DATASHEET 4/30/2013 # Fema Part Number | GM25664C-31-O3CW | | | | | | |------------------|--|--|--|--|--| | Description | 3.1" Passive Matrix White Color OLED Display | | | | | | | 256x64 Characters | | | | | | | Extended Operating Temperature -40 to 85 °C | | | | | | | Wide Viewing Angle | | | | | # Fema Electronics Corporation: 17815 Newhope Street, Suite G, Fountain Valley, CA 92708 Tel: 714-825-0140 Please visit our website www.femaelectronics.com or email us at tft@femacorp.com # 1. Basic Specifications ### 1.1 Display Specifications 1) Display Mode: Passive Matrix 2) Display Color: Monochrome (White) 3) Drive Duty: 1/64 Duty ### 1.2 Mechanical Specifications 1) Outline Drawing: According to the annexed outline drawing 2) Number of Pixels: 256×64 3) Panel Size: $88.00 \times 27.80 \times 2.00 \text{ (mm)}$ 4) Active Area: 76.78 × 19.18 (mm) 5) Pixel Pitch: 0.30 × 0.30 (mm) 6) Pixel Size: 0.28 × 0.28 (mm) 7) Weight: 9.95 (g) ### 1.3 Active Area & Pixel Construction # 1.4 Mechanical Drawing *Suggested mating connector: Hirose FH12A-30S-0.5SH(55) # 1.5 Pin Definition | Pin Number | Symbol | Type | Function | |--------------|--------|------|---| | Power Supply | y | | | | 26 | VCI | P | Power Supply for Operation This is a voltage supply pin. It must be connected to external source & always be equal to or higher than VDD & VDDIO. | | 25 | VDD | P | Power Supply for Core Logic Circuit This is a voltage supply pin. It can be supplied externally (within the range of 2.4~2.6V) or regulated internally from VCI. A capacitor should be connected between this pin & VSS under all circumstances. | | 24 | VDDIO | P | Power Supply for I/O Pin This pin is a power supply pin of I/O buffer. It should be connected to VDD or external source. All I/O signal should have VIH reference to VDDIO. When I/O signal pins (BS0~BS1, D0~D7, control signals) pull high, they should be connected to VDDIO. | | 2 | VSS | P | Ground of Logic Circuit This is a ground pin. It also acts as a reference for the logic pins. It must be connected to external ground. | | 3, 29 | VCC | P | Power Supply for OEL Panel These are the most positive voltage supply pin of the chip. They must be connected to external source. | | 5, 28 | VLSS | P | Ground of Analog Circuit These are the analog ground pins. They should be connected to VSS externally. | | Driver | | | | | 22 | IREF | I | Current Reference for Brightness Adjustment This pin is segment current reference pin. A resistor should be connected between this pin and VSS. Set the current lower than 10uA. | | 4 | VCOMH | P | Voltage Output High Level for COM Signal This pin is the input pin for the voltage output high level for COM signals. A tantalum capacitor should be connected between this pin and VSS. | | 27 | VSL | P | Voltage Output Low Level for SEG Signal This is segment voltage reference pin. When external VSL is not used, this pin should be left open. When external VSL is used, this pin should connect with resistor and diode to ground. | | Testing Pads | | • | | | 21 | FR | О | Frame Frequency Triggering Signal This pin will send out a signal that could be used to identify the driver status. Nothing should be connected to this pin. It should be left open individually. | # 1.5 Pin Definition (Continued) | Pin Number | Symbol | I/O | Function | | | |------------|------------|-----|--|---|--| | Interface | | | | | | | 16
17 | BS0
BS1 | I | Communicating Protocol Select These pins are MCU interface selection in following table: BSG 3-wire SPI 1 4-wire SPI 0 8-bit 68XX Parallel 1 8-bit 80XX Parallel 0 | - | | | 20 | RES# | I | Power Reset for Controller and Drive This pin is reset signal input. When the initialization of the chip is executed. | | | | 19 | CS# | I | Chip Select This pin is the chip select input. The chip MCU communication only when CS# is pu | | | | 18 | D/C# | I | Data/Command Control This pin is Data/Command control pin. V pulled high, the input at D7~D0 is treated a When the pin is pulled low, the input at I transferred to the command register. relationship to MCU interface signals, plea Timing Characteristics Diagrams. | s display data.
