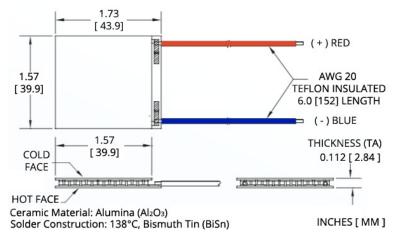
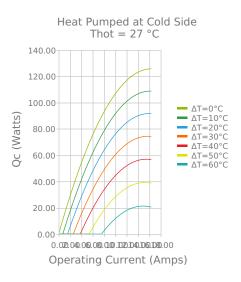


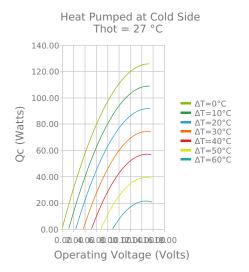
## UltraTEC™ UTX Series Thermoelectric Cooler

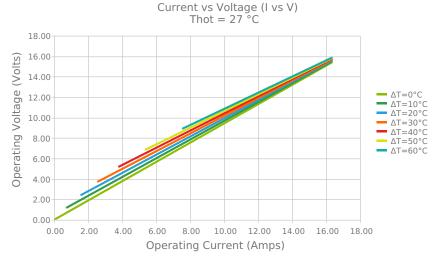
The UTX15-12-F2-4040-TA-W6 is a high-performance thermoelectric cooler that is assembled with advanced thermoelectric materials and can boost cooling capacity by up to 10%. The UltraTEC UTX Series features a higher thermal insulating barrier when compared to standard materials creating a maximum temperature differential ( $\Delta T$ ) of 71.7 °C at Qc = 0. It has a maximum Qc of 125.7 Watts when  $\Delta T$  = 0.


### **Features**

- High heat pump density
- Precise temperature control
- Reliable solid-state operation
- No sound or vibration
- DC operation
- RoHS-compliant

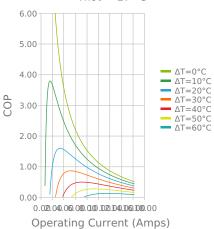

### **Applications**


- Spot Cooling for Industrial Lasers & Optics
- Thermoelectric Cooling for Projection Lasers

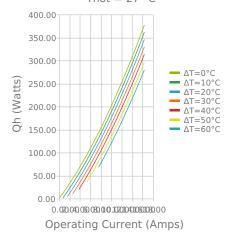




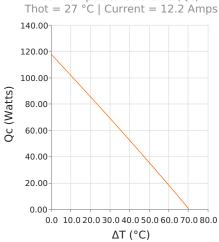

# **ELECTRICAL AND THERMAL PERFORMANCE**



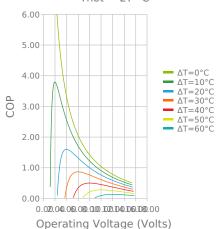


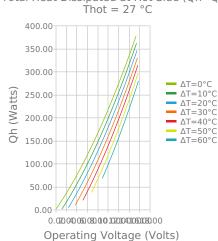


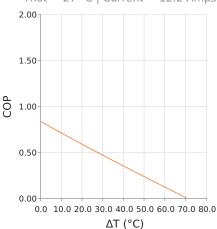




Total Heat Dissipated at Hot Side (Qh=Qc+Pin) Thot = 27  $^{\circ}$ C




Heat Pumped at Cold Side (Qc)




Coefficient of Performance (COP = Qc/Pin) Thot = 27  $^{\circ}$ C



Total Heat Dissipated at Hot Side (Qh=Qc+Pin)



Coefficient of Performance (COP = Qc/Pin) Thot = 27 °C | Current = 12.2 Amps





## **SPECIFICATIONS\***

**Hot Side Temperature** 

 $Qcmax (\Delta T = 0)$ 

 $\Delta T max (Qc = 0)$ 

Imax (I @ \Darkar)

Vmax (V @  $\Delta$ Tmax)

**Module Resistance** 

**Max Operating Temperature** 

Weight

<sup>\*</sup> Specifications reflect thermoelectric coefficients updated March 2020

| 27.0 °C      | 35.0 °C     | 50.0 °C     |
|--------------|-------------|-------------|
| 125.7 Watts  | 129.2 Watts | 135.2 Watts |
| 71.7°C       | 74.8°C      | 80.4°C      |
| 14.6 Amps    | 14.4 Amps   | 14.2 Amps   |
| 14.6 Volts   | 15.1 Volts  | 16.2 Volts  |
| 0.94 Ohms    | 0.98 Ohms   | 1.06 Ohms   |
| 80 °C        |             |             |
| 20.0 gram(s) |             |             |

## **FINISHING OPTIONS**

|                                     | Suffix | Thickness | Flatness / Parallelism                     | <b>Hot Face</b> | <b>Cold Face</b> | <b>Lead Length</b>  |
|-------------------------------------|--------|-----------|--------------------------------------------|-----------------|------------------|---------------------|
| TA 2.845 ±0.025 mm 0.112 ± 0.001 in |        |           | 0.025 mm / 0.025 mm<br>0.001 in / 0.001 in | Lapped          | Lapped           | 152.4 mm<br>6.00 in |

## **SEALING OPTIONS**

| Suffix | Sealant | Color | Temp Range | Description          |
|--------|---------|-------|------------|----------------------|
|        | None    |       |            | No sealing specified |

## **NOTES**

- 1. Max operating temperature: 80°C
- 2. Do not exceed Imax or Vmax when operating module
- 3. Reference assembly guidelines for recommended installation
- 4. Recommended to be used with a liquid heat exchanger on the hot side

Any information furnished by Laird and its agents, whether in specifications, data sheets, product catalogues or otherwise, is believed to be (but is not warranted as being) accurate and reliable, is provided for information only and does not form part of any contract with Laird. All specifications are subject to change without notice. Laird assumes no responsibility and disclaims all liability for losses or damages resulting from use of or reliance on this information. All Laird products are sold subject to the Laird Terms and Conditions of sale (including Laird's limited warranty) in effect from time to time, a copy of which will be furnished upon request.

© Copyright 2020 Laird Thermal Systems GmbH. All Rights Reserved. Laird, Laird Technologies, Laird Thermal Systems, the Laird Logo, and other word marks and logos are trademarks or registered trademarks of Laird Limited or an affiliate company thereof. Other product or service names may be the property of third parties. Nothing herein provides a license under any Laird or any third party intellectual property rights.

Date: 08/28/2020