

Notice for TAIYO YUDEN products

Please read this notice before using the TAIYO YUDEN products.

/!\ REMINDERS

Product Information in this Catalog

Product information in this catalog is as of October 2019. All of the contents specified herein and production status of the products listed in this catalog are subject to change without notice due to technical improvement of our products, etc. Therefore, please check for the latest information carefully before practical application or use of our products.

Please note that TAIYO YUDEN shall not be in any way responsible for any damages and defects in products or equipment incorporating our products, which are caused under the conditions other than those specified in this catalog or individual product specification sheets.

Approval of Product Specifications

Please contact TAIYO YUDEN for further details of product specifications as the individual product specification sheets are available. When using our products, please be sure to approve our product specifications or make a written agreement on the product specification with TAIYO YUDEN in advance.

Pre-Evaluation in the Actual Equipment and Conditions

Please conduct validation and verification of our products in actual conditions of mounting and operating environment before using our products.

Limited Application

1. Equipment Intended for Use

The products listed in this catalog are intended for generalpurpose and standard use in general electronic equipment (e.g., AV equipment, OA equipment, home electric appliances, office equipment, information and communication equipment including, without limitation, mobile phone, and PC) and other equipment specified in this catalog or the individual product specification sheets.

TAIYO YUDEN has the line-up of the products intended for use in automotive electronic equipment, telecommunications infrastructure and industrial equipment, or medical devices classified as GHTF Classes A to C (Japan Classes I to III). Therefore, when using our products for these equipment, please check available applications specified in this catalog or the individual product specification sheets and use the corresponding products.

2. Equipment Requiring Inquiry

Please be sure to contact TAIYO YUDEN for further information before using the products listed in this catalog for the following equipment (excluding intended equipment as specified in this catalog or the individual product specification sheets) which may cause loss of human life, bodily injury, serious property damage and/or serious public impact due to a failure or defect of the products and/or malfunction attributed thereto.

- (1) Transportation equipment (automotive powertrain control system, train control system, and ship control system, etc.)
- (2) Traffic signal equipment
- (3) Disaster prevention equipment, crime prevention equipment
- (4) Medical devices classified as GHTF Class C (Japan Class III)
- (5) Highly public information network equipment, dataprocessing equipment (telephone exchange, and base station, etc.)
- (6) Any other equipment requiring high levels of quality and/or reliability equal to the equipment listed above

3. Equipment Prohibited for Use

Please do not incorporate our products into the following equipment requiring extremely high levels of safety and/or reliability.

- (1) Aerospace equipment (artificial satellite, rocket, etc.)
- (2) Aviation equipment *1
- (3) Medical devices classified as GHTF Class D (Japan Class IV), implantable medical devices *2

- (4) Power generation control equipment (nuclear power, hydroelectric power, thermal power plant control system, etc.)
- (5) Undersea equipment (submarine repeating equipment, underwater work equipment, etc.)
- (6) Military equipment
- (7) Any other equipment requiring extremely high levels of safety and/or reliability equal to the equipment listed above

*Notes:

- 1. There is a possibility that our products can be used only for aviation equipment that does not directly affect the safe operation of aircraft (e.g., in-flight entertainment, cabin light, electric seat, cooking equipment) if such use meets requirements specified separately by TAIYO YUDEN. Please be sure to contact TAIYO YUDEN for further information before using our products for such aviation equipment.
- Implantable medical devices contain not only internal unit which is implanted in a body, but also external unit which is connected to the internal unit.

4. Limitation of Liability

Please note that unless you obtain prior written consent of TAIYO YUDEN, TAIYO YUDEN shall not be in any way responsible for any damages incurred by you or third parties arising from use of the products listed in this catalog for any equipment that is not intended for use by TAIYO YUDEN, or any equipment requiring inquiry to TAIYO YUDEN or prohibited for use by TAIYO YUDEN as described above.

Safety Design

When using our products for high safety and/or reliability-required equipment or circuits, please fully perform safety and/or reliability evaluation. In addition, please install (i) systems equipped with a protection circuit and a protection device and/or (ii) systems equipped with a redundant circuit or other system to prevent an unsafe status in the event of a single fault for a failsafe design to ensure safety.

Intellectual Property Rights

Information contained in this catalog is intended to convey examples of typical performances and/or applications of our products and is not intended to make any warranty with respect to the intellectual property rights or any other related rights of TAIYO YUDEN or any third parties nor grant any license under such rights.

Limited Warranty

Please note that the scope of warranty for our products is limited to the delivered our products themselves and TAIYO YUDEN shall not be in any way responsible for any damages resulting from a failure or defect in our products. Notwithstanding the foregoing, if there is a written agreement (e.g., supply and purchase agreement, quality assurance agreement) signed by TAIYO YUDEN and your company, TAIYO YUDEN will warrant our products in accordance with such agreement

■ TAIYO YUDEN's Official Sales Channel

The contents of this catalog are applicable to our products which are purchased from our sales offices or authorized distributors (hereinafter "TAIYO YUDEN's official sales channel"). Please note that the contents of this catalog are not applicable to our products purchased from any seller other than TAIYO YUDEN's official sales channel.

Caution for Export

Some of our products listed in this catalog may require specific procedures for export according to "U.S. Export Administration Regulations", "Foreign Exchange and Foreign Trade Control Law" of Japan, and other applicable regulations. Should you have any questions on this matter, please contact our sales staff.

WIRE-WOUND CHIP INDUCTORS (LB SERIES)

REFLOW

■PARTS NUMBER

* Operating Temp.:-40~+105°C (Including self-generated heat)

L B	ΔΔ	2	0	1	2	Т	1	0	0	М	Δ	Δ	Δ	Δ	△=Blank space
1	2			3)		4		⑤		6	7		8		

①Series name

Code	Series name
LB	Wound chip inductor

2Characteristics

Code	Characteristics
ΔΔ	Standard
ΔC	High current
ΔR	Low Rdc
MF	Low loss

③Dimensions (L×W)

LB/LB C/LB R

@ Dimonoron (L.	@Binionologia (E + 11)								
Code	Type (inch)	Dimensions (L×W) [mm]							
1608	1608 (0603)	1.6 × 0.8							
2012	2012 (0805)	2.0 × 1.25							
2016	2016 (0806)	2.0 × 1.6							
2518	2518(1007)	2.5 × 1.8							
3218	3218(1207)	3.2 × 1.8							
3225	3225(1210)	3.2 × 2.5							

4)Packaging

Code	Packaging
Т	Taping

⑤Nominal inductance

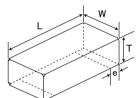
Code (example)	Nominal inductance[μH]
1R0	1.0
100	10
101	100

※R=Decimal point

6 Inductance tolerance

Code	Inductance tolerance
K	±10%
М	±20%

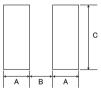
7 Special code


Code	Special code
Δ	Standard
R	Low Rdc type

8 Internal code

■STANDARD EXTERNAL DIMENSIONS / STANDARD QUANTITY

LBMF


L W T

Recommended Land Patterns

Surface Mountin

- •Mounting and soldering conditions should be checked beforehand.
- •Applicable soldering process to these products is reflow soldering only.

Type	Α	В	С
1608	0.55	0.7	0.9
MF1608	0.55	0.7	1.0
2012	0.60	1.0	1.45
2016	0.60	1.0	1.8
2518	0.60	1.5	2.0
3218	0.85	1.7	2.0
3225	0.85	1.7	2.7

Unit:mm

Tuma		w	Т		Standard quantity[pcs]		
Туре	L	VV	'	е	Paper tape	Embossed tape	
LB 1608	1.6±0.1 (0.063±0.004)	0.8±0.1 (0.031±0.004)	0.8±0.1 (0.031±0.004)	0.35±0.15 (0.014±0.006)	4000	_	
LBMF1608	1.6±0.2 (0.063±0.008)	0.8±0.2 (0.031±0.008)	0.8±0.2 (0.031±0.008)	0.45±0.15 (0.016±0.006)	ı	3000	
LB 2012 LB C2012 LB R2012	2.0±0.2 (0.079±0.008)	1.25±0.2 (0.049±0.008)	1.25±0.2 (0.049±0.008)	0.5±0.2 (0.020±0.008)	-	3000	
LB 2016 LB C2016	2.0±0.2 (0.079±0.008)	1.6±0.2 (0.063±0.008)	1.6±0.2 (0.063±0.008)	0.5±0.2 (0.020±0.008)	_	2000	
LB 2518 LB C2518 LB R2518	2.5±0.2 (0.098±0.008)	1.8±0.2 (0.071±0.008)	1.8±0.2 (0.071±0.008)	0.5±0.2 (0.020±0.008)	ı	2000	
LB 3218	3.2±0.2 (0.126±0.008)	1.8±0.2 (0.071±0.008)	1.8±0.2 (0.071±0.008)	0.6±0.2 (0.024±0.008)	-	2000	
LB C3225	32+02		2.5±0.2 (0.098±0.008)	0.6±0.3 (0.024±0.012)	_	1000	
						Unit:mm(inch)	

[▶] This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our product specification sheets. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our website (http://www.ty-top.com/).

STANDARD INDUCTORS

●1608(0603)type							
Parts number	EHS	Nominal inductance $[\mu H]$	Inductance tolerance	Self-resonant frequency [MHz] (min.)	DC Resistance [Ω](±30%)	Rated current [mA] (max.)	Measuring frequency [MHz]
LB 1608T1R0M	RoHS	1.0	±20%	100	0.17	160	7.96
LB 1608T2R2M	RoHS	2.2	±20%	80	0.33	115	7.96
LB 1608T4R7M	RoHS	4.7	±20%	45	0.55	70	7.96
LB 1608T8R2M	RoHS	8.2	±20%	32	0.70	60	2.52

Parts number	EHS	Nominal inductance [μ H]	Inductance tolerance	Self-resonant frequency [MHz] (min.)	DC Resistance [Ω](±30%)	Rated current [mA] (max.)	Measuring frequency [MHz]
LBMF1608T1R0M	RoHS	1.0	±20%	100	0.09	230	7.96
LBMF1608T2R2M	RoHS	2.2	±20%	80	0.17	160	7.96
LBMF1608T3R3M	RoHS	3.3	±20%	60	0.22	130	7.96
LBMF1608T4R7M	RoHS	4.7	±20%	45	0.24	110	7.96
LBMF1608T100[]	RoHS	10	±10%, ±20%	32	0.36	80	2.52
LBMF1608T220[]	RoHS	22	±10%, ±20%	16	1.0	50	2.52
LBMF1608T470□	RoHS	47	±10%, ±20%	11	2.5	35	2.52

2012(0805)type

Parts number	EHS	Nominal inductance $\left[\ \mu \ \mathrm{H} \right]$	Inductance tolerance	Self-resonant frequency [MHz] (min.)	DC Resistance [Ω]($\pm 30\%$)	Rated current [mA] (max.)	Measuring frequency [MHz]
LB 2012T1R0M	RoHS	1.0	±20%	100	0.15	405	7.96
LB 2012T2R2M	RoHS	2.2	±20%	80	0.23	260	7.96
LB 2012T3R3M	RoHS	3.3	±20%	55	0.30	235	7.96
LB 2012T4R7M	RoHS	4.7	±20%	45	0.40	190	7.96
LB 2012T6R8M	RoHS	6.8	±20%	38	0.47	135	7.96
LB 2012T100[]	RoHS	10	±10%, ±20%	32	0.70	120	2.52
LB 2012T100[R	RoHS	10	±10%, ±20%	32	0.50	120	2.52
LB 2012T150[]	RoHS	15	±10%, ±20%	28	1.3	100	2.52
LB 2012T220[]	RoHS	22	±10%, ±20%	16	1.7	80	2.52
LB 2012T470[]	RoHS	47	±10%, ±20%	11	3.7	60	2.52
LB 2012T680[]	RoHS	68	±10%, ±20%	10	6.0	50	2.52
LB 2012T101[]	RoHS	100	±10%, ±20%	8	7.0	45	0.796

Parts number	EHS	Nominal inductance [μ H]	Inductance tolerance	Self-resonant frequency [MHz] (min.)	DC Resistance [Ω](±30%)	Rated current [mA] (max.)	Measuring frequency [MHz]
LB C2012T1R0M	R₀HS	1.0	±20%	100	0.19	620	7.96
LB C2012T2R2M	R₀HS	2.2	±20%	70	0.33	430	7.96
LB C2012T4R7M	R₀HS	4.7	±20%	45	0.50	295	7.96
LB C2012T100[]	R₀HS	10	±10%, ±20%	40	1.2	200	2.52
LB C2012T220[]	R₀HS	22	±10%, ±20%	16	3.7	130	2.52
LB C2012T470[]	RoHS	47	±10%, ±20%	11	5.8	90	2.52

Parts number	EHS	Nominal inductance [μ H]	Inductance tolerance	Self-resonant frequency [MHz] (min.)	DC Resistance [Ω](±30%)	Rated current [mA] (max.)	Measuring frequency [MHz]
LB R2012T1R0M	RoHS	1.0	±20%	100	0.07	400	7.96
LB R2012T2R2M	RoHS	2.2	±20%	80	0.13	260	7.96
LB R2012T4R7M	RoHS	4.7	±20%	45	0.24	200	7.96
LB R2012T100[]	RoHS	10	±10%, ±20%	32	0.36	150	2.52
LB R2012T220[]	R₀HS	22	±10%, ±20%	16	1.0	100	2.52
LB R2012T470[]	RoHS	47	±10%, ±20%	11	1.7	75	2.52
LB R2012T101[]	RoHS	100	±10%, ±20%	8	4.0	50	0.796

2016 (0806) type

Parts number	EHS	Nominal inductance [μ H]	Inductance tolerance	Self-resonant frequency [MHz] (min.)	DC Resistance $[\Omega](\pm 30\%)$	Rated current [mA] (max.)	Measuring frequency [MHz]
_B 2016T1R0M	RoHS	1.0	±20%	100	0.09	490	7.96
_B 2016T1R5M	RoHS	1.5	±20%	80	0.11	380	7.96
B 2016T2R2M	RoHS	2.2	±20%	70	0.13	375	7.96
B 2016T3R3M	RoHS	3.3	±20%	55	0.20	285	7.96
B 2016T4R7M	RoHS	4.7	±20%	45	0.25	225	7.96
B 2016T6R8M	RoHS	6.8	±20%	38	0.35	200	7.96
B 2016T100[]	RoHS	10	±10%, ±20%	32	0.50	155	2.52
B 2016T150□	RoHS	15	±10%, ±20%	28	0.70	130	2.52
B 2016T220□	RoHS	22	±10%, ±20%	16	1.0	105	2.52
_B 2016T330[]	RoHS	33	±10%, ±20%	14	1.7	85	2.52
B 2016T470[]	RoHS	47	±10%, ±20%	11	2.4	70	2.52
B 2016T680[]	RoHS	68	±10%, ±20%	10	3.0	55	2.52
B 2016T101[]	RoHS	100	±10%, ±20%	8	4.5	40	0.796

^{• ☐} Please specify the Inductance tolerance code (K or M)

LB/LBC series

Rated Current : The maximum DC value having inductance decrease within 10 % and temperature increase within 20 degC by the application of DC bias.

LBR series

Rated Current: The maximum DC value having inductance decrease within 20 % and temperature increase within 20 degC by the application of DC bias.

[▶] This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our product specification sheets. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our website (http://www.ty-top.com/).