D7~D0 will be
For detail | | | 14 | E/RD# | I | Read/Write Enable or Read This pin is MCU interface input. When i 68XX-series microprocessor, this pin will Enable (E) signal. Read/write operation is this pin is pulled high and the CS# is pulled When connecting to an 80XX-microproc receives the Read (RD#) signal. Data rea initiated when this pin is pulled low and low. When serial mode is selected, this pin must to VSS. | be used as the initiated when low. essor, this pin d operation is CS# is pulled | | | 15 | R/W# | I | Read/Write Select or Write This pin is MCU interface input. When it 68XX-series microprocessor, this pin with Read/Write (R/W#) selection input. Puther "High" for read mode and pull it to "Lemode. When 80XX interface mode is selected, the Write (WR#) input. Data write operate when this pin is pulled low and the CS# is puther when serial mode is selected, this pin must to VSS. | Il be used as Il this pin to ow" for write his pin will be ion is initiated bulled low. | | | 6~13 | D7~D0 | I/O | Host Data Input/Output Bus These pins are 8-bit bi-directional dat connected to the microprocessor's data bus, mode is selected, D1 will be the serial da and D0 will be the serial clock input SCLK Unused pins must be connected to VSS ex serial mode. | When serial
ta input SDIN | | # 1.5 Pin Definition (Continued) | Pin Number | Symbol | I/O | Function | |------------|------------|-----|---| | Reserve | | | | | 23 | N.C. | - | Reserved Pin The N.C. pin between function pins are reserved for compatible and flexible design. | | 1, 30 | N.C. (GND) | - | Reserved Pin (Supporting Pin) The supporting pins can reduce the influences from stresses on the function pins. These pins must be connected to external ground. | # 1.6 Block Diagram MCU Interface Selection: BS0 and BS1 Pins connected to MCU interface: D7~D0, E/RD#, R/W#, D/C#, CS#, and RES# C1, C3, C5: 0.1µF C2, C4: 4.7µF C2, C4: 4.7μ F C6: 10μ F C7: 10μ F C8: 4.7uF / 25V Tantalum Capacitor R1: $680k\Omega$, R1 = (Voltage at IREF – VSS) / IREF R2: 50Ω, 1/4W D1: ≤1.4V, 0.5W # 2. Absolute Maximum Ratings | Parameter | Symbol | Min | Max | Unit | Notes | |---------------------------------------|---------------------|------|----------|------|-------| | Supply Voltage for Operation | V_{CI} | -0.3 | 4 | V | 1, 2 | | Supply Voltage for Logic | $V_{ m DD}$ | -0.5 | 2.75 | V | 1, 2 | | Supply Voltage for I/O Pins | V_{DDIO} | -0.5 | V_{CI} | V | 1, 2 | | Supply Voltage for Display | V_{CC} | -0.5 | 16 | V | 1, 2 | | Operating Current for V _{CC} | I_{CC} | _ | 55 | mA | 1, 2 | | Operating Temperature | T_{OP} | -30 | 85 | °C | _ | | Storage Temperature | T_{STG} | -40 | 90 | °C | _ | Note 1: All the above voltages are on the basis of "VSS = 0V". Note 2: When this module is used beyond the above absolute maximum ratings, permanent breakage of the module may occur. Also, for normal operations, it is desirable to use this module under the conditions according to Section 3. "Optics & Electrical Characteristics". If this module is used beyond these conditions, malfunctioning of the module can occur and the reliability of the module may deteriorate. # 3. Optics & Electrical Characteristics ### 3.1 Optics Characteristics | Characteristics | Symbol | Conditions | Min | Тур | Max | Unit | |--------------------|----------|-------------------------|------|---------|------|-------------------| | Brightness | L_{br} | With Polarizer (Note 3) | 60 | 80 | - | cd/m ² | | C.I.E. (White) | (x) | Without Polarizer | 0.28 | 0.32 | 0.36 | | | C.I.E. (Wille) | (y) | Williout Polarizer | 0.29 | 0.33 | 0.37 | | | Dark Room Contrast | CR | | - | >2000:1 | - | | | View Angle | | | >160 | _ | _ | degree | ^{*} Optical measurement taken at $V_{CI} = 2.8V$, $V_{CC} = 12V$. Software configuration follows Section 4.4 Initialization. ### 3.2 DC Characteristics | Characteristics | Symbol | Conditions | Min | Тур | Max | Unit | |--|------------------------|--------------------------------|-----------------------|------|-----------------------|------| | Supply