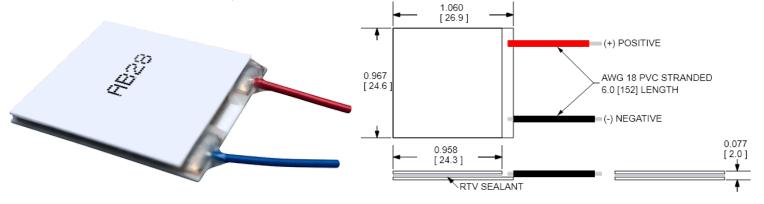


HiTemp ET Series Thermoelectric Cooler

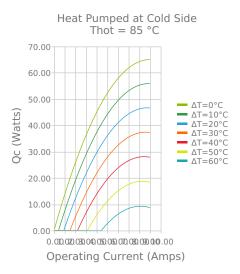

The ET8-12-F2-2525-TA-RT-W6 high temperature thermoelectric cooler uses Laird Thermal Systems' enhanced Thermoelectric Module construction preventing performance degrading diffusion, which is common in standard grade thermoelectric coolers operating in high temperature environments exceeding 80 °C. It has a maximum Qc of 70.5 Watts when $\Delta T=0$ and a maximum ΔT of 77.9 °C at Qc = 0.

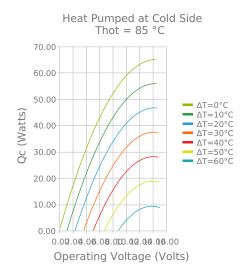
Features

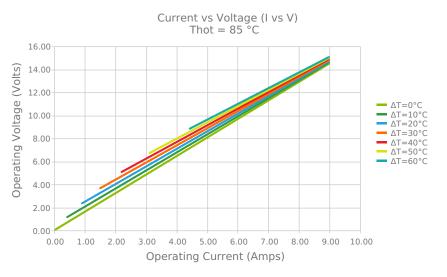
- High-temperature operation
- Reliable solid-state
- No sound or vibrationEnvironmentally-friendly
- RoHS-compliant

Applications

- Peltier Cooling for Refrigerated Centrifuges
- Peltier Cooling for Machine Vision
- Thermoelectric Cooling for CMOS Sensors
- Cooling Solutions for Autonomous Systems
- Peltier Cooling for Digital
- Light Processors

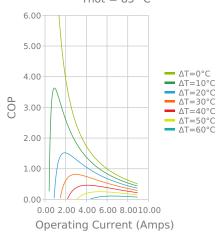


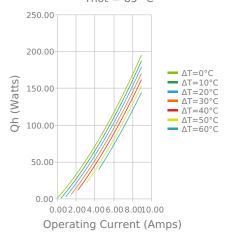

CERAMIC MATERIAL: Al₂O₃
SOLDER CONSTRUCTION: 232°C, SbSn

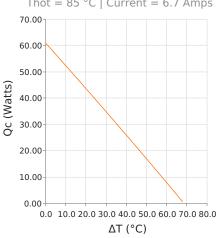

INCHES [MM]

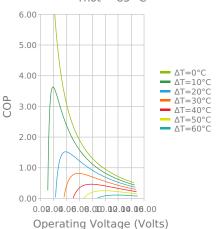
Note: Allow 0.020 in [0.5 mm] around perimeter of the thermoelectric cooler and lead wire attachment to accommodate sealant

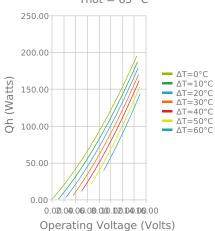
ELECTRICAL AND THERMAL PERFORMANCE

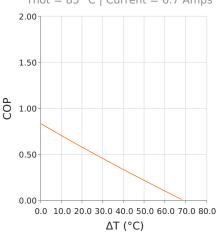







Total Heat Dissipated at Hot Side (Qh=Qc+Pin) Thot = 85 $^{\circ}$ C


Heat Pumped at Cold Side (Qc)
Thot = 85 °C | Current = 6.7 Amps


Coefficient of Performance (COP = Qc/Pin) Thot = 85 $^{\circ}$ C

Total Heat Dissipated at Hot Side (Qh=Qc+Pin) Thot = $85 \, ^{\circ}\text{C}$

Coefficient of Performance (COP = Qc/Pin) Thot = 85 °C | Current = 6.7 Amps

SPECIFICATIONS*

Hot Side Temperature

 $Qcmax (\Delta T = 0)$

 $\Delta T max (Qc = 0)$

Imax (I @ \Darmax)

Vmax (V @ \Delta Tmax)

Module Resistance

Max Operating Temperature

Weight

50.0 °C	85.0 °C	110.0 °C
70.5 Watts	77.3 Watts	80.7 Watts
77.9°C	89.3°C	96.2°C
7.8 Amps	7.6 Amps	7.5 Amps
15.3 Volts	17.5 Volts	19.1 Volts
1.81 Ohms	2.10 Ohms	2.30 Ohms
150 °C		
7.0 gram(s)		

FINISHING OPTIONS

Suffix	Thickness	Flatness / Parallelism	Hot Face	Cold Face	Lead Length
11	1.956 ±0.051 mm 0.077 ± 0.002 in	0.051 mm / 0.051 mm 0.002 in / 0.002 in	Lapped	Lapped	50.8 mm 2.00 in

SEALING OPTIONS

Suffix	Sealant	Color	Temp Range	Description
RT	RTV	Translucent or White	-60 to 204°C	Non-corrosive, silicone adhesive

NOTES

- 1. Max operating temperature: 150°C
- 2. Do not exceed Imax or Vmax when operating module
- 3. Reference assembly guidelines for recommended installation

Any information furnished by Laird and its agents, whether in specifications, data sheets, product catalogues or otherwise, is believed to be (but is not warranted as being) accurate and reliable, is provided for information only and does not form part of any contract with Laird. All specifications are subject to change without notice. Laird assumes no responsibility and disclaims all liability for losses or damages resulting from use of or reliance on this information. All Laird products are sold subject to the Laird Terms and Conditions of sale (including Laird's limited warranty) in effect from time to time, a copy of which will be furnished upon request.

© Copyright 2019-2020 Laird Thermal Systems, Inc. All rights reserved. Laird™, the Laird Ring Logo, and Laird Thermal Systems™ are trademarks or registered trademarks of Laird Limited or its subsidiaries.

Date: 02/08/2021

^{*} Specifications reflect thermoelectric coefficients updated March 2020