Parts number	EHS	Nominal inductance [μ H]	Inductance tolerance	Self-resonant frequency [MHz] (min.)	DC Resistance [Ω](±30%)	Rated current [mA] (max.)	Measuring frequency [MHz]
LB C2016T1R0M	RoHS	1.0	±20%	100	0.10	690	7.96
LB C2016T1R5M	RoHS	1.5	±20%	80	0.15	600	7.96
LB C2016T2R2M	RoHS	2.2	±20%	70	0.20	520	7.96
LB C2016T3R3M	RoHS	3.3	±20%	55	0.27	410	7.96
LB C2016T4R7M	RoHS	4.7	±20%	45	0.37	355	7.96
LB C2016T6R8M	RoHS	6.8	±20%	38	0.59	290	7.96
LB C2016T100[]	RoHS	10	±10%, ±20%	32	0.82	245	2.52
LB C2016T150[]	RoHS	15	±10%, ±20%	28	1.2	200	2.52
LB C2016T220[]	RoHS	22	±10%, ±20%	16	1.8	165	2.52
LB C2016T330[]	RoHS	33	±10%, ±20%	14	2.8	135	2.52
LB C2016T470[]	RoHS	47	±10%, ±20%	11	4.3	110	2.52
LB C2016T680[]	RoHS	68	±10%, ±20%	10	7.0	95	2.52
LB C2016T101[]	RoHS	100	±10%, ±20%	8	8.0	75	0.796

2518	1007)tvpe
-------------	------	-------

Parts number	EHS	Nominal inductance [μ H]	Inductance tolerance	Self-resonant frequency [MHz] (min.)	DC Resistance $[\Omega](\pm 30\%)$	Rated current [mA] (max.)	Measuring frequency [MHz]
LB 2518T1R0M	RoHS	1.0	±20%	100	0.06	665	7.96
LB 2518T1R5M	RoHS	1.5	±20%	80	0.07	405	7.96
LB 2518T2R2M	RoHS	2.2	±20%	68	0.09	340	7.96
LB 2518T3R3M	RoHS	3.3	±20%	54	0.11	280	7.96
LB 2518T4R7M	RoHS	4.7	±20%	46	0.13	240	7.96
LB 2518T4R7MR	RoHS	4.7	±20%	46	0.10	235	7.96
LB 2518T6R8M	RoHS	6.8	±20%	38	0.15	195	7.96
LB 2518T100∏	RoHS	10	±10%, ±20%	30	0.25	165	2.52
LB 2518T150[]	RoHS	15	±10%, ±20%	23	0.32	145	2.52
LB 2518T220[]	RoHS	22	±10%, ±20%	19	0.50	115	2.52
LB 2518T330∏	RoHS	33	±10%, ±20%	15	0.70	95	2.52
LB 2518T470∏	RoHS	47	±10%, ±20%	12	0.95	85	2.52
LB 2518T680∏	RoHS	68	±10%, ±20%	9.5	1.5	70	2.52
LB 2518T101[]	RoHS	100	±10%, ±20%	9.0	2.1	60	0.796
LB 2518T151[]	RoHS	150	±10%, ±20%	7.0	3.2	45	0.796
LB 2518T221[]	RoHS	220	±10%, ±20%	5.5	4.5	40	0.796
LB 2518T331[]	RoHS	330	±10%, ±20%	4.5	7.0	30	0.796
LB 2518T471[]	RoHS	470	±10%, ±20%	3.5	10	25	0.796
LB 2518T681[]	RoHS	680	±10%, ±20%	3.0	17	20	0.796
LB 2518T102[]	RoHS	1000	±10%, ±20%	2.4	24	15	0.252

Parts number	EHS	Nominal inductance [μ H]	Inductance tolerance	Self-resonant frequency [MHz] (min.)	DC Resistance [Ω](±30%)	Rated current [mA] (max.)	Measuring frequency [MHz]
LB C2518T1R0M	RoHS	1.0	±20%	100	0.08	775	7.96
LB C2518T1R0MR	RoHS	1.0	±20%	100	0.07	890	7.96
LB C2518T1R5M	RoHS	1.5	±20%	80	0.11	730	7.96
LB C2518T2R2M	RoHS	2.2	±20%	68	0.13	630	7.96
LB C2518T3R3M	RoHS	3.3	±20%	54	0.16	560	7.96
LB C2518T4R7M	RoHS	4.7	±20%	41	0.20	510	7.96
LB C2518T6R8M	RoHS	6.8	±20%	38	0.30	420	7.96
LB C2518T100[]	RoHS	10	±10%, ±20%	30	0.36	375	2.52
LB C2518T150[]	RoHS	15	±10%, ±20%	23	0.65	285	2.52
LB C2518T220[]	RoHS	22	±10%, ±20%	19	0.77	250	2.52
LB C2518T330□	RoHS	33	±10%, ±20%	15	1.5	185	2.52
LB C2518T470[]	RoHS	47	±10%, ±20%	12	1.9	165	2.52
LB C2518T680□	RoHS	68	±10%, ±20%	9.5	2.8	140	2.52
LB C2518T101[]	RoHS	100	±10%, ±20%	9.0	3.7	125	0.796
LB C2518T151[]	RoHS	150	±10%, ±20%	7.0	6.1	95	0.796
LB C2518T221[]	RoHS	220	±10%, ±20%	5.5	8.4	80	0.796
LB C2518T331[]	R₀HS	330	±10%, ±20%	4.5	12.3	65	0.796
LB C2518T471[]	RoHS	470	±10%, ±20%	3.5	22	50	0.796
LB C2518T681[]	RoHS	680	±10%, ±20%	3.0	28	45	0.796

Parts number	EHS	Nominal inductance $[\mu H]$	Inductance tolerance	Self-resonant frequency [MHz] (min.)	DC Resistance [Ω](±30%)	Rated current [mA] (max.)	Measuring frequency [MHz]
LB R2518T1R0M	RoHS	1.0	±20%	100	0.045	960	7.96
LB R2518T2R2M	RoHS	2.2	±20%	68	0.07	480	7.96
LB R2518T4R7M	RoHS	4.7	±20%	45	0.10	345	7.96
LB R2518T100[]	RoHS	10	±10%, ±20%	30	0.19	235	2.52
LB R2518T220[]	RoHS	22	±10%, ±20%	19	0.44	175	2.52
LB R2518T470[]	RoHS	47	±10%, ±20%	11	0.84	120	2.52
LB R2518T101[]	RoHS	100	±10%, ±20%	9	1.89	80	0.796

^{· ☐} Please specify the Inductance tolerance code(K or M)

LB/LBC series

Rated Current : The maximum DC value having inductance decrease within 10 % and temperature increase within 20 degC by the application of DC bias.

LBR serie

Rated Current: The maximum DC value having inductance decrease within 20 % and temperature increase within 20 degC by the application of DC bias.

[▶] This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our product specification sheets. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our website (http://www.ty-top.com/).

3218(1207) type

Parts number	EHS	Nominal inductance [μ H]	Inductance tolerance	Self-resonant frequency [MHz] (min.)	DC Resistance [Ω](±30%)	Rated current [mA] (max.)	Measuring frequency [MHz]
LB 3218T1R0M	RoHS	1.0	±20%	100	0.06	1,075	7.96
LB 3218T1R5M	RoHS	1.5	±20%	80	0.07	860	7.96
LB 3218T2R2M	RoHS	2.2	±20%	68	0.09	775	7.96
LB 3218T3R3M	RoHS	3.3	±20%	54	0.11	560	7.96
LB 3218T4R7M	RoHS	4.7	±20%	41	0.13	550	7.96
LB 3218T6R8M	RoHS	6.8	±20%	40	0.17	380	7.96
LB 3218T100[]	RoHS	10	±10%, ±20%	30	0.25	340	2.52
LB 3218T150[]	RoHS	15	±10%, ±20%	25	0.32	300	2.52
LB 3218T220[]	RoHS	22	±10%, ±20%	19	0.49	255	2.52
LB 3218T330[]	RoHS	33	±10%, ±20%	15	0.75	215	2.52
LB 3218T470[]	RoHS	47	±10%, ±20%	12	0.92	205	2.52
LB 3218T680[]	RoHS	68	±10%, ±20%	11	1.49	145	2.52
LB 3218T101[]	RoHS	100	±10%, ±20%	8.0	2.4	140	0.796
LB 3218T151[]	RoHS	150	±10%, ±20%	7.0	3.2	105	0.796
LB 3218T221[]	RoHS	220	±10%, ±20%	5.0	5.4	80	0.796
LB 3218T331[]	RoHS	330	±10%, ±20%	4.0	7.0	65	0.796
LB 3218T471[]	RoHS	470	±10%, ±20%	3.5	14	54	0.796
LB 3218T681[]	RoHS	680	±10%, ±20%	3.0	17	45	0.796
LB 3218T102[]	RoHS	1000	±10%, ±20%	2.4	27	39	0.252

3225(1210)type

Parts number	EHS	Nominal inductance [μ H]	Inductance tolerance	Self-resonant frequency [MHz] (min.)	DC Resistance $[\Omega](\pm 30\%)$	Rated current [mA] (max.)	Measuring frequency [MHz]
LB C3225T1R0MR	RoHS	1.0	±20%	250	0.055	1,100	0.1
LB C3225T1R5MR	RoHS	1.5	±20%	220	0.060	1,000	0.1
LB C3225T2R2MR	RoHS	2.2	±20%	190	0.080	930	0.1
LB C3225T3R3MR	RoHS	3.3	±20%	160	0.095	820	0.1
LB C3225T4R7MR	RoHS	4.7	±20%	70	0.100	680	0.1
LB C3225T6R8MR	RoHS	6.8	±20%	50	0.120	620	0.1
LB C3225T100[R	RoHS	10	±10%, ±20%	23	0.133	540	0.1
LB C3225T150[R	RoHS	15	±10%, ±20%	20	0.195	420	0.1
LB C3225T220[]R	RoHS	22	±10%, ±20%	17	0.27	330	0.1
LB C3225T330[]R	RoHS	33	±10%, ±20%	13	0.41	300	0.1
LB C3225T470[R	RoHS	47	±10%, ±20%	10	0.67	220	0.1
LB C3225T680[R	RoHS	68	±10%, ±20%	8	1.0	190	0.1
LB C3225T101[]R	RoHS	100	±10%, ±20%	6	1.4	150	0.1

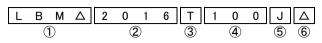
<sup>•
☐</sup> Please specify the Inductance tolerance code(K or M)

LB/LBC series

Rated Current: The maximum DC value having inductance decrease within 10 % and temperature increase within 20 degC by the application of DC bias.

[▶] This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our product specification sheets. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our website (http://www.ty-top.com/).

WIRE-WOUND CHIP INDUCTORS FOR SIGNAL LINES (LB SERIES M TYPE)



REFLOW

■PARTS NUMBER

* Operating Temp.:-40~+105°C (Including self-generated heat)

 Δ =Blank space

①Series name

Code	Series name
LBM△	Wound chip inductor for signal line

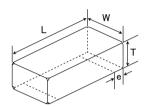
②Dimensions (L×W)

Code	Type (inch)	Dimensions (L×W)[mm]
2016	2016 (0806)	2.0 × 1.6

 Ode
 Packaging

 T
 Taping

4 Nominal inductance

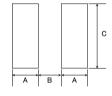

Code (example)	Nominal inductance[μ H]
R12	0.12
1R0	1.0
100	10
101	100

⑤Inductance tolerance

Code	Inductance tolerance
J	±5%

6 Internal code

STANDARD EXTERNAL DIMENSIONS / STANDARD QUANTITY



Recommended Land Patterns

Surface Mounting

- Mounting and soldering conditions should be checked beforehand.
- •Applicable soldering process to these products is reflow soldering only.

Type	Α	В	С
LBM 2016	0.6	1.0	1.8
			Unit:mm

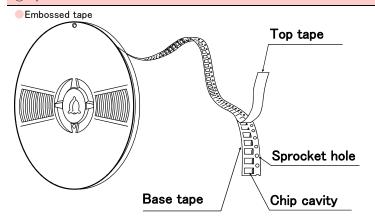
Time		w	т		Standard quantity [pcs]	
Туре	L	VV		е	Paper tape	Embossed tape
LBM 2016	2.0±0.2 (0.08±0.008)	1.6±0.2 (0.063±0.008)	1.6±0.2 (0.063±0.008)	0.5±0.2 (0.02±0.008)	_	2000
	•	•	•			

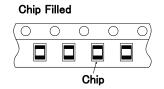
Unit:mm(inch)

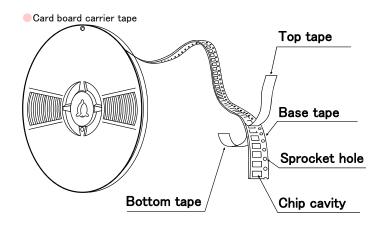
[▶] This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our product specification sheets. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our website (http://www.ty-top.com/).

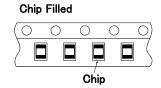
Parts number	EHS	Nominal inductance [μ H]	Inductance tolerance	Q (min.)	Self-resonant frequency [MHz] (min.)	DC Resistance [Ω](±30%)	Rated current [mA] (max.)	Measuring frequency [MHz]
LBM 2016TR12J	RoHS	0.12	±5%	30	600	0.13	610	25.2
LBM 2016TR15J	RoHS	0.15	±5%	30	550	0.15	570	25.2
LBM 2016TR18J	RoHS	0.18	±5%	30	500	0.15	560	25.2
LBM 2016TR22J	RoHS	0.22	±5%	30	450	0.20	520	25.2
LBM 2016TR27J	RoHS	0.27	±5%	30	425	0.21	510	25.2
LBM 2016TR33J	RoHS	0.33	±5%	30	400	0.21	490	25.2
LBM 2016TR39J	RoHS	0.39	±5%	30	375	0.26	440	25.2
LBM 2016TR47J	RoHS	0.47	±5%	30	350	0.26	430	25.2
LBM 2016TR56J	RoHS	0.56	±5%	30	300	0.29	410	25.2
LBM 2016TR68J	RoHS	0.68	±5%	30	270	0.32	400	25.2
LBM 2016TR82J	RoHS	0.82	±5%	30	250	0.34	390	25.2
LBM 2016T1R0J	RoHS	1.0	±5%	30	220	0.38	385	7.96
LBM 2016T1R2J	RoHS	1.2	±5%	30	180	0.41	370	7.96
LBM 2016T1R5J	RoHS	1.5	±5%	30	135	0.47	350	7.96
LBM 2016T1R8J	RoHS	1.8	±5%	30	100	0.48	345	7.96
LBM 2016T2R2J	RoHS	2.2	±5%	30	75	0.54	340	7.96
LBM 2016T2R7J	RoHS	2.7	±5%	30	55	0.59	310	7.96
LBM 2016T3R3J	RoHS	3.3	±5%	30	48	0.68	290	7.96
LBM 2016T3R9J	RoHS	3.9	±5%	30	43	0.74	275	7.96
LBM 2016T4R7J	RoHS	4.7	±5%	30	40	0.78	270	7.96
LBM 2016T5R6J	RoHS	5.6	±5%	25	36	0.88	255	7.96
LBM 2016T6R8J	RoHS	6.8	±5%	25	33	0.97	240	7.96
LBM 2016T8R2J	RoHS	8.2	±5%	25	30	1.1	225	7.96
LBM 2016T100J	RoHS	10	±5%	25	27	1.2	215	2.52
LBM 2016T120J	RoHS	12	±5%	25	23	1.4	200	2.52
LBM 2016T150J	RoHS	15	±5%	25	20	1.5	190	2.52
LBM 2016T180J	RoHS	18	±5%	25	18	2.5	150	2.52
LBM 2016T220J	RoHS	22	±5%	25	17	2.8	140	2.52
LBM 2016T270J	RoHS	27	±5%	25	16	3.2	130	2.52
LBM 2016T330J	RoHS	33	±5%	25	15	3.6	125	2.52
LBM 2016T390J	RoHS	39	±5%	20	14	3.9	120	2.52
LBM 2016T470J	RoHS	47	±5%	20	13	4.1	115	2.52
LBM 2016T560J	RoHS	56	±5%	20	12	5.9	95	2.52
LBM 2016T680J	RoHS	68	±5%	20	11	7.0	90	2.52
LBM 2016T820J	RoHS	82	±5%	20	10	7.7	85	2.52
LBM 2016T101J	RoHS	100	±5%	15	9.0	8.0	80	0.796
LBM 2016T151J	RoHS	150	±5%	15	6.5	13.5	69	0.796
LBM 2016T181J	RoHS	180	±5%	15	6.0	15	67	0.796
LBM 2016T221J	RoHS	220	±5%	15	5.5	18	65	0.796

XX) Rated Current: The maximum DC value having inductance decrease within 10 % and temperature increase within 20 degC by the application of DC bias.

