drive voltage for the P-channel output transistors. A low voltage 1.0µF ceramic capacitor needs to be connected across every VPF and VPP pin. There are four in total. 46 PGND Power ground path for RTZ output transistors. 47 PVSS Negative gate drive supply voltage for RTZ output transistors (-5.0V). 48 PGND Power ground path for RTZ output transistors.	37	VPP	Positivo high voltago supply (±3.0\/ to ±70\/)
 VNN Negative high voltage supply (-3.0V to -70V). VNF Linear regulator output gate drive voltage for the N-channel output transistors. A low voltage 1.0μF ceramic capacitor needs to be connected across every VNF to VNN pins. There are four in total. DGND Digital ground. VPP Positive high voltage supply (+3.0V to +70V). VPF Linear regulator output gate drive voltage for the P-channel output transistors. A low voltage 1.0μF ceramic capacitor needs to be connected across every VPF and VPP pin. There are four in total. PGND Power ground path for RTZ output transistors. PVSS Negative gate drive supply voltage for RTZ output transistors (-5.0V). PGND Power ground path for RTZ output transistors. 	38	VPP	Positive high voltage supply (+3.0 v to +70 v).
Negative high voltage supply (-3.0V to -70V). VNF Linear regulator output gate drive voltage for the N-channel output transistors. A low voltage 1.0μF ceramic capacitor needs to be connected across every VNF to VNN pins. There are four in total. DGND Digital ground. VPP Positive high voltage supply (+3.0V to +70V). VPF Linear regulator output gate drive voltage for the P-channel output transistors. A low voltage 1.0μF ceramic capacitor needs to be connected across every VPF and VPP pin. There are four in total. PGND Power ground path for RTZ output transistors. Negative gate drive supply voltage for RTZ output transistors (-5.0V).	39	TX4	Transmit pulser outputs for channel 4.
VNF Linear regulator output gate drive voltage for the N-channel output transistors. A low voltage 1.0μF ceramic capacitor needs to be connected across every VNF to VNN pins. There are four in total. DGND Digital ground. VPP Positive high voltage supply (+3.0V to +70V). VPF Linear regulator output gate drive voltage for the P-channel output transistors. A low voltage 1.0μF ceramic capacitor needs to be connected across every VPF and VPP pin. There are four in total. PGND Power ground path for RTZ output transistors. PVSS Negative gate drive supply voltage for RTZ output transistors (-5.0V). PGND Power ground path for RTZ output transistors.	40	VNN	Negative high voltage supply (3.0V to70V)
ceramic capacitor needs to be connected across every VNF to VNN pins. There are four in total. DGND Digital ground. VPP Positive high voltage supply (+3.0V to +70V). UPF Linear regulator output gate drive voltage for the P-channel output transistors. A low voltage 1.0μF ceramic capacitor needs to be connected across every VPF and VPP pin. There are four in total. PGND Power ground path for RTZ output transistors. VPS Negative gate drive supply voltage for RTZ output transistors (-5.0V). PGND Power ground path for RTZ output transistors.	41	VNN	Negative high voltage supply (-3.0v to -70v).
VPP Positive high voltage supply (+3.0V to +70V). VPF Linear regulator output gate drive voltage for the P-channel output transistors. A low voltage 1.0μF ceramic capacitor needs to be connected across every VPF and VPP pin. There are four in total. PGND Power ground path for RTZ output transistors. VPS Negative gate drive supply voltage for RTZ output transistors (-5.0V). PGND Power ground path for RTZ output transistors.	42	VNF	
VPF Linear regulator output gate drive voltage for the P-channel output transistors. A low voltage 1.0μF ceramic capacitor needs to be connected across every VPF and VPP pin. There are four in total. 46 PGND Power ground path for RTZ output transistors. 47 PVSS Negative gate drive supply voltage for RTZ output transistors (-5.0V). 48 PGND Power ground path for RTZ output transistors.	43	DGND	Digital ground.
ceramic capacitor needs to be connected across every VPF and VPP pin. There are four in total. PGND Power ground path for RTZ output transistors. PVSS Negative gate drive supply voltage for RTZ output transistors (-5.0V). PGND Power ground path for RTZ output transistors.	44	VPP	Positive high voltage supply (+3.0V to +70V).
47 PVSS Negative gate drive supply voltage for RTZ output transistors (-5.0V). 48 PGND Power ground path for RTZ output transistors.	45	VPF	
48 PGND Power ground path for RTZ output transistors.	46	PGND	Power ground path for RTZ output transistors.
	47	PVSS	Negative gate drive supply voltage for RTZ output transistors (-5.0V).
49 PVDD Positive gate drive supply voltage for RTZ output transistors (+5.0V)	48	PGND	Power ground path for RTZ output transistors.
	49	PVDD	Positive gate drive supply voltage for RTZ output transistors (+5.0V).