Voltage for Operation | V_{CI} | | 2.4 | 2.8 | 3.5 | V | | Supply Voltage for Logic | V_{DD} | | 2.4 | 2.5 | 2.6 | V | | Supply Voltage for I/O Pins | $V_{DDIO} \\$ | | 1.65 | 1.8 | V_{CI} | V | | Supply Voltage for Display | V_{CC} | Note 3 | 11.5 | 12 | 12.5 | V | | High Level Input | V_{IH} | | $0.8 \times V_{DDIO}$ | - | V_{DDIO} | V | | Low Level Input | V_{IL} | | 0 | _ | $0.2 \times V_{DDIO}$ | V | | High Level Output | V_{OH} | $I_{out} = 100 \mu A$, 3.3MHz | 0.9×V _{DDIO} | - | V_{DDIO} | V | | Low Level Output | V_{OL} | $I_{out} = 100 \mu A$, 3.3MHz | 0 | - | $0.1 \times V_{DDIO}$ | V | | Operating Current for V _{CI} | I_{CI} | | - | 1.8 | 2.25 | mA | | Operating Current for V | ī | Note 4 | _ | 26.3 | 32.9 | mA | | Operating Current for V _{CC} | I_{CC} | Note 5 | _ | 41.1 | 51.4 | mA | | Sleep Mode Current for V _{CI} | I _{CI, SLEEP} | | _ | 1 | 5 | μΑ | | Sleep Mode Current for V _{CC} | I _{CC, SLEEP} | | _ | 1 | 5 | μΑ | Note 3: Brightness (L_{br}) and Supply Voltage for Display (V_{CC}) are subject to the change of the panel characteristics and the customer's request. Note 4: $V_{CI} = 2.8V$, $V_{CC} = 12V$, 50% Display Area Turn on. Note 5: $V_{CI} = 2.8V$, $V_{CC} = 12V$, 100% Display Area Turn on. ^{*} Software configuration follows Section 4.4 Initialization. # 3.3 AC Characteristics # 3.3.1 68XX-Series MPU Parallel Interface Timing Characteristics: | Symbol | Description | Min | Max | Unit | |------------------|--------------------------------------|-----|-----|------| | $t_{ m cycle}$ | Clock Cycle Time | 300 | _ | ns | | t_{AS} | Address Setup Time | 10 | _ | ns | | t_{AH} | Address Hold Time | 0 | - | ns | | $t_{ m DSW}$ | Write Data Setup Time | 40 | - | ns | | $t_{ m DHW}$ | Write Data Hold Time | 7 | _ | ns | | t _{DHR} | Read Data Hold Time | 20 | _ | ns | | t _{OH} | Output Disable Time | _ | 70 | ns | | t _{ACC} | Access Time | _ | 140 | ns | | DW | Chip Select Low Pulse Width (Read) | 120 | | 44.0 | | PW_{CSL} | Chip Select Low Pulse Width (Write) | 60 | _ | ns | | DW | Chip Select High Pulse Width (Read) | 60 | | | | PW_{CSH} | Chip Select High Pulse Width (Write) | 60 | _ | ns | | t_R | Rise Time | _ | 15 | ns | | t_{F} | Fall Time | _ | 15 | ns | ^{*} $(V_{DD} - V_{SS} = 2.4 \text{V to } 2.6 \text{V}, V_{DDIO} = 1.6 \text{V}, V_{CI} = 2.8 \text{V}, T_a = 25 ^{\circ}\text{C})$ # 3.3.2 80XX-Series MPU Parallel Interface Timing Characteristics: | Symbol | Description | Min | Max | Unit | |--------------------|--------------------------------------|-----|-----|------| | t _{cycle} | Clock Cycle Time | 300 | _ | ns | | t_{AS} | Address Setup Time | 10 | - | ns | | t_{AH} | Address Hold Time | 0 | - | ns | | $t_{ m DSW}$ | Write Data Setup Time | 40 | - | ns | | t_{DHW} | Write Data Hold Time | 7 | - | ns | | t_{DHR} | Read Data Hold Time | 20 | - | ns | | t _{OH} | Output Disable Time | _ | 70 | ns | | t_{ACC} | Access Time | _ | 140 | ns | | t_{PWLR} | Read Low Time | 150 | - | ns | | t _{PWLW} | Write Low Time | 60 | - | ns | | t _{PWHR} | Read High Time | 60 | - | ns | | t_{PWHW} | Write High Time | 60 | - | ns | | t_{CS} | Chip Select Setup Time | 0 | - | ns | | t_{CSH} | Chip Select Hold Time to Read Signal | 0 | - | ns | | t _{CSF} | Chip Select Hold Time | 20 | - | ns | | t_R | Rise Time | _ | 15 | ns | | t_{F} | Fall Time | _ | 15 | ns | ^{*} $(V_{DD} - V_{SS} = 2.4V \text{ to } 2.6V, V_{DDIO} = 1.6V, V_{CI} = 2.8V, T_a = 25^{\circ}C)$ # 3.3.3 Serial Interface Timing Characteristics: (4-wire SPI) | Symbol | Description | Min | Max | Unit | |--------------------|------------------------|-----|-----|------| | $t_{ m cycle}$ | Clock Cycle Time | 100 | - | ns | | t_{AS} | Address Setup Time | 15 | - | ns | | t_{AH} | Address Hold Time | 15 | - | ns | | t_{CSS} | Chip Select Setup Time | 20 | - | ns | | t_{CSH} | Chip Select Hold Time | 10 | - | ns | | $t_{ m DSW}$ | Write Data Setup Time | 15 | - | ns | | t_{DHW} | Write