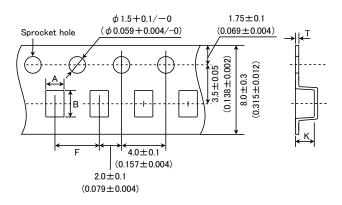

[▶] This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our product specification sheets. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our website (http://www.ty-top.com/).


WIRE-WOUND CHIP INDUCTORS (LB SERIES), WIRE-WOUND CHIP POWER INDUCTORS (CB SERIES), WIRE-WOUND CHIP INDUCTORS FOR SIGNAL LINES (LB SERIES M TYPE)

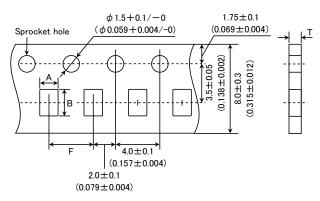

PACKAGING


1 Minimum Quantity Standard Quantity [pcs] Туре Paper Tape Embossed Tape LB C3225 1000 CB C3225 LB 3218 2000 LB R2518 LB C2518 2000 LB 2518 CB 2518 CB C2518 LBM2016 LB C2016 LB 2016 2000 CB 2016 CB C2016 LB 2012 LB C2012 LB R2012 3000 CB 2012 CB C2012 CB L2012 4000 LB 1608 4000 LBMF1608 3000 CBMF1608

②Tape material



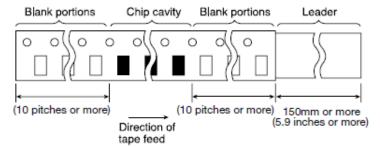
This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).


Embossed Tape (0.315 inches wide)

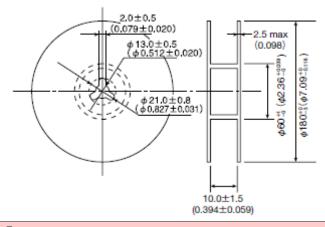
Т	Chip	cavity	Insertion pitch	Tape th	ickness
Туре	Α	В	F	Т	K
LBM2016	1.75±0.1	2.1±0.1	4.0±0.1	0.3±0.05	1.9max.
	(0.069±0.004)	(0.083±0.004)	(0.157±0.004)	(0.012±0.002)	(0.075max.)
LB C3225	2.8±0.1	3.5±0.1	4.0±0.1	0.3±0.05	4.0max.
CB C3225	(0.110±0.004)	(0.138±0.004)	(0.157±0.004)	(0.012±0.002)	(0.157max.)
LB 3218	2.1±0.1	3.5±0.1	4.0±0.1	0.3±0.05	2.2max.
	(0.083±0.004)	(0.138±0.004)	(0.157±0.004)	(0.012±0.002)	(0.087max.)
LB 2518 CB 2518 LB C2518 CB C2518 LB R2518	2.15±0.1	2.7±0.1	4.0±0.1	0.3±0.05	2.2max.
	(0.085±0.004)	(0.106±0.004)	(0.157±0.004)	(0.012±0.002)	(0.087max.)
LB 2016 CB 2016 LB C2016 CB C2016	1.75±0.1 (0.069±0.004)	2.1±0.1 (0.083±0.004)	4.0±0.1 (0.157±0.004)	0.3±0.05 (0.012±0.002)	1.9max. (0.075max.)
LB 2012 CB 2012 LB C2012 CB C2012 LB R2012	1.45±0.1 (0.057±0.004)	2.25±0.1 (0.089±0.004)	4.0±0.1 (0.157±0.004)	0.25±0.05 (0.010±0.002)	1.45max. (0.057max.)
LBMF1608	1.1±0.1	1.9±0.1	4.0±0.1	0.25±0.05	1.2max.
CBMF1608	(0.043±0.004)	(0.075±0.004)	(0.157±0.004)	(0.010±0.002)	(0.047max.)

Unit:mm(inch)

Card board carrier tape (0.315 inches wide)

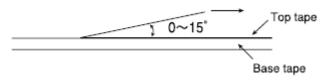


	Chip	cavity	Insertion pitch	Tape thickness
Туре	A	В	F	Т
OD 1 0010	1.55±0.1	2.3±0.1	4.0±0.1	1.1max.
CB L2012	(0.061 ± 0.004)	(0.091 ± 0.004)	(0.157 ± 0.004)	(0.043max.)
LD 1000	1.0±0.1	1.8±0.1	4.0±0.1	1.1max.
LB 1608	(0.039 ± 0.004)	(0.071 ± 0.004)	(0.157 ± 0.004)	(0.043max.)


Unit:mm(inch)

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

4 Leader and Blank Portion


⑤Reel Size

©Top Tape Strength

The top tape requires a peel-off force 0.2 to 0.7N in the direction of the arrow as illustrated below.

Pull direction

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

WIRE-WOUND CHIP INDUCTORS (LB SERIES), WIRE-WOUND CHIP POWER INDUCTORS (CB SERIES), WIRE-WOUND CHIP INDUCTORS FOR SIGNAL LINES (LB SERIES M TYPE)

RELIABILITY DATA

1 Operating toward	nture Pange			
1.Operating temper	-			
0 '5 1)/1	LB, LBC, LBR, LBMF Series	40 140500 (7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
Specified Value	CB, CBC, CBL, CBMF Series	-40~+105°C (Including self-generated heat)		
	LBM Series			
2. Storage Tempera	ture Range(after soldering)			
	LB, LBC, LBR, LBMF Series			
Specified Value	CB, CBC, CBL, CBMF Series	- -40∼+85°C		
opeemed value	LBM Series			
Test Methods and	LB, CB Series:			
Remarks	Please refer the term of "7. storage conditions" in precaution	ns.		
3.Rated Current				
	LB, LBC, LBR, LBMF Series	<u> </u>		
Specified Value	CB, CBC, CBL, CBMF Series	Within the specified tolerance		
	LBM Series			
4.Inductance		T		
	LB, LBC, LBR, LBMF Series	 		
Specified Value	CB, CBC, CBL, CBMF Series	Within the specified tolerance		
	LBM Series			
Test Methods and	LB·LBC·LBR·CB·CBC·CBL·LBMF·CBMF·LBM Series Measuring equipment :LCR Mater(HP4285A or its equivalent)			
Remarks	Measuring frequency : Specified frequency			
5.Q				
	LB, LBC, LBR, LBMF Series			
Specified Value	CB, CBC, CBL, CBMF Series			
	LBM Series	Within the specified tolerance		
Test Methods and	LBM Series			
Remarks	Measuring equipment : LCR Mater (HP4285A or its ed Measuring frequency : Specified frequency	uivalent)		
	measuring frequency . Openined frequency			
6.DC Resisitance				
	LB, LBC, LBR, LBMF Series			
Specified Value	CB, CBC, CBL, CBMF Series	Within the specified tolerance		
	LBM Series			
Test Methods and	Measuring equipment : DC Ohmmeter (HIOKI 3227 or its equivalent)			
Remarks	3			
7.Self-Resonant Fr	edilency			
	LB, LBC, LBR, LBMF Series			
Specified Value	CB, CBC, CBL, CBMF Series	Within the specified tolerance		
,	LBM Series			
Test Methods and Remarks	Measuring equipment : Impedance analyzer (HP4291A or its	equivalent)		

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

8.Temperature Characteristic						
	LBM2016				Inductance change : Within±5%	
	LB1608	LB2012	LBR2012	CB2012		
	CBL2012	LB2016	CB2016	LB2518	Inductance change : Within±20%	
Specified Value	LBR2518	CB2518	LBC3225	CBC3225		
	LBMF1608	CBMF1608	LBC2016	CBC2016	1 Walt 050/	
	LBC2518	CBC2518	LB3218		Inductance change : Within±25%	
	LBC2012	CBC2012			Inductance change : Within±35%	
Test Methods and Remarks	Based on the inductance at 20°C and Measured at the ambient of $-40^{\circ}\text{C} \sim +85^{\circ}\text{C}$.					

9.Rasistance to Fle	9.Rasistance to Flexure of Substrate					
	LB, LBC, LBR, LBMF Series					
Specified Value	CB, CBC, CBL, CBMF Series	No damage.				
	LBM Series					
	Warp : 2mm(LB·LBC·LBR·CB·CBC·CBL·LBM·L	BMF · CBMF Series)				
Test Methods and Remarks	Test substrate : Glass epoxy-resin substrate Thickness : 0.8mm (LB1608 · LBMF1608 · CBMF1608) : 1.0mm (Others) Pressing jig 10 20 R340 Board R5 45±2mm 45±2mm 45±2mm					

10.Body Strength	10.Body Strength					
	LB, LBC, LBR, LBMF Series					
Specified Value	CB, CBC, CBL, CBMF Series	No damage.				
	LBM Series	1				
Test Methods and Remarks	LB·LBC·LBR·CB·CBC·CBL·LBM Applied force : 10N Duration : 10sec. LB1608·LBMF1608·CBMF1608 Applied force : 5N Duration : 10sec.					

11.Adhesion of term	11.Adhesion of terminal electrode					
	LB, LBC, LBR, LBMF Series					
Specified Value	CB, CBC, CBL, CBMF Series	No abnormality.				
	LBM Series					
Test Methods and Remarks	LB·LBC·LBR·CB·CBC·CBL·LBM·LBMF·CBMF Applied force : 10N to X and Y directions Duration : 5 sec. Test substrate : Printed board LB1608·CBMF1608·LBMF1608 Applied force : 5N to X and Y directions Duration : 5 sec. Test substrate : Printed board					

[►] This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

12.Resistance to vil	pration						
	LB, LBC, LBR, LBMF Series		Inductance change : Within±10%				
Specified Value	CB, CBC, CBL, CBMF Series		No significant abnormality in appearance.				
Specified value	LBM Series		Inductance change : Within±5% No significant abnormality in appearance.				
	LB·LBR·LBC·CB·CBC·CBL·LBM·LBMF·CBMF:						
	The given sample is soldered to the board and then it is tested depending on the conditions of the following table.						
	Vibration Frequency	10~55Hz	1 1 100 (0)				
Test Methods and Remarks	Total Amplitude Sweeping Method	1.5mm (May not exceed acc 10Hz to 55Hz to 10Hz for 1	· · · · · · · · · · · · · · · · · · ·				
Remarks	Sweeping Method	Sweeping Method 10Hz to 10Hz for 1min.					
	Time	 	rs on each X, Y, and Z axis.				
	Recovery : At least 2 hrs of	f recovery under the standard	condition after the test, followed by the measurement within 48 hrs.				
13.Drop test							
·	LB, LBC, LBR, LBMF Series						
Specified Value	CB, CBC, CBL, CBMF Series						
opcomou value	LBM Series						
	LDIVI Series						
140 11 1							
14.Solderability							
	LB, LBC, LBR, LBMF Series						
Specified Value	CB, CBC, CBL, CBMF Series		At least 90% of surface of terminal electrode is covered by new				
	LBM Series						
	LB.LBC.LBR.CB.CBC.CBL						
Test Methods and	•	5±5℃					
Remarks		:0.5sec	adambana.				
	Flux : Me	thanol solution with 25% of o	союрпопу				
455 1							
15.Resistance to so	-						
	LB, LBC, LBR, LBMF Series		Inductance change : Within±10%				
Specified Value	CB, CBC, CBL, CBMF Series						
	LBM Series		Inductance change : Within±5%				
Test Methods and	LB.LBC.LBR.CB.CBC.CBL						
Remarks		times of reflow oven at 230°C MIN for 40sec. with peak temperature at 260 °C for 5sec.					
	Recovery : At least 2 hrs of	f recovery under the standard	condition after the test, followed by the measurement within 48 hrs.				
16.Resisitance to so	plvent						
	LB, LBC, LBR, LBMF Series						
Specified Value	CB, CBC, CBL, CBMF Series		_				
	LBM Series						
	Solvent temperature : Ro	om temperature					
Test Methods and Remarks	Type of solvent : Isopropyl alcohol						
rtemarks	Cleaning conditions : 90s. Immersion and cleaning.						
17.Thermal shock							
	LB, LBC, LBR, LBMF Series						
Specified Value	CB, CBC, CBL, CBMF Series		Inductance change : Within±10%				
	LBM Series No significant abnormality in appearance.						
Test Methods and	LB*LBC*LBR*CB*CBC*CBL*LBM*LBMF*CBMF:						
Remarks The given sample is soldered to the board and then			ctance is measured after 100cycles of the following conditions.				
	Step Temperature (°)				
	1 -40±3	30±3					
	2 Room temperat						
	3 +85±2	30±3					
	0 100±2	00_0					
	4 Room temperat	ure Within 3	standard condition after the test, followed by the measurement within 48 hrs.				

[►] This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

18.Damp heat life to							
Specified Value	LB, LBC, LBR, LBMF Series	Inductance change : Within±10%					
	CB, CBC, CBL, CBMF Series	No significant abnormality in appearance.					
	LBM Series						
T . M	Temperature : 60±2°C						
Test Methods and Remarks	Humidity						
	Recovery : At least 2 hrs of recovery under the standard condition after the test, followed by the measurement within 48 hrs.						
19.Loading under da	amp heat life test						
	LB, LBC, LBR, LBMF Series						
	CB, CBC, CBL, CBMF Series	Inductance change : Within±10% No significant abnormality in appearance.					
Specified Value	LBM Series	The digrimount abnormality in appearance.					
Test Methods and	Temperature : 60±2°C						
Remarks	Humidity : 90~95%RH						
	Duration : 1000 hrs Applied current : Rated current						
		tandard condition after the test, followed by the measurement within 48 hrs.					
20.High temperature	e life test						
	LB, LBC, LBR, LBMF Series	_					
Specified Value	CB, CBC, CBL, CBMF Series	Inductance change : Within±10%					
	LBM Series	No significant abnormality in appearance.					
Test Methods and	Temperature : 85±2°C						
Remarks	Duration : 1000 hrs	40 has					
	Recovery : At least 2 hrs of recovery under the s	tandard condition after the test, followed by the measurement within 48 hrs.					
21 Loading at high t	emperature life test						
ZT.Loading at High t		Inductance change : Within±10%					
	LB, LBC, LBR, LBMF Series	(LBC3225 Series: Within±20%)					
Specified Value		No significant abnormality in appearance.					
	CB, CBC, CBL, CBMF Series						
	LBM Series						
	Temperature : 85±2°C						
Test Methods and Remarks	Duration : 1000 hrs Applied current : Rated current						
Remarks	Applied current : Rated current Recovery : At least 2 hrs of recovery under the standard condition after the test, followed by the measurement within 48 hrs.						
22.Low temperature	e life test						
	LB, LBC, LBR, LBMF Series						
Specified Value	CB, CBC, CBL, CBMF Series	Inductance change: Within±10%					
	LBM Series No significant abnormality in appearance.						
Test Methods and	Temperature : $-40\pm2^{\circ}$ C						
Remarks	Duration : 1000 hrs						
	Recovery : At least 2 hrs of recovery under the standard condition after the test, followed by the measurement within 48 hrs.						
23.Standard condition	on I						
	LB, LBC, LBR, LBMF Series	Standard test conditions Unless specified Ambient temperature is 20 ± 15°C and the Relative					
		Unless specified, Ambient temperature is 20±15°C and the Relative humidity is 65±20%. If there is any doubt about the test results, further measurement shall be had within the following limits: Ambient Temperature: 20±2°C Relative hymidity: 65±594					
Specified Value	CB, CBC, CBL, CBMF Series						
	LBM Series	Relative humidity: 65±5% Inductance value is based on our standard measurement systems.					
-	<u> </u>						

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

WIRE-WOUND CHIP INDUCTORS (LB SERIES), WIRE-WOUND CHIP POWER INDUCTORS (CB SERIES), WIRE-WOUND CHIP INDUCTORS FOR SIGNAL LINES (LB SERIES M TYPE)

PRECAUTIONS

1. Circuit Design Precautions

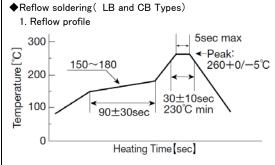
♦Operating environment

1. The products described in this specification are intended for use in general electronic equipment, (office supply equipment, telecommunications systems, measuring equipment, and household equipment). They are not intended for use in mission-critical equipment or systems requiring special quality and high reliability (traffic systems, safety equipment, aerospace systems, nuclear control systems and medical equipment including life-support systems,) where product failure might result in loss of life, injury or damage. For such uses, contact TAIYO YUDEN Sales Department in advance.

Precautions Technical considerations PRECAUTIONS [Recommended Land Patterns] Surface Mounting • Mounting and soldering conditions should be checked beforehand. • Applicable soldering process to those products is reflow soldering only.

3. Considerations for automatic placement				
Precautions	◆Adjustment of mounting machine 1. Excessive impact load should not be imposed on the products when mounting onto the PC boards. 2. Mounting and soldering conditions should be checked beforehand.			
Technical considerations	1. When installing products, care should be taken not to apply distortion stress as it may deform the products.			

4. Soldering


◆Reflow soldering(LB and CB Types)

1. For reflow soldering with either leaded or lead-free solder, the profile specified in "point for controlling" is recommended.

◆Recommended conditions for using a soldering iron

1. Put the soldering iron on the land-pattern. Soldering iron's temperature - Below 350°C Duration-3 seconds or less. The soldering iron should not come in contact with inductor directly.

- ◆Recommended conditions for using a soldering iron
 - 1. Components can be damaged by excessive heat where soldering conditions exceed the specified range

5. Cleaning Precautions ♦ Cleaning conditions Washing by supersonic waves shall be avoided. Technical considerations ♦ Cleaning conditions If washed by supersonic waves, the products might be broken.

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

6. Handling	
Precautions	 ◆Handling 1. Keep the inductors away from all magnets and magnetic objects. ◆Breakaway PC boards (splitting along perforations) 1. When splitting the PC board after mounting inductors, care should be taken not to give any stresses of deflection or twisting to the board. 2. Board separation should not be done manually, but by using the appropriate devices. ◆Mechanical considerations 1. Please do not give the inductors any excessive mechanical shocks.
Technical considerations	 ◆Handling 1. There is a case that a characteristic varies with magnetic influence. ◆Breakaway PC boards(splitting along perforations) 1. Planning pattern configurations and the position of products should be carefully performed to minimize stress. ◆Mechanical considerations 1. There is a case to be damaged by a mechanical shock.

Precautions	 ◆Storage 1. To maintain the solderability of terminal electrodes and to keep the packing material in good condition, temperature and humidity in the storage area should be controlled. • Recommended conditions Ambient temperature: 0~40°C Humidity: Below 70% RH • The ambient temperature must be kept below 30°C. Even under ideal storage conditions, solderability of products electrodes may decrease as time passes. For this reason, product should be used within 6 months from the time of delivery. In case of storage over 6 months, solderability shall be checked before actual usage.
Technical considerations	◆Storage 1. Under a high temperature and humidity environment, problems such as reduced solderability caused by oxidation of terminal electrodes and deterioration of taping/packaging materials may take place.

MULTILAYER CHIP INDUCTORS(LK SERIES)

*Except for LK1005

■PARTS NUMBER

* Operating Temp.:-40~+85°C

△=Blank space

L	K	Δ	1	6	0	8	Δ	R	1	0	М	— т	Δ
	1			(2	2)				3		4	5	6

Multilayer chip inductor

1)Series name Code Series name

4 Inductance tolerance

LK∆

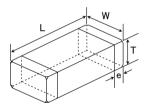
②Dimensions (L	×W)	
Code	Type (inch)	Dimensions (L×W)[mm]
1005	1005(0402)	1.0 × 0.5

Code	Type (inch)	Dimensions (L×W)[mm]
1005	1005(0402)	1.0 × 0.5
1608	1608 (0603)	1.6 × 0.8
2125	2125(0805)	2.0 × 1.25

3 Nominal muuct	3Nonlina inductance			
Code (example)	Nominal inductance[μ H]			
47N	0.047			
R10	0.1			
1R0	1.0			
100	10			
V/D D : 1				

*R=Decimal point N=0.0(nH type)

Code	Inductance tolerance
K	±10%
М	±20%


5Packaging

Code	Packaging
—Т	Taping

6Internal code

Code	Internal code
Δ	Standard

■STANDARD EXTERNAL DIMENSIONS / STANDARD QUANTITY

Туре	1	w	т		Standard quantity[pcs]		
i ype	L	VV	l	е	Paper tape	Embossed tape	
LK 1005	1.00±0.05	0.50 ± 0.05	0.50 ± 0.05	0.25±0.10	10000		
(0402)	(0.039 ± 0.002)	(0.020 ± 0.002)	(0.020 ± 0.002)	(0.010 ± 0.004)	10000	_	
LK 1608	1.6±0.15		4000	_			
(0603)	(0.063 ± 0.006)	(0.031 ± 0.006)	(0.031 ± 0.006)	(0.012 ± 0.008)	4000	_	
	2.0+0.3/-0.1	1.25±0.2	0.85±0.2	0.5 ± 0.3	4000		
LK 2125	(0.079 + 0.012 / -0.004)	(0.049 ± 0.008)	(0.033 ± 0.008)	(0.020 ± 0.012)	4000	_	
(0805)	2.0+0.3/-0.1	1.25±0.2	1.25±0.2	0.5 ± 0.3		2000	
	(0.079 + 0.012 / -0.004)	(0.049 ± 0.008)	(0.049 ± 0.008)	(0.020 ± 0.012)	_	2000	

Unit:mm(inch)

[▶] This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our product specification sheets. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our website (http://www.ty-top.com/).

LK1005

Parts number	EHS	Nominal inductance [μ H]	Inductance tolerance	Q (min.)	Self-resonant frequency [MHz] (min.)	DC Resistance [Ω] (max.)	Rated current [mA] (max.)	Measuring frequency [MHz]	Thickness [mm]
LK 1005 R12□-T	RoHS	0.12	±10%, ±20%	10	180	0.59	25	25	0.50 ±0.05
LK 1005 R15[]-T	RoHS	0.15	±10%, ±20%	10	165	0.63	25	25	0.50 ±0.05
LK 1005 R18[]-T	RoHS	0.18	±10%, ±20%	10	150	0.76	25	25	0.50 ±0.05
LK 1005 R22[]-T	RoHS	0.22	±10%, ±20%	10	135	0.79	25	25	0.50 ±0.05
LK 1005 R27[]-T	RoHS	0.27	±10%, ±20%	10	120	0.91	25	25	0.50 ±0.05
LK 1005 R33∏-T	RoHS	0.33	±10%, ±20%	10	105	1.05	25	25	0.50 ±0.05
LK 1005 R39[]-T	RoHS	0.39	±10%, ±20%	20	85	0.41	20	10	0.50 ±0.05
LK 1005 R47[]-T	RoHS	0.47	±10%, ±20%	20	80	0.42	20	10	0.50 ±0.05
LK 1005 R56[]-T	RoHS	0.56	±10%, ±20%	20	75	0.47	20	10	0.50 ±0.05
LK 1005 R68∏-T	RoHS	0.68	±10%, ±20%	20	70	0.55	20	10	0.50 ±0.05
LK 1005 R82[]-T	RoHS	0.82	±10%, ±20%	20	65	0.59	20	10	0.50 ±0.05
LK 1005 1R0[]-T	RoHS	1.0	±10%, ±20%	20	60	0.64	20	10	0.50 ±0.05
LK 1005 1R2∏-T	RoHS	1.2	±10%, ±20%	20	55	0.79	20	10	0.50 ±0.05
LK 1005 1R5[]-T	RoHS	1.5	±10%, ±20%	20	50	0.95	20	10	0.50 ±0.05
LK 1005 1R8[]-T	R₀HS	1.8	±10%, ±20%	20	45	1.16	20	10	0.50 ±0.05
LK 1005 2R2∏-T	RoHS	2.2	±10%, ±20%	20	40	1.15	20	10	0.50 ±0.05
₩ [] mark indicates the	X ∏ mark indicates the Indictance tolerance code								

^{※ ☐} mark indicates the Inductance tolerance code.

LK1608									
Parts number	EHS	Nominal inductance [μ H]	Inductance tolerance	Q (min.)	Self-resonant frequency [MHz] (min.)	DC Resistance [Ω](max.)	Rated current [mA] (max.)	Measuring frequency [MHz]	Thickness [mm]
LK 1608 47NM-T	RoHS	0.047	±20%	10	260	0.20	150	50	0.80 ± 0.15
LK 1608 68NM-T	RoHS	0.068	±20%	10	250	0.30	150	50	0.80 ± 0.15
LK 1608 82NM-T	RoHS	0.082	±20%	10	245	0.30	150	50	0.80 ± 0.15
LK 1608 R10[]-T	RoHS	0.10	±10%, ±20%	15	240	0.35	150	25	0.80 ± 0.15
LK 1608 R12[]-T	RoHS	0.12	±10%, ±20%	15	205	0.40	150	25	0.80 ± 0.15
LK 1608 R15[]-T	RoHS	0.15	±10%, ±20%	15	180	0.45	150	25	0.80 ± 0.15
LK 1608 R18[]-T	RoHS	0.18	±10%, ±20%	15	165	0.50	100	25	0.80 ± 0.15
LK 1608 R22[]-T	RoHS	0.22	±10%, ±20%	15	150	0.55	100	25	0.80 ± 0.15
LK 1608 R27[]-T	R ₀ HS	0.27	±10%, ±20%	15	136	0.80	100	25	0.80 ± 0.15
LK 1608 R33[]-T	R ₀ HS	0.33	±10%, ±20%	15	125	0.75	80	25	0.80 ±0.15
LK 1608 R39[]-T	R ₀ HS	0.39	±10%, ±20%	15	110	0.85	80	25	0.80 ±0.15
LK 1608 R47[]-T	RoHS	0.47	±10%, ±20%	15	105	0.95	80	25	0.80 ± 0.15
LK 1608 R56∏-T	RoHS	0.56	±10%, ±20%	15	95	1.05	80	25	0.80 ± 0.15
LK 1608 R68[]-T	R ₀ HS	0.68	±10%, ±20%	15	80	1.25	40	25	0.80 ±0.15
LK 1608 R82[]-T	R ₀ HS	0.82	±10%, ±20%	15	75	1.40	40	25	0.80 ±0.15
LK 1608 1R0[]-T	RoHS	1.0	±10%, ±20%	35	70	0.60	40	10	0.80 ± 0.15
LK 1608 1R2[]-T	RoHS	1.2	±10%, ±20%	35	60	0.65	40	10	0.80 ± 0.15
LK 1608 1R5[]-T	R ₀ HS	1.5	±10%, ±20%	35	55	0.70	40	10	0.80 ±0.15
LK 1608 1R8[]-T	RoHS	1.8	±10%, ±20%	35	50	0.95	40	10	0.80 ± 0.15
LK 1608 2R2[]-T	RoHS	2.2	±10%, ±20%	35	45	1.00	30	10	0.80 ± 0.15
LK 1608 2R7∏-T	RoHS	2.7	±10%, ±20%	35	40	1.15	30	10	0.80 ± 0.15
LK 1608 3R3∏-T	RoHS	3.3	±10%, ±20%	35	38	1.30	30	10	0.80 ±0.15
LK 1608 3R9[]-T	R ₀ HS	3.9	±10%, ±20%	35	36	1.50	30	10	0.80 ±0.15
LK 1608 4R7∏-T	RoHS	4.7	±10%, ±20%	35	33	1.60	30	10	0.80 ± 0.15
LK 1608 5R6∏-T	RoHS	5.6	±10%, ±20%	35	22	1.10	10	4	0.80 ±0.15
LK 1608 6R8∏-T	RoHS	6.8	±10%, ±20%	35	20	1.30	10	4	0.80 ±0.15
LK 1608 8R2[]-T	R ₀ HS	8.2	±10%, ±20%	35	18	1.50	10	4	0.80 ±0.15
LK 1608 100[]-T	RoHS	10	±10%, ±20%	35	17	1.70	10	2	0.80 ± 0.15
LK 1608 120[]-T	RoHS	12	±10%, ±20%	35	15	1.80	10	2	0.80 ±0.15
LK 1608 150M-T	RoHS	15	±20%	20	14	1.50	1	1	0.80 ±0.15
LK 1608 180M-T	RoHS	18	±20%	20	13	1.60	1	1	0.80 ±0.15
LK 1608 220M-T	RoHS	22	±20%	20	11	1.70	1	1	0.80 ±0.15
LK 1608 270M-T	RoHS	27	±20%	20	10	1.80	1	1	0.80 ±0.15
LK 1608 330M-T	RoHS	33	±20%	20	9	2.20	1	1	0.80 ± 0.15

^{※ ☐} mark indicates the Inductance tolerance code.

[▶] This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our product specification sheets. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our website (http://www.ty-top.com/).

●LK2125	1	•	•		•	1			
Parts number	EHS	Nominal inductance [μ H]	Inductance tolerance	Q (min.)	Self-resonant frequency [MHz] (min.)	DC Resistance [Ω](max.)	Rated current [mA] (max.)	Measuring frequency [MHz]	Thickness [mm]
LK 2125 47NM-T	RoHS	0.047	±20%	15	320	0.10	300	50	0.85 ± 0.2
LK 2125 68NM-T	RoHS	0.068	±20%	15	280	0.15	300	50	0.85 ± 0.2
LK 2125 82NM-T	RoHS	0.082	±20%	15	255	0.20	300	50	0.85 ± 0.2
LK 2125 R10[]-T	RoHS	0.10	±10%, ±20%	20	235	0.15	270	25	0.85 ± 0.2
LK 2125 R12[]-T	RoHS	0.12	±10%, ±20%	20	220	0.20	270	25	0.85 ±0.2
LK 2125 R15[]-T	RoHS	0.15	±10%, ±20%	20	200	0.20	270	25	0.85 ± 0.2
LK 2125 R18[]-T	RoHS	0.18	±10%, ±20%	20	185	0.25	270	25	0.85 ±0.2
LK 2125 R22[]-T	RoHS	0.22	±10%, ±20%	20	170	0.30	250	25	0.85 ±0.2
LK 2125 R27[]-T	RoHS	0.27	±10%, ±20%	20	150	0.35	250	25	0.85 ± 0.2
LK 2125 R33[]-T	RoHS	0.33	±10%, ±20%	20	145	0.40	250	25	0.85 ±0.2
LK 2125 R39[]-T	RoHS	0.39	±10%, ±20%	25	135	0.45	200	25	0.85 ±0.2
LK 2125 R47[]-T	RoHS	0.47	±10%, ±20%	25	125	0.50	200	25	1.25 ±0.2
LK 2125 R56[]-T	RoHS	0.56	±10%, ±20%	25	115	0.55	150	25	1.25 ±0.2
LK 2125 R68[]-T	RoHS	0.68	±10%, ±20%	25	105	0.60	150	25	1.25 ±0.2
LK 2125 R82[]-T	RoHS	0.82	±10%, ±20%	25	100	0.65	150	25	1.25 ±0.2
LK 2125 1R0[]-T	RoHS	1.0	±10%, ±20%	45	75	0.30	80	10	0.85 ± 0.2
LK 2125 1R2[]-T	RoHS	1.2	±10%, ±20%	45	65	0.35	80	10	0.85 ±0.2
LK 2125 1R5[]-T	RoHS	1.5	±10%, ±20%	45	60	0.40	80	10	0.85 ±0.2
LK 2125 1R8[]-T	RoHS	1.8	±10%, ±20%	45	55	0.45	80	10	0.85 ±0.2
LK 2125 2R2[]-T	RoHS	2.2	±10%, ±20%	45	50	0.50	50	10	0.85 ± 0.2
LK 2125 2R7[]-T	RoHS	2.7	±10%, ±20%	45	45	0.55	50	10	1.25 ±0.2
LK 2125 3R3[]-T	RoHS	3.3	±10%, ±20%	45	41	0.60	50	10	1.25 ± 0.2
LK 2125 3R9[]-T	RoHS	3.9	±10%, ±20%	45	38	0.70	30	10	1.25 ± 0.2
LK 2125 4R7[]-T	RoHS	4.7	±10%, ±20%	45	35	0.70	30	10	1.25 ±0.2
LK 2125 5R6[]-T	RoHS	5.6	±10%, ±20%	50	32	0.60	15	4	1.25 ±0.2
LK 2125 6R8[]-T	RoHS	6.8	±10%, ±20%	50	29	0.70	15	4	1.25 ±0.2
LK 2125 8R2[]-T	RoHS	8.2	±10%, ±20%	50	26	0.70	15	4	1.25 ±0.2
LK 2125 100∏-T	RoHS	10	±10%, ±20%	50	24	0.80	15	2	1.25 ±0.2
LK 2125 120∏-T	RoHS	12	±10%, ±20%	50	22	0.90	15	2	1.25 ±0.2
LK 2125 150M-T	RoHS	15	±20%	30	19	0.70	5	1	1.25 ±0.2
LK 2125 180M-T	RoHS	18	±20%	30	18	0.80	5	1	1.25 ±0.2
LK 2125 220M-T	RoHS	22	±20%	30	16	0.90	5	1	1.25 ±0.2
LK 2125 270M-T	RoHS	27	±20%	30	14	1.00	5	1	1.25 ±0.2
LK 2125 330M-T	RoHS	33	±20%	30	13	1.10	5	0.4	1.25 ±0.2

 ^{☆ ☐} mark indicates the Inductance tolerance code.

STANDARD INDUCTORS

MULTILAYER CHIP INDUCTORS(CK SERIES / CK SERIES S TYPE)

■PARTS NUMBER

U	r.	Δ	 		อ	Δ	ı	ĸ	U	IVI	-	Δ	
	1		2	2)				3		4	5	6	

①Ser	ies	name
	_	

Code	Series name
CK△	M. dath
CKS	Multilayer chip inductor

②Dimensions (L×W)

O = (=	,	
Code	Type (inch)	Dimensions (L×W)[mm]
1608	1608 (0603)	1.6×0.8
2125	2125(0805)	2.0 × 1.25

3 Nominal inductance

* Operating Temp.:-40~+85°C

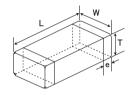
 Δ = Blank space

	Code (example)	Nominal inductance [μ H]
٠	1R0	1.0
	100	10

*R=Decimal point

4 Inductance tolerance

9				
Code	Inductance tolerance			
М	±20%			


⑤Packaging

Code	Packaging
-т	Taping

6Internal code

Jinternal code						
Code	Internal code					
Δ	Standard					

■STANDARD EXTERNAL DIMENSIONS / STANDARD QUANTITY

Туре		L W			Standard qu	antity[pcs]
Туре	L	VV		e	Paper tape	Embossed tape
CK 1608	1.6±0.15	0.8±0.15	0.8±0.15	0.3±0.2	4000	_
(0603)	(0.063 ± 0.006)	(0.031 ± 0.006)	(0.031 ± 0.006)	(0.012 ± 0.008)	4000	_
01/ 0105	2.0+0.3/-0.1	1.25±0.2	0.85±0.2	0.5±0.3	4000	_
CK 2125	(0.079+0.012/-0.004)	(0.049 ± 0.008)	(0.033 ± 0.008)	(0.020 ± 0.012)	4000	_
CKS2125	2.0+0.3/-0.1	1.25±0.2	1.25±0.2	0.5±0.3	_	2000
(0805)	(0.079+0.012/-0.004)	(0.049 ± 0.008)	(0.049 ± 0.008)	(0.020 ± 0.012)	_	2000

Unit:mm(inch)

■PARTS NUMBER

CK1608

Parts number	EHS	Nominal inductance [μ H]	Inductance tolerance	Self-resonant frequency [MHz] (min.)	DC Resistance [Ω](±30%)	Rated current [mA] (max.)	Measuring frequency [MHz]	Thickness [mm]
CK 1608 4R7M-T	RoHS	4.7	±20%	25	0.45	60	4	0.80 ±0.15
CK 1608 100M-T	RoHS	10.0	±20%	17	0.85	50	2	0.80 ±0.15

CK2125

UNZ 123	OKZ125								
Parts number	EHS	Nominal inductance	Inductance tolerance	ictance tolerance frequency		tance[Ω]	Rated current [mA] (max.)	Measuring frequency	Thickness [mm]
				[MHz] (min.)	(max.)	(typ.)	E 13 ([MHz]	£
CK 2125 R10M-T	RoHS	0.10	±20%	235	0.16	80.0	500	25	0.85 ±0.2
CK 2125 R15M-T	RoHS	0.15	±20%	200	0.20	0.13	500	25	0.85 ±0.2
CK 2125 R22M-T	RoHS	0.22	±20%	170	0.23	0.16	400	25	0.85 ±0.2
CK 2125 R33M-T	RoHS	0.33	±20%	145	0.28	0.21	400	25	0.85 ±0.2
CK 2125 R47M-T	RoHS	0.47	±20%	125	0.32	0.25	400	25	1.25 ±0.2
CK 2125 R68M-T	RoHS	0.68	±20%	105	0.45	0.35	300	25	1.25 ±0.2
CK 2125 1R0M-T	RoHS	1.0	±20%	75	0.26	0.19	220	10	0.85 ±0.2
CK 2125 1R5M-T	RoHS	1.5	±20%	60	0.28	0.23	170	10	0.85 ±0.2
CK 2125 2R2M-T	RoHS	2.2	±20%	50	0.35	0.26	150	10	0.85 ±0.2
CK 2125 3R3M-T	RoHS	3.3	±20%	41	0.43	0.38	130	10	1.25 ±0.2
CK 2125 4R7M-T	RoHS	4.7	±20%	35	0.48	0.44	120	10	1.25 ±0.2
CK 2125 6R8M-T	RoHS	6.8	±20%	29	0.52	0.39	70	4	1.25 ±0.2
CK 2125 100M-T	RoHS	10.0	±20%	24	0.65	0.55	60	2	1.25 ±0.2

CKS2125

● UN32123	OK32123										
Parts number	EHS	Nominal inductance	Inductance tolerance			lerance frequency		tance[Ω]	Rated current [mA] (max.)	Measuring frequency	Thickness [mm]
		[[[]		[MHz] (min.)	(max.)	(typ.)	[IIIA] (IIIax.)	[MHz]	[IIIIII]		
CKS2125 1R0M-T	RoHS	1.0	±20%	75	0.12	0.09	280	10	0.85 ±0.2		
CKS2125 2R2M-T	RoHS	2.2	±20%	50	0.19	0.15	170	10	0.85 ±0.2		
CKS2125 4R7M-T	RoHS	4.7	±20%	35	0.30	0.25	130	10	1.25 ±0.2		
CKS2125 100M-T	RoHS	10.0	±20%	24	0.52	0.40	110	2	1.25 ±0.2		

[▶] This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our product specification sheets. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our website (http://www.ty-top.com/).

Precautions on the use of Multilayer chip inductors Multilayer chip inductors for high frequency, Multilayer chip bead inductors Multilayer common mode choke coils (MC series F type)

■PRECAUTIONS

1. Circuit Design

◆Verification of operating environment, electrical rating and performance

 A malfunction in medical equipment, spacecraft, nuclear reactors, etc. may cause serious harm to human life or have severe social ramifications.

Precautions

As such, any inductors to be used in such equipment may require higher safety and/or reliability considerations and should be clearly differentiated from components used in general purpose applications.

- ◆Operating Current(Verification of Rated current)
 - 1. The operating current including inrush current for inductors must always be lower than their rated values.
- 2. Do not apply current in excess of the rated value because the inductance may be reduced due to the magnetic saturation effect.

2. PCB Design

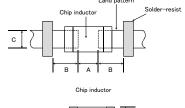
Precautions

◆Pattern configurations(Design of Land-patterns)

1. When inductors are mounted on a PCB, the size of land patterns and the amount of solder used (size of fillet) can directly affect inductor performance.

Therefore, the following items must be carefully considered in the design of solder land patterns:

- (1) The amount of solder applied can affect the ability of chips to withstand mechanical stresses which may lead to breaking or cracking. Therefore, when designing land-patterns it is necessary to consider the appropriate size and configuration of the solder pads which in turn determines the amount of solder necessary to form the fillets.
- (2) When more than one part is jointly soldered onto the same land or pad, the pad must be designed so that each component's soldering point is separated by solder-resist.
- (3) The larger size of land patterns and amount of solder, the smaller Q value after mounting on PCB. It makes higher the Q value to design land patterns smaller than terminal electrode of chips.
- ◆Pattern configurations (Inductor layout on panelized[breakaway] PC boards)
 - After inductors have been mounted on the boards, chips can be subjected to mechanical stresses in subsequent manufacturing processes (PCB cutting, board inspection, mounting of additional parts, assembly into the chassis, wave soldering the reflow soldered boards etc.) For this reason, planning pattern configurations and the position of SMD inductors should be carefully performed to minimize stress.

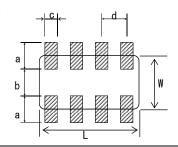

◆Pattern configurations (Design of Land-patterns)

- The following diagrams and tables show some examples of recommended patterns to prevent excessive solder amounts (larger fillets which extend above the component end terminations). Examples of improper pattern designs are also shown.
 - (1) Recommended land dimensions for a typical chip inductor land patterns for PCBs

Recommended land dimensions for Multilayer inductor

Wave-soldering (Unit:mm)

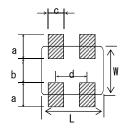
Ту	ре	1608	2012	2125	2016	2520	3216
Size	L	1.6	2.0	2.0	2.0	2.5	3.2
Size	W	0.8	1.25	1.25	1.6	2.0	1.6
-	4	0.8~1.0	1.0~1.4	1.0~1.4	1.0~1.4	1.0~1.4	1.8~2.5
Е	3	0.5~0.8	0.8~1.5	0.8~1.5	0.8~1.5	0.6~1.0	0.8~1.7
С		0.6~0.8	0.9~1.2	0.9~1.2	1.3~1.6	1.6~2.0	1.2~1.6


Technical Reflow-soldering (Unit:mm)

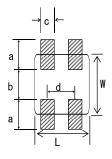
considerations

Ту	ре	0603	1005	105	1608	2012	2125	2016	2520	3216
Size	L	0.6	1.0	1.0	1.6	2.0	2.0	2.0	2.5	3.2
Size	W	0.3	0.5	0.6	0.8	1.25	1.25	1.6	2.0	1.6
-	4	0.20~0.30	0.45~0.55	0.50~0.55	0.8~1.0	0.8~1.2	0.8~1.2	0.8~1.2	1.0~1.4	1.8~2.5
E	3	0.20~0.30	0.40~0.50	0.30~0.40	0.6~0.8	0.8~1.2	0.8~1.2	0.8~1.2	0.6~1.0	0.6~1.5
()	0.25~0.40	0.45~0.55	0.60~0.70	0.6~0.8	0.9~1.6	0.9~1.6	1.2~2.0	1.8~2.2	1.2~2.0

● Recommended land dimension for Array type (Unit:mm)


Ту	ре	2010	3216
Size L		2.0	3.2
Size	W	1.0	1.6
á	а	0.5~0.6	0.7~0.9
ŀ)	0.5~0.6	0.8~1.0
(2	0.2~0.3	0.4~0.5
	<u> </u>	0.5	0.8

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

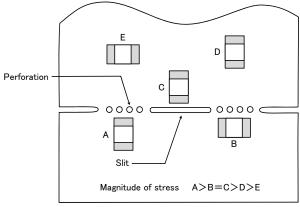

 Recommended land dimension for Multilayer common mode choke coil (Unit:mm)

Type		0605	0806
C:	L	0.65	0.85
Size W		0.50	0.65
á	a	0.27~0.30	0.25~0.35
b		0.17~0.20	0.25~0.35
С		0.20~0.26	0.25~0.35
d		0.4	0.5

		(Onic.min)
Ту	ре	1210
2:	L	1.0
Size W		1.25
á	а	0.45~0.55
ŀ)	0.7~0.8
С		0.25~0.35
(b	0.55

(Unit:mm)

(2) Examples of good and bad solder application


-/	Examples of good and bad solder	application	
	Item	Not recommended	Recommended
	Mixed mounting of SMD and leaded components	Lead wire of component	Solder-resist
	Component placement close to the chassis	Chassis Solder (for grounding) Electrode pattern	Solder-resist
	Hand-soldering of leaded components near mounted components	Lead wire of component Soldering iron	Solder-resist
	Horizontal component placement		Solder-resist

- ◆Pattern configurations(Inductor layout on panelized[breakaway] PC boards)
 - 1-1. The following are examples of good and bad inductor layout; SMD inductors should be located to minimize any possible mechanical stresses from board warp or deflection.

Item	Not recommended	Recom	mended
Deflection of the board			Position the component at a right angle to the direction of the mechanical stresses that are anticipated.

1-2. To layout the inductors for the breakaway PC board, it should be noted that the amount of mechanical stresses given will vary depending on inductor layout.

An example below should be counted for better design.

1-3. When breaking PC boards along their perforations, the amount of mechanical stress on the inductors can vary according to the method used. The following methods are listed in order from least stressful to most stressful: push-back, slit, V-grooving, and perforation. Thus, any ideal SMD inductor layout must also consider the PCB splitting procedure.

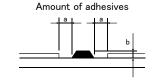
3. Considerations for automatic placement

- ◆Adjustment of mounting machine
 - 1. Excessive impact load should not be imposed on the inductors when mounting onto the PC boards.
 - 2. The maintenance and inspection of the mounter should be conducted periodically.

Precautions

◆ Selection of Adhesives

- 1. Mounting inductors with adhesives in preliminary assembly, before the soldering stage, may lead to degraded inductor characteristics unless the following factors are appropriately checked; the size of land patterns, type of adhesive, amount applied, hardening temperature and hardening period. Therefore, it is imperative to consult the manufacturer of the adhesives on proper usage and amounts of adhesive to use.
- ◆Adjustment of mounting machine
 - 1. If the lower limit of the pick-up nozzle is low, too much force may be imposed on the inductors, causing damage. To avoid this, the following points should be considered before lowering the pick-up nozzle:
 - (1) The lower limit of the pick-up nozzle should be adjusted to the surface level of the PC board after correcting for deflection of the board.
 - (2) The pick-up pressure should be adjusted between 1 and 3N static loads.
 - (3) To reduce the amount of deflection of the board caused by impact of the pick-up nozzle, supporting pins or back-up pins should be used under the PC board. The following diagrams show some typical examples of good pick-up nozzle placement:


Item	Improper method	Proper method
Single-sided mounting	chipping or cracking	supporting pins or back-up pins
Double-sided mounting	chipping or cracking	supporting pins or back-up pins

Technical considerations

- 2. As the alignment pin wears out, adjustment of the nozzle height can cause chipping or cracking of the inductors because of mechanical impact on the inductors. To avoid this, the monitoring of the width between the alignment pin in the stopped position, and maintenance, inspection and replacement of the pin should be conducted periodically.
- ◆Selection of Adhesives
 - 1. Some adhesives may cause reduced insulation resistance. The difference between the shrinkage percentage of the adhesive and that of the inductors may result in stresses on the inductors and lead to cracking. Moreover, too little or too much adhesive applied to the board may adversely affect component placement, so the following precautions should be noted in the application of adhesives.
 - (1) Required adhesive characteristics
 - a. The adhesive should be strong enough to hold parts on the board during the mounting & solder process.
 - b. The adhesive should have sufficient strength at high temperatures.
 - c. The adhesive should have good coating and thickness consistency.
 - d. The adhesive should be used during its prescribed shelf life.
 - e. The adhesive should harden rapidly.
 - f. The adhesive must not be contaminated.
 - g. The adhesive should have excellent insulation characteristics.
 - h. The adhesive should not be toxic and have no emission of toxic gasses.
 - (2) When using adhesives to mount inductors on a PCB, inappropriate amounts of adhesive on the board may adversely affect component placement. Too little adhesive may cause the inductors to fall off the board during the solder process. Too much adhesive may cause defective soldering due excessive flow of adhesive on to the land or solder pad.

[Recommended conditions]

Figure	0805 case sizes as examples
а	0.3mm min
b	100∼120 μm
С	Area with no adhesive

After inductors are bonded

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

4. Soldering

Precautions

◆ Selection of Flux

- 1. Since flux may have a significant effect on the performance of inductors, it is necessary to verify the following conditions prior to use;
 - (1) Flux used should be with less than or equal to 0.1 wt% (Chlorine conversion method) of halogenated content. Flux having a strong acidity content should not be applied.
 - (2) When soldering inductors on the board, the amount of flux applied should be controlled at the optimum level.
 - (3) When using water-soluble flux, special care should be taken to properly clean the boards.

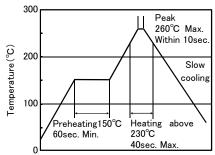
♦Soldering

 Temperature, time, amount of solder, etc. are specified in accordance with the following recommended conditions, and please contact us about peak temperature when you use lead-free paste.

◆Selection of Flux

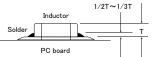
- 1-1. When too much halogenated substance (Chlorine, etc.) content is used to activate the flux, or highly acidic flux is used, an excessive amount of residue after soldering may lead to corrosion of the terminal electrodes or degradation of insulation resistance on the surface of the Inductor.
- 1-2. Flux is used to increase solderability in flow soldering, but if too much is applied, a large amount of flux gas may be emitted and may detrimentally affect solderability. To minimize the amount of flux applied, it is recommended to use a flux-bubbling system.
- 1-3. Since the residue of water-soluble flux is easily dissolved by water content in the air, the residue on the surface of Inductor in high humidity conditions may cause a degradation of insulation resistance and therefore affect the reliability of the components. The cleaning methods and the capability of the machines used should also be considered carefully when selecting water-soluble flux.

♦Soldering


1-1. Preheating when soldering

Preheating: Inductors shall be preheated sufficiently, and the temperature difference between the inductors and solder shall be within 130° C.

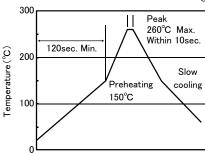
Cooling: The temperature difference between the components and cleaning process should not be greater than 100° C. Inductors are susceptible to thermal shock when exposed to rapid or concentrated heating or rapid cooling. Therefore, the soldering process must be conducted with a great care so as to prevent malfunction of the components due to excessive thermal shock.


[Reflow soldering]

[Recommended condition for Pb-free soldering]

Caution

1. Solder (fillet) should wet up to 1/2 to 1/3 of the thickness of an inductor ideally as shown below:

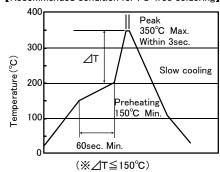


- 2. Because excessive dwell time can detrimentally affect solderability, soldering duration shall be kept as close to recommended time as possible.
- 3. The allowable number of reflow soldering is two (2) times.

Technical considerations

[Wave soldering]

[Recommended condition for Pb-free soldering]



Caution

- 1. Make sure the inductors are preheated sufficiently.
- 2. The temperature difference between the inductor and melted solder should be within 130°C.
- 3. Cooling after soldering should be as gradual as possible.
- 4. The allowable number of wave soldering is one (1) time.
- 5. Wave soldering must not be applied to the inductors designated as for reflow soldering only.

[Hand soldering]

[Recommended condition for Pb-free soldering]

Caution

- 1. It is recommended to use a 20W soldering iron with a maximum tip diameter of 1.0 mm.
- 2. The soldering iron shall not directly touch inductors
- 3. The allowable number of hand soldering is one (1) time $\,$

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

5. Cleaning Cleaning conditions 1. When cleaning the PC board after the Inductors are all mounted, select the appropriate cleaning solution according to the type of flux Precautions used and purpose of the cleaning (e.g. to remove soldering flux or other materials from the production process.) 2. Cleaning conditions should be determined after verifying, through a test run, that the cleaning process does not affect the inductor's characteristics. **♦**Cleaning conditions 1. The use of inappropriate solutions can cause foreign substances such as flux residue to adhere to the inductor, resulting in a degradation of the inductor's electrical properties (especially insulation resistance). 2. Inappropriate cleaning conditions (insufficient or excessive cleaning) may detrimentally affect the performance of the inductors. Technical In the case of ultrasonic cleaning, too much power output can cause excessive vibration of the PC board which may lead to the cracking considerations of the inductor or the soldered portion, or decrease the terminal electrodes' strength. Therefore, the following conditions should be carefully checked: 20W/ℓ or less Ultrasonic output Ultrasonic frequency 40kHz or less Ultrasonic washing period 5 min. or less

6. Resin coating and mold

Precautions

- 1. With some type of resins a decomposition gas or chemical reaction vapor may remain inside the resin during the hardening period or while left under normal storage conditions resulting in the deterioration of the inductor's performance.
- 2. Thermal expansion and thermal shrinkage characteristics of resins may lead to the deterioration of inductors' performance.
- 3. When a resin hardening temperature is higher than inductor operating temperature, the stresses generated by the excessive heat may lead to damage in inductors.

7. Handling

- ◆Breakaway PC boards (splitting along perforations)
 - 1. When splitting the PC board after mounting inductors and other components, care is required so as not to give any stresses of deflection or twisting to the board.
 - 2. Board separation should not be done manually, but by using the appropriate devices.
- ◆General handling precautions
 - · Always wear static control bands to protect against ESD.
 - · Keep the inductors away from all magnets and magnetic objects.
- Use non-magnetic tweezers when handling inductors.
 - · Any devices used with the inductors (soldering irons, measuring instruments) should be properly grounded.
 - · Keep bare hands and metal products (i.e., metal desk) away from inductor electrodes or conductive areas that lead to chip electrodes.
 - Keep inductors away from items that generate magnetic fields such as speakers or coils.
 - ◆Mechanical considerations

Be careful not to subject the inductors to excessive mechanical shocks.

- (1) If inductors are dropped on the floor or a hard surface they should not be used.
- (2) When handling the mounted boards, be careful that the mounted components do not come in contact with or bump against other boards or components.

8. Storage conditions

◆Storage

Precautions

To maintain the solderability of terminal electrodes and to keep the packaging material in good condition, care must be taken to control temperature and humidity in the storage area. Humidity should especially be kept as low as possible.

Recommended conditions

Ambient temperature: 30°C or below Humidity: 70% RH or below

The ambient temperature must be kept below 40°C. Even under ideal storage conditions, solderability of inductor is deteriorated as time passes, so inductors should be used within 6 months from the time of delivery.

•Inductor should be kept where no chlorine or sulfur exists in the air.

Technical considerations

♦Storage

If the parts are stocked in a high temperature and humidity environment, problems such as reduced solderability caused by oxidation of terminal electrodes and deterioration of taping/packaging materials may take place. For this reason, components should be used within 6 months from the time of delivery. If exceeding the above period, please check solderability before using the inductors.

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

Multilayer chip inductors

Multilayer chip inductors for high frequency, Multilayer chip bead inductors

Multilayer common mode choke coils (MC series F type)

Metal Multilayer Chip Power Inductors (MCOIL™ MC series)

RELIABILITY DATA

CK se	series series series series series series series series 03, HK1005 08, HK2125 1603 15 ILTM MC series	$-55 \sim + 125^{\circ}C$ $-55 \sim + 85^{\circ}C$ $-40 \sim + 85^{\circ}C$ $-55 \sim + 125^{\circ}C$ $-40 \sim + 85^{\circ}C$ $-55 \sim + 125^{\circ}C$ $-55 \sim + 125^{\circ}C$ $-40 \sim + 125^{\circ}C \text{ (Including self-generated heat)}$ $-55 \sim + 125^{\circ}C$ $-55 \sim + 85^{\circ}C$ $-40 \sim + 85^{\circ}C$ $-40 \sim + 85^{\circ}C$ $-40 \sim + 85^{\circ}C$
BKP s MCF s CK se CKS s CKS s CKS s CKP s LK se HK060 HK160 HK160 MCOI	series series series series series series series 03, HK1005 08, HK2125 0603 05 ILTM MC series	$-40 \sim +85^{\circ}\text{C}$ $-40 \sim +85^{\circ}\text{C}$ $-55 \sim +125^{\circ}\text{C}$ $-40 \sim +85^{\circ}\text{C}$ $-55 \sim +125^{\circ}\text{C}$ $-40 \sim +125^{\circ}\text{C (Including self-generated heat)}$ $-55 \sim +125^{\circ}\text{C}$ $-55 \sim +85^{\circ}\text{C}$ $-40 \sim +85^{\circ}\text{C}$
Specified Value CKS s	series eries series series series 03, HK1005 08, HK2125 1603 15 ILTM MC series eries series	$-40 \sim +85^{\circ}\text{C}$ $-40 \sim +85^{\circ}\text{C}$ $-55 \sim +125^{\circ}\text{C}$ $-40 \sim +85^{\circ}\text{C}$ $-55 \sim +125^{\circ}\text{C}$ $-40 \sim +125^{\circ}\text{C (Including self-generated heat)}$ $-55 \sim +125^{\circ}\text{C}$ $-55 \sim +85^{\circ}\text{C}$ $-40 \sim +85^{\circ}\text{C}$
CK se	eries series series 03, HK1005 08, HK2125 1603 15 1LTM MC series 1818 1818 1818 1818 1818 1818 1818 18	$-40 \sim +85^{\circ}\text{C}$ $-55 \sim +125^{\circ}\text{C}$ $-40 \sim +85^{\circ}\text{C}$ $-55 \sim +125^{\circ}\text{C}$ $-40 \sim +125^{\circ}\text{C (Including self-generated heat)}$ $-55 \sim +125^{\circ}\text{C}$ $-55 \sim +85^{\circ}\text{C}$ $-40 \sim +85^{\circ}\text{C}$
CKS s	series series 03, HK1005 08, HK2125 0603 5 ILTM MC series eries series series series series series series series series	$-55 \sim +125^{\circ}\text{C}$ $-40 \sim +85^{\circ}\text{C}$ $-55 \sim +125^{\circ}\text{C}$ $-40 \sim +125^{\circ}\text{C (Including self-generated heat)}$ $-55 \sim +125^{\circ}\text{C}$ $-55 \sim +85^{\circ}\text{C}$ $-40 \sim +85^{\circ}\text{C}$
CKP s	series ories ories ories ories ories ories ories folio3 folio folio	$-55 \sim +125^{\circ}\text{C}$ $-40 \sim +85^{\circ}\text{C}$ $-55 \sim +125^{\circ}\text{C}$ $-40 \sim +125^{\circ}\text{C (Including self-generated heat)}$ $-55 \sim +125^{\circ}\text{C}$ $-55 \sim +85^{\circ}\text{C}$ $-40 \sim +85^{\circ}\text{C}$
HK066 HK166 HKQ0 AQ10 MCOI 2. Storage Temperature Ra BK se BKH s BKP s CK se CKS s CKS s CKS s LK se HK066 HK166 HK166 HKQ0 AQ10 MCOI 3. Rated Current BK se BKH s BKP s	03, HK1005 08, HK2125 1603 15 ILTM MC series Inge Pries Series	-40~+85°C -55~+125°C -40~+125°C (Including self-generated heat) -55~+125°C -55~+85°C -40~+85°C
BK se BKH s BKP s CKS s	08, HK2125 1603 15 ILTM MC series Inge Pries Series Series Series Series Series Series Series Series Series	-40~+85°C -55~+125°C -40~+125°C (Including self-generated heat) -55~+125°C -55~+85°C -40~+85°C
AQ10 AQ10 AQ10 AQ10 AQ10 AQ10 AQ10 BK se BKH s BKP s CK se CKS s CKS s CKS s LK se HK060 HK161 HKQ0 AQ10 MCOI 3. Rated Current BK se BKH s BKP s	0603 5 IL™ MC series Inge Pries Series Series Series Series Series Series Series Series Series	-55~+125°C -40~+125°C (Including self-generated heat) -55~+125°C -55~+85°C -40~+85°C
BK se BKH s BKP s CK se CKS s CKS s CKS s CKS s CKS s CKS s BKH 6 HK166 HK166 HK160 AQ10 MCOI	0603 5 IL™ MC series Inge Pries Series Series Series Series Series Series Series Series Series	-55~+125°C -40~+125°C (Including self-generated heat) -55~+125°C -55~+85°C -40~+85°C
2. Storage Temperature Ra BK se BKH s BKP s CK se CKS s CKS s LK se HK060 HK160 HK160 HK100 AQ10 MCOI 3. Rated Current BK se BKH s BKP s	LTM MC series unge eries series series series series series series series series	-40~+125°C (Including self-generated heat) -55~+125°C -55~+85°C -40~+85°C
2. Storage Temperature Ra BK se BKH s BKP s MCF s CK se CKS s CKS s LK se HK060 HK160 HK100 AQ10 MCOI 3. Rated Current BK se BKH s BKP s MCF s	inge eries series series series series series series series	-55~+125°C -55~+85°C -40~+85°C
BK se BKH s BKP s BKP s MCF s CKS s CKP s CKS s CKP s LK se HK060 HK160 HKQ0 AQ10 MCOI	eries series series series eries series series series	-55~+85°C -40~+85°C
BK se BKH s BKP s BKP s MCF s CKS s CKP s CKS s CKP s LK se HK060 HK160 HKQ0 AQ10 MCOI	eries series series series eries series series series	-55~+85°C -40~+85°C
BKH s BKP s MCF s CK se CKS s CKS s CKS s CKS s LK se HK060 HK160 HKQ0 AQ10 MCOI MCOI S Rated Current BK se BKP s MCF	series series series eries series series	-55~+85°C -40~+85°C
BKP s MCF s MCF s CK se CKS s CKS s CKS s CKP s LK se HK060 HK160 HKQ0 AQ10 MCOI MCOI S. Rated Current BK se BKP s MCF s	series series eries series series	-55~+85°C -40~+85°C
MCF CK se CKS Specified Value CKP S LK se HK060 HK160 HKQ0 AQ10 MCOI S Rated Current BK se BKH S BKP S MCF S MCF S CKS S CKS S CKS S CKS S CKS S CKS CKS	series eries series series	-40~+85°C
CK se	eries series series	
CKS s CKP s CKP s CKP s LK se HK060 HK160 HKQ0 AQ10 MCOI S Rated Current BK se BKP s MCF	series series	
CKP s	series	-40~+85°C
LK se HK060 HK160 AQ10 MCOI 3. Rated Current BK se BKH s BKP s MCF		
HK066 HK166 HKQ0 AQ10 MCOI 3. Rated Current BK se BKH s BKP s MCF s	rioc	
HK160 HKQ0 AQ10 MCOI 3. Rated Current BK se BKH s BKP s MCF	1109	
HKQ0 AQ10 MCOI 3. Rated Current BK se BKH s BKP s MCF s	03, HK1005	_55~+125°C
AQ10 MCOI 3. Rated Current BK se BKH s BKP s MCF s	08, HK2125	-40~+85°C
3. Rated Current BK se BKH s BKP s MCF s	1603	
3. Rated Current BK se BKH s BKP s	5	00 1 120 0
BK se BKH s BKP s	L [™] MC series	-40~+85°C
BK se BKH s BKP s		
BKH s BKP s MCF s		
BKP s		The temperature of the element is increased within 20°C.
MCF :		The temperature of the element is increased within 40°C
		Refer to each specification.
UN Se		Refer to each specification.
CKS s		The temperature of the element is increased within 20°C.
		The terrespecture of the element is increased within 10°C
Specified Value CKP s		The temperature of the element is increased within 40°C
LK se		The decreasing-rate of inductance value is within 5 %
	03, HK1005	The decreasing water find outside the few waters for the few waters fo
	08, HK2125	The decreasing-rate of inductance value is within 5 %, or the temperature of the element
HKQ0	IDLLS	increased within 20°C
AQ10		
MCOI		Idc1: The decreasing-rate of inductance value is within 30 %

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

4. Impedance	1			
	BK series			
Specified Value	BKH series		Refer to each specification.	
opeomed value	BKP series		Nerel to each specification.	
	MCF series			
	BK0603Series, BKP0603	Series, BKH Series		
	Measuring frequency : 100±1MHz			
	Measuring equipment	: 4991A(or its ed	quivalent)	
	Measuring jig	: 16193A(or its e	equivalent)	
	BK1005Series, BKP1005	Series ,BKH1005Ser	ries	
	Measuring frequency : 100±1MHz			
	Measuring equipment	: 4291A(or its equivalent)		
	Measuring jig	: 16192A (or its equivalent), HW:16193A (or its		
		equivalent)		
Test Methods and				
Remarks	Measuring frequency : 100±1MHz			
Measuring equipment : 4291A(or its equ		: 4291A(or its ed	quivalent), 4195A (or its equivalent)	
	Measuring jig	: 16192A(or its e	equivalent), HW:16193A(or its equivalent)	
	BK2010 • 3216Series			
	Measuring frequency	: 100±1MHz		
	Measuring equipment	: 4291A(or its equivalent), 4195A(or its equivalent)		
	Measuring jig	: 16192A(or its equivalent)		
	MCF Series			
	Measuring frequency	: 100±1MHz		
	Measuring equipment : 4291A(or its ed		quivalent)	
5. Inductance				
	CK series			
	CKS series			
	OLCD.			

5. Inductance			
	CK series		
	CKS series		
	CKP series		
	LK series		
Specified Value	HK0603, HK1005		Refer to each specification.
	HK1608, HK2125		
	HKQ0603		
	AQ105		
	MCOIL [™] MC series		
	CK, CKS, LK Series		
	Measuring frequency : Refer to each		n specification.
			l294A+16092A(or its equivalent) .+16193A(or its equivalent)
	Measuring current : 047~4.7 μH		⇒1mArms 、 5.6~33 μH ⇒0.1mArms
	CKP、MCOIL™ MC Series		
	Measuring frequency : 1MHz		
	Measuring equipment	: 4285A(or its equivalent)	
Test Methods and Remarks	HK0603、HK1005、AQ Series	S	
Remarks	Measuring frequency	: 100MHz	
	Measuring equipment /jig		1991A+16197A(or its equivalent), AQ105⇒4291A+16197A(or its equivalent) 191A+16193A(or its equivalent)
	HK1608、HK2125 Series		
	Measuring frequency	: ~100nH⇒10	00MHz 、120nH~⇒50MHz
	Measuring equipment /jig	: 4291A+1609	2A(or its equivalent)
	HKQ Series		
	Measuring frequency	: 500MHz	
	Measuring equipment /jig	ment /jig : E4991A+16197A(or its equivalent)	

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

6. Q			
	CK series		
	CKS series	_	
	CKP series		
	LK series		
Specified Value	HK0603, HK1005		
opcomed value	HK1608, HK2125	Refer to each specification.	
	HKQ0603	Note: to each specification.	
	AQ105 MCOIL™ MC series		
		_	
	LK Series		
	Measuring frequency : Refer to each s	·	
	Measuring equipment /jig : 1608,2125⇒429		
	1005⇒4291A+16193A(or its equivalent)		
	Measuring current : $047 \sim 4.7 \mu\text{H} \Rightarrow$	1mArms 、 5.6~33 μH ⇒0.1mArms	
	HK0603, HK1005, AQ Series		
Test Methods and	Measuring frequency : 100MHz		
Remarks	Measuring equipment /jig : HK0603⇒E49	991A+16197A(or its equivalent), AQ105⇒4291A+16197A(or its equivalent)	
	HK1005⇒429	11A+16193A(or its equivalent)	
	HK1608、HK2125 Series		
	Measuring frequency : ~100nH⇒10	00MHz 、120nH~⇒50MHz	
	Measuring equipment /jig : 4291A+1609	2A (or its equivalent)	
	HKQ Series		
	Measuring frequency : 500MHz		
		97A(or its equivalent)	
7. DC Resistance			
7. 50 110010141100	BK series		
	BKH series		
	BKP series		
	MCF series		
	CK series		
	CKS series	Refer to each specification.	
Specified Value	CKP series		
	LK series		
	HK0603, HK1005		
	HK1608, HK2125		
	HKQ0603		
	AQ105		
	MCOIL™ MC series		
To at Mathematical	WIGOIL WIG series		
Test Methods and	Measuring equipment: IWATSU VOAC7512, H	IIOKI RM3545 (or its equivalent)	
Remarks			
0.0.10.0	r (ODF)		
8. Self Resonance I			
	BK series		
	BKH series	 	
	BKP series		
	MCF series		
	CK series	Defaute and annifortion	
	CKS series	Refer to each specification.	
Specified Value	CKP series	-	
	LK series		
-	HK0603, HK1005		
	HK1608, HK2125	Refer to each specification.	
	HKQ0603	Training to dust oppositionation.	
	AQ105		
	MCOIL™ MC series	_	
	LK, CK Series:	(فعمان شر	
Test Methods and	Measuring equipment : 4195A(or its eq		
Remarks	Measuring jig : 16092A (or its e	equivalent)	
	HK, HKQ, AQ Series :		
	Measuring equipment : 8719C(or its equivalent)		

[►] This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

9. Resistance to Flo	of Cultaburk	
9. Resistance to Fig	BK series	
	BKH series	
	BKP series	
	MCF series	
	CK series	
	CKS series	
Specified Value	CKP series	No mechanical damage.
	LK series	
	HK0603, HK1005	
	HK1608, HK2125	
	HKQ0603	
	AQ105	
	MCOIL™ MC series	DIVINOS ON ONO OND THE THE THEOROGOD THEOROGODY TO O
Test Methods and Remarks	Warp : 2mm (BK Series, BKP, E Series) : 1mm (BKH0603, MCF Series) Testing board : glass epoxy-resin substrate : 0.8mm	Warp

10. Solderability				
	BK series			
	BKH series			
	BKP series			
	MCF series			
	CK series			
	CKS series			
Specified Value	CKP series		At least 90% of terminal electrode is covered by new solder.	
	LK series			
	HK0603, HK1005			
	HK1608, HK2125			
	HKQ0603			
	AQ105			
	MCOIL [™] MC series			
Test Methods and	Solder temperature :230±5°C (JIS Z		3282 H60A or H63A)	
Remarks	Solder temperature	:245±3°C (Sn/3.0	0Ag/0.5Cu)	
i terriar No	Duration :4±1 sec.			

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

11. Resistance to S	Soldering		
	BK series		A
	BKH series		Appearance: No significant abnormality
	BKP series		Impedance change:Within ±30%
	MCF series		Appearance: No significant abnormality Impedance change: Within ±20%
	CK series		Appearance: No significant abnormality Inductance change: R10~4R7⇒Within ±10%、6R8~100⇒Within ±15%
	CKS series CKP series		Appearance: No significant abnormality Inductance change: Within ±20%
Specified Value			Appearance: No significant abnormality Inductance change: Within ±30%
LK series		Appearance: No significant abnormality Inductance change: 1005⇒Within ±15% 1608,2125⇒ 47N~4R7: Within ±10% 5R6~330: Within ±15%	
	HK0603, HK1005		
	HK1608, HK2125		Appearance: No significant abnormality
	HKQ0603		Inductance change: Within ±5%
	AQ105		
	MCOIL [™] MC series		Appearance: No significant abnormality Inductance change: Within ±10%
	Solder temperature	:260±5°C	
	Duration	:10±0.5 sec.	
Test Methods and	Preheating temperature	:150 to 180°C	
Remarks	Preheating time	:3 min.	
	Flux	:Immersion into	o methanol solution with colophony for 3 to 5 sec.
	Recovery	:2 to 3 hrs of r	recovery under the standard condition after the test. (See Note 1)

(Note 1) When there are questions concerning measurement result; measurement shall be made after 48 ± 2 hrs of recovery under the standard condition.

12. Thermal Shock					
	BK serie	s			
	BKH series			Appearance: No significant abnormality Impedance change: Within ±30%	
	BKP series		Impedance chang	ge: Within ±30%	
	MCF ser	ies		significant abnormality ge: Within ±20%	
	CK serie	s	Appearance: No	significant abnormality	
	CKS ser	ies	Inductance chan	ge:Within ±20%	
Specified Value	CKP series LK series			significant abnormality ge: Within ±30%	
				significant abnormality ge: Within ±10% Q change: Within ±30%	
	HK0603,	HK1005			
	HK1608,	HK2125	Appearance: No significant abnormality		
	HKQ060	3	Inductance chan	Inductance change: Within $\pm 10\%$ Q change: Within $\pm 20\%$	
	AQ105				
	MCOIL [™] MC series			significant abnormality ge: Within ±10%	
	Condition	ns for 1 cycle			
	Step	temperature (°C))	time (min.)	
	1	Minimum operating temperate	ure $+0/-3$	30±3	
Test Methods and	2	Room temperatur	e	2~3	
Remarks	3	Maximum operating temperat	ture $+3/-0$	30±3	
	4	Room temperatur	e	2~3	
	Number	of cycles:5			
	Recovery: 2 to 3 hrs of recovery under the st		standard condition a	after the test.(See Note 1)	

(Note 1) When there are questions concerning measurement result; measurement shall be made after 48 ± 2 hrs of recovery under the standard condition.

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

13. Damp Heat (S	 · _ · _ ·		
	BK series	Appearance: No significant abnormality	
	BKH series	Impedance change: Within ±30%	
	BKP series	·	
	MCF series	Appearance: No significant abnormality Impedance change: Within ±20%	
	CK series	Appearance: No significant abnormality	
	CKS series	Inductance change: Within ±20%	
0 :5 13/1	CKP series	Appearance: No significant abnormality Inductance change: Within ±30%	
Specified Value	LK series	Appearance: No significant abnormality Inductance change: 1005,1608⇒Within ±10% 2125⇒Within ±20% Q change: Within ±30%	
	HK0603, HK1005		
	HK1608, HK2125	Appearance: No significant abnormality	
	HKQ0603	Inductance change: Within ±10% Q change: Within ±20%	
	AQ105		
	MCOIL™ MC series	Appearance: No significant abnormality	
	MCOIL MC series	Inductance change: Within ±10%	
	BK、BKP、BKH、LK、CK、CKS、CKP、M Temperature :40±2°C	OF Series:	
	Humidity :90 to 95%RH		
	Duration :500 +24/-0 hrs		
est Methods and	Recovery :2 to 3 hrs of recovery	under the standard condition after the removal from test chamber. (See Note 1)	
Remarks	HK, HKQ, AQ, MCOIL [™] MC series:		
	Temperature : 60±2°C		
	Humidity: 90 to 95%RH		
	Duration : 500 +24/-0 hrs		
	Recovery :2 to 3 hrs of recovery under the standard condition after the removal from test chamber.(See Note 1)		

(Note 1) When there are questions concerning measurement result; measurement shall be made after 48 ± 2 hrs of recovery under the standard condition.