Pin Description (cont.)

Pin	Name	Description							
50	DVDD	Positive digital supply voltage (+5.0V).							
51	DGND	Digital ground.							
52	PVDD	Positive gate drive supply voltage for RTZ output transistors (+5.0V).							
53	PGND	Power ground path for RTZ output transistors.							
54	PVSS	Negative gate drive supply voltage for RTZ output transistors (-5.0V).							
55	PGND	Power ground path for RTZ output transistors.							
56	VPF	Linear regulator output gate drive voltage for the P-channel output transistors. A low voltage 1.0µF ceramic capacitor needs to be connected across every VPF and VPP pin. There are four in total.							
57	VPP	Positive high voltage supply (+3.0V to +70V).							
58	DGND	Digital ground.							
59	VNF	Linear regulator output gate drive voltage for the N-channel output transistors. A low voltage 1.0µF ceramic capacitor needs to be connected across every VNF to VNN pins. There are four in total.							
60	VNN								
61	VNN	Negative high voltage supply (-3.0V to -70V).							
62	TX5	Transmit pulser outputs for channel 5.							
63	VPP								
64	VPP	Positive high voltage supply (+3.0V to +70V).							
65	TX6	Transmit pulser outputs for channel 6.							
66	VNN								
67	VNN	Negative high voltage supply (-3.0V to -70V).							
68	TX7	Transmit pulser outputs for channel 7.							
69	VPP								
70	VPP	Positive high voltage supply (+3.0V to +70V).							
71	TX8	Transmit pulser outputs for channel 8.							
72	VNN	Negative high voltage supply (-3.0V to -70V).							
73	VNF	Linear regulator output gate drive voltage for the N-channel output transistors. A low voltage 1.0µF ceramic capacitor needs to be connected across every VNF to VNN pins. There are four in total.							
74	NC	No connection.							
75	VPF	Linear regulator output gate drive voltage for the P-channel output transistors. A low voltage 1.0µF ceramic capacitor needs to be connected across every VPF and VPP pin. There are four in total.							
76	PVSS	Negative gate drive supply voltage for RTZ output transistors (-5.0V).							
77	PGND	Power ground noth for PT7 output transistors							
78	PGND	Power ground path for RTZ output transistors.							
79	PVDD	Positive gate drive supply voltage for RTZ output transistors (+5.0V).							
80	VRP	Positive supply for VNF regulator (+5.0V).							
V	SUB	Exposed center pad. Needs to be externally connected to digital ground, DGND.							

80-Lead QFN Package Outline (K6)

11.00x11.00mm body, 1.00mm height (max), 0.50mm pitch

Notes:

- 1. A Pin 1 identifier must be located in the index area indicated. The Pin 1 identifier can be: a molded mark/identifier; an embedded metal marker; or a printed indicator.
- 2. Depending on the method of manufacturing, a maximum of 0.15mm pullback (L1) may be present.
- 3. The inner tip of the lead may be either rounded or square.

Symbol		Α	A1	A 3	b	D	D2	E	E2	е	L	L1	θ
Dimension (mm)	MIN	0.80	0.00	0.00	0.18	10.90	9.50	10.90	9.50	0.50 BSC	0.30	0.00	0 °
	NOM	0.90	0.02	0.20 REF	0.25	11.00	9.65	11.00	9.65		0.40	-	-
(11111)	MAX	1.00	0.05		0.30	11.10	9.75	11.10	9.75	ВОО	0.50	0.15	14°

Drawings are not to scale.

Supertex Doc.#: DSPD-80QFNK611X11P050, Version A111511

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to http://www.supertex.com/packaging.html.)

Supertex inc. does not recommend the use of its products in life support applications, and will not knowingly sell them for use in such applications unless it receives an adequate "product liability indemnification insurance agreement." **Supertex inc.** does not assume responsibility for use of devices described, and limits its liability to the replacement of the devices determined defective due to workmanship. No responsibility is assumed for possible omissions and inaccuracies. Circuitry and specifications are subject to change without notice. For the latest product specifications refer to the **Supertex inc.** (website: http://www.supertex.com)

©2014 **Supertex inc.** All rights reserved. Unauthorized use or reproduction is prohibited.