Data Hold Time | 15 | - | ns | | t_{CLKL} | Clock Low Time | 20 | - | ns | | t_{CLKH} | Clock High Time | 20 | - | ns | | t_R | Rise Time | _ | 15 | ns | | t_{F} | Fall Time | - | 15 | ns | ^{*} $(V_{DD} - V_{SS} = 2.4V \text{ to } 2.6V, V_{DDIO} = 1.6V, V_{CI} = 2.8V, T_a = 25^{\circ}C)$ # 3.3.4 Serial Interface Timing Characteristics: (3-wire SPI) | Symbol | Description | Min | Max | Unit | |--------------------|------------------------|-----|-----|------| | $t_{ m cycle}$ | Clock Cycle Time | 100 | - | ns | | t_{AS} | Address Setup Time | 15 | - | ns | | t_{AH} | Address Hold Time | 15 | - | ns | | t_{CSS} | Chip Select Setup Time | 20 | - | ns | | t_{CSH} | Chip Select Hold Time | 10 | - | ns | | $t_{ m DSW}$ | Write Data Setup Time | 15 | - | ns | | t_{DHW} | Write Data Hold Time | 15 | - | ns | | t_{CLKL} | Clock Low Time | 20 | - | ns | | t_{CLKH} | Clock High Time | 20 | - | ns | | t_R | Rise Time | _ | 15 | ns | | t_{F} | Fall Time | - | 15 | ns | ^{*} $(V_{DD} - V_{SS} = 2.4V \text{ to } 2.6V, V_{DDIO} = 1.6V, V_{CI} = 2.8V, T_a = 25^{\circ}C)$ # 4. Functional Specification #### 4.1. Commands Refer to the Technical Manual for the SSD1322 ### 4.2 Power down and Power up Sequence To protect OEL panel and extend the panel life time, the driver IC power up/down routine should include a delay period between high voltage and low voltage power sources during turn on/off. It gives the OEL panel enough time to complete the action of charge and discharge before/after the operation. ### 4.2.1 Power up Sequence: - 1. Power up $V_{CI} \& V_{DDIO}$ - 2. Send Display off command - 3. Initialization - 4. Clear Screen - 5. Power up V_{CC} - 6. Delay 100ms (When V_{CC} is stable) - 7. Send Display on command #### 4.2.2 Power down Sequence: - 1. Send Display off command - 2. Power down V_{CC} - 3. Delay 100ms (When V_{CC} is reach 0 and panel is completely discharges) - 4. Power down V_{CI} & V_{DDIO} #### 4.3 Reset Circuit When RES# input is low, the chip is initialized with the following status: - 1. Display is OFF - 2. 480×128 Display Mode - 3. Normal segment and display data column and row address mapping (SEG0 mapped to column address 00h and COM0 mapped to row address 00h) - 4. Display start line is set at display RAM address 0 - 5. Column address counter is set at 0 - 6. Normal scan direction of the COM outputs - 7. Contrast control registers is set at 7Fh ### 4.4 Actual Application Example Command usage and explanation of an actual example #### <Initialization> If the noise is accidentally occurred at the displaying window during the operation, please reset the display in order to recover the display function. # 5. Reliability ### **5.1** Contents of Reliability Tests | Item | Conditions | Criteria | |-----------------------------------|---|-----------------| | High Temperature Operation | 85°C, 500 hrs | | | Low Temperature Operation | -30°C, 500 hrs | | | High Temperature Storage | 90°C, 500 hrs | The operational | | Low Temperature Storage | -40°C, 500 hrs | functions work. | | High Temperature/Humidity Storage | 60°C, 90% RH, 500 hrs | | | Thermal Shock | -40 °C \Leftrightarrow 85°C, 100 cycles 30 mins dwell | | ^{*} The samples used for the above tests do not include polarizer. #### 5.2 Lifetime End of lifetime is specified as 50% of initial brightness reached. | Parameter | Min | Max | Unit | Condition | Notes | |---------------------|--------|-----|------|---|-------| | Operating Life Time | 10,000 | - | hr | 80 cd/m ² , 50% Checkerboard | 6 | | Storage Life Time | 20,000 | _ | hr | $Ta = 25^{\circ}C, 50\% RH$ | - | Note 6: The average operating lifetime at room temperature is estimated by the accelerated operation at high temperature conditions. ### 5.3 Failure Check Standard After the completion of the described reliability test, the samples were left at room temperature for 2 hrs prior to conducting the failure test at 23±5°C; 55±15% RH. ^{*} No moisture condensation is observed during tests.