[►] This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

14. Loading under I	Damp Heat				
	BK series		A 10 10 10 10 10 10 10 10 10 10 10 10 10		
	BKH series		Appearance: No significant abnormality		
	BKP series		Impedance change: Within ±30%		
	MCF series		_		
	CK series		Appearance: No significant abnormality		
	CKS series		Inductance change: Within ±20%		
			Appearance: No significant abnormality		
	CKP series		Inductance change: Within ±30%		
			Appearance: No significant abnormality		
0 'C 1)/ 1			Inductance change: 1005⇒Within ±10%		
Specified Value			1608 ⇒ 0.047 ~ 12.0 μ H: Within ±10% 15.0 ~ 33.0 μ H: Within ±		
	LK series		15%		
			2125⇒Within ±20%		
			Q change: Within ±30%		
	HK0603, HK1005				
	HK1608, HK2125		Appearance: No significant abnormality		
	HKQ0603		Inductance change: Within ±10% Q change: Within ±20%		
	AQ105				
	MCOIL™ MC series※		Appearance: No significant abnormality		
			Inductance change: Within ±10%		
	BK, BKP, BKH, LK, CK, CKS, CKP Series:		:		
	Temperature	:40±2°C			
	Humidity	:90 to 95%RH			
	Applied current	: Rated current			
	Duration	:500 +24/-0 hrs			
-	Recovery	:2 to 3 hrs of recovery	under the standard condition after the removal from test chamber.(See Note 1)		
Test Methods and					
Remarks	HK, HKQ, AQ, MC	OIL™ MC Series:			
	Temperature	:60±2°C			
	Humidity	:90 to 95%RH			
	Applied current	:Rated current ※MC	series ; Idc2max		
	Duration	:500 +24/-0 hrs			
	Recovery	:2 to 3 hrs of recovery under the standard condition after the removal from test chamber. (See Note 1)			

Note on standard condition: "standard condition" referred to herein is defined as follows:

5 to 35°C of temperature, 45 to 85% relative humidity, and 86 to 106kPa of air pressure.

When there are questions concerning measurement results:

In order to provide correlation data, the test shall be conducted under condition of $20\pm2^{\circ}C$ of temperature, 60 to 70% relative humidity, and 86 to 106kPa of air pressure.

Unless otherwise specified, all the tests are conducted under the "standard condition."

(Note 1) Measurement shall be made after 48 ± 2 hrs of recovery under the standard condition.

[►] This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

	BK series		
	BKH series	Appearance: No significant abnormality	
	BKP series	Impedance change: Within ±30%	
	MCF series	Appearance: No significant abnormality Impedance change: Within ±20%	
	CK series	Appearance: No significant abnormality	
	CKS series	Inductance change: Within ±20%	
	CKP series	Appearance: No significant abnormality Inductance change: Within ±30%	
Specified Value	LK series	Appearance: No significant abnormality Inductance change: 1005⇒Within ±10% 1608⇒0.047∼12.0 μH: Within ±10% 15.0∼33.0 μH: Within ± 15% 2125⇒Within ±20% Q change: Within ±30%	
	HK0603, HK1005		
	HK1608, HK2125	Appearance: No significant abnormality	
	HKQ0603	Inductance change: Within ±10% Q change: Within ±20%	
	AQ105		
	MCOIL [™] MC series※	Appearance: No significant abnormality Inductance change: Within ±10%	
Test Methods and Remarks	Temperature : Maximum operating Applied current :Rated current :XI Duration :500 +24/-0 hrs Recovery :2 to 3 hrs of recovery	•	

Note on standard condition: "standard condition" referred to herein is defined as follows:

5 to 35°C of temperature, 45 to 85% relative humidity, and 86 to 106kPa of air pressure.

When there are questions concerning measurement results:

In order to provide correlation data, the test shall be conducted under condition of $20\pm2^{\circ}C$ of temperature, 60 to 70% relative humidity, and 86 to 106kPa of air pressure. Unless otherwise specified, all the tests are conducted under the "standard condition."

(Note 1) Measurement shall be made after 48±2 hrs of recovery under the standard condition.

[►] This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

Precautions on the use of Multilayer chip inductors Multilayer chip inductors for high frequency, Multilayer chip bead inductors Multilayer common mode choke coils (MC series F type)

■PRECAUTIONS

1. Circuit Design

◆Verification of operating environment, electrical rating and performance

 A malfunction in medical equipment, spacecraft, nuclear reactors, etc. may cause serious harm to human life or have severe social ramifications.

Precautions

As such, any inductors to be used in such equipment may require higher safety and/or reliability considerations and should be clearly differentiated from components used in general purpose applications.

- ◆Operating Current(Verification of Rated current)
 - 1. The operating current including inrush current for inductors must always be lower than their rated values.
- 2. Do not apply current in excess of the rated value because the inductance may be reduced due to the magnetic saturation effect.

2. PCB Design

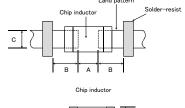
Precautions

◆Pattern configurations(Design of Land-patterns)

1. When inductors are mounted on a PCB, the size of land patterns and the amount of solder used (size of fillet) can directly affect inductor performance.

Therefore, the following items must be carefully considered in the design of solder land patterns:

- (1) The amount of solder applied can affect the ability of chips to withstand mechanical stresses which may lead to breaking or cracking. Therefore, when designing land-patterns it is necessary to consider the appropriate size and configuration of the solder pads which in turn determines the amount of solder necessary to form the fillets.
- (2) When more than one part is jointly soldered onto the same land or pad, the pad must be designed so that each component's soldering point is separated by solder-resist.
- (3) The larger size of land patterns and amount of solder, the smaller Q value after mounting on PCB. It makes higher the Q value to design land patterns smaller than terminal electrode of chips.
- ◆Pattern configurations (Inductor layout on panelized[breakaway] PC boards)
 - After inductors have been mounted on the boards, chips can be subjected to mechanical stresses in subsequent manufacturing processes (PCB cutting, board inspection, mounting of additional parts, assembly into the chassis, wave soldering the reflow soldered boards etc.) For this reason, planning pattern configurations and the position of SMD inductors should be carefully performed to minimize stress.

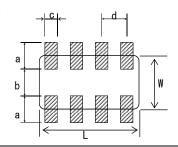

◆Pattern configurations (Design of Land-patterns)

- The following diagrams and tables show some examples of recommended patterns to prevent excessive solder amounts (larger fillets which extend above the component end terminations). Examples of improper pattern designs are also shown.
 - (1) Recommended land dimensions for a typical chip inductor land patterns for PCBs

Recommended land dimensions for Multilayer inductor

Wave-soldering (Unit:mm)

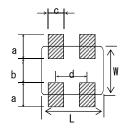
Ту	ре	1608	2012	2125	2016	2520	3216
Size	L	1.6	2.0	2.0	2.0	2.5	3.2
Size	W	0.8	1.25	1.25	1.6	2.0	1.6
-	4	0.8~1.0	1.0~1.4	1.0~1.4	1.0~1.4	1.0~1.4	1.8~2.5
Е	3	0.5~0.8	0.8~1.5	0.8~1.5	0.8~1.5	0.6~1.0	0.8~1.7
()	0.6~0.8	0.9~1.2	0.9~1.2	1.3~1.6	1.6~2.0	1.2~1.6


Technical Reflow-soldering (Unit:mm)

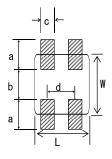
considerations

Ту	ре	0603	1005	105	1608	2012	2125	2016	2520	3216
Size	L	0.6	1.0	1.0	1.6	2.0	2.0	2.0	2.5	3.2
Size	W	0.3	0.5	0.6	0.8	1.25	1.25	1.6	2.0	1.6
-	4	0.20~0.30	0.45~0.55	0.50~0.55	0.8~1.0	0.8~1.2	0.8~1.2	0.8~1.2	1.0~1.4	1.8~2.5
Е	3	0.20~0.30	0.40~0.50	0.30~0.40	0.6~0.8	0.8~1.2	0.8~1.2	0.8~1.2	0.6~1.0	0.6~1.5
)	0.25~0.40	0.45~0.55	0.60~0.70	0.6~0.8	0.9~1.6	0.9~1.6	1.2~2.0	1.8~2.2	1.2~2.0

● Recommended land dimension for Array type (Unit:mm)


Ту	ре	2010	3216
Size	L	2.0	3.2
Size	W	1.0	1.6
а		0.5~0.6	0.7~0.9
b		0.5~0.6	0.8~1.0
С		0.2~0.3	0.4~0.5
d		0.5	0.8

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

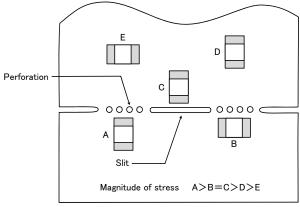

 Recommended land dimension for Multilayer common mode choke coil (Unit:mm)

Туре		0605	0806
c: L		0.65	0.85
Size	W	0.50	0.65
а		0.27~0.30	0.25~0.35
b		0.17~0.20	0.25~0.35
С		0.20~0.26	0.25~0.35
d		0.4	0.5

		(Onic.min)
Ту	ре	1210
2:	L	1.0
Size	W	1.25
а		0.45~0.55
b		0.7~0.8
С		0.25~0.35
d		0.55

(Unit:mm)

(2) Examples of good and bad solder application


-/	Examples of good and bad solder application					
	Item	Not recommended	Recommended			
	Mixed mounting of SMD and leaded components	Lead wire of component	Solder-resist			
	Component placement close to the chassis	Chassis Solder (for grounding) Electrode pattern	Solder-resist			
	Hand-soldering of leaded components near mounted components	Lead wire of component Soldering iron	Solder-resist			
	Horizontal component placement		Solder-resist			

- ◆Pattern configurations(Inductor layout on panelized[breakaway] PC boards)
 - 1-1. The following are examples of good and bad inductor layout; SMD inductors should be located to minimize any possible mechanical stresses from board warp or deflection.

Item	Item Not recommended		mended
Deflection of the board			Position the component at a right angle to the direction of the mechanical stresses that are anticipated.

1-2. To layout the inductors for the breakaway PC board, it should be noted that the amount of mechanical stresses given will vary depending on inductor layout.

An example below should be counted for better design.

1-3. When breaking PC boards along their perforations, the amount of mechanical stress on the inductors can vary according to the method used. The following methods are listed in order from least stressful to most stressful: push-back, slit, V-grooving, and perforation. Thus, any ideal SMD inductor layout must also consider the PCB splitting procedure.

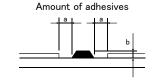
3. Considerations for automatic placement

- ◆Adjustment of mounting machine
 - 1. Excessive impact load should not be imposed on the inductors when mounting onto the PC boards.
 - 2. The maintenance and inspection of the mounter should be conducted periodically.

Precautions

◆ Selection of Adhesives

- 1. Mounting inductors with adhesives in preliminary assembly, before the soldering stage, may lead to degraded inductor characteristics unless the following factors are appropriately checked; the size of land patterns, type of adhesive, amount applied, hardening temperature and hardening period. Therefore, it is imperative to consult the manufacturer of the adhesives on proper usage and amounts of adhesive to use.
- ◆Adjustment of mounting machine
 - 1. If the lower limit of the pick-up nozzle is low, too much force may be imposed on the inductors, causing damage. To avoid this, the following points should be considered before lowering the pick-up nozzle:
 - (1) The lower limit of the pick-up nozzle should be adjusted to the surface level of the PC board after correcting for deflection of the board.
 - (2) The pick-up pressure should be adjusted between 1 and 3N static loads.
 - (3) To reduce the amount of deflection of the board caused by impact of the pick-up nozzle, supporting pins or back-up pins should be used under the PC board. The following diagrams show some typical examples of good pick-up nozzle placement:


Item	Improper method	Proper method
Single-sided mounting	chipping or cracking	supporting pins or back-up pins
Double-sided mounting	chipping or cracking	supporting pins or back-up pins

Technical considerations

- 2. As the alignment pin wears out, adjustment of the nozzle height can cause chipping or cracking of the inductors because of mechanical impact on the inductors. To avoid this, the monitoring of the width between the alignment pin in the stopped position, and maintenance, inspection and replacement of the pin should be conducted periodically.
- ◆Selection of Adhesives
 - 1. Some adhesives may cause reduced insulation resistance. The difference between the shrinkage percentage of the adhesive and that of the inductors may result in stresses on the inductors and lead to cracking. Moreover, too little or too much adhesive applied to the board may adversely affect component placement, so the following precautions should be noted in the application of adhesives.
 - (1) Required adhesive characteristics
 - a. The adhesive should be strong enough to hold parts on the board during the mounting & solder process.
 - b. The adhesive should have sufficient strength at high temperatures.
 - c. The adhesive should have good coating and thickness consistency.
 - d. The adhesive should be used during its prescribed shelf life.
 - e. The adhesive should harden rapidly.
 - f. The adhesive must not be contaminated.
 - g. The adhesive should have excellent insulation characteristics.
 - h. The adhesive should not be toxic and have no emission of toxic gasses.
 - (2) When using adhesives to mount inductors on a PCB, inappropriate amounts of adhesive on the board may adversely affect component placement. Too little adhesive may cause the inductors to fall off the board during the solder process. Too much adhesive may cause defective soldering due excessive flow of adhesive on to the land or solder pad.

[Recommended conditions]

Figure	0805 case sizes as examples	
а	0.3mm min	
b	100∼120 μm	
С	Area with no adhesive	

After inductors are bonded

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

4. Soldering

Precautions

◆ Selection of Flux

- 1. Since flux may have a significant effect on the performance of inductors, it is necessary to verify the following conditions prior to use;
 - (1) Flux used should be with less than or equal to 0.1 wt% (Chlorine conversion method) of halogenated content. Flux having a strong acidity content should not be applied.
 - (2) When soldering inductors on the board, the amount of flux applied should be controlled at the optimum level.
 - (3) When using water-soluble flux, special care should be taken to properly clean the boards.

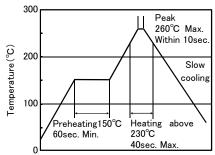
♦Soldering

 Temperature, time, amount of solder, etc. are specified in accordance with the following recommended conditions, and please contact us about peak temperature when you use lead-free paste.

◆Selection of Flux

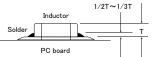
- 1-1. When too much halogenated substance (Chlorine, etc.) content is used to activate the flux, or highly acidic flux is used, an excessive amount of residue after soldering may lead to corrosion of the terminal electrodes or degradation of insulation resistance on the surface of the Inductor.
- 1-2. Flux is used to increase solderability in flow soldering, but if too much is applied, a large amount of flux gas may be emitted and may detrimentally affect solderability. To minimize the amount of flux applied, it is recommended to use a flux-bubbling system.
- 1-3. Since the residue of water-soluble flux is easily dissolved by water content in the air, the residue on the surface of Inductor in high humidity conditions may cause a degradation of insulation resistance and therefore affect the reliability of the components. The cleaning methods and the capability of the machines used should also be considered carefully when selecting water-soluble flux.

♦Soldering


1-1. Preheating when soldering

Preheating: Inductors shall be preheated sufficiently, and the temperature difference between the inductors and solder shall be within 130° C.

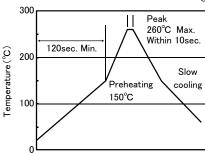
Cooling: The temperature difference between the components and cleaning process should not be greater than 100° C. Inductors are susceptible to thermal shock when exposed to rapid or concentrated heating or rapid cooling. Therefore, the soldering process must be conducted with a great care so as to prevent malfunction of the components due to excessive thermal shock.


[Reflow soldering]

[Recommended condition for Pb-free soldering]

Caution

1. Solder (fillet) should wet up to 1/2 to 1/3 of the thickness of an inductor ideally as shown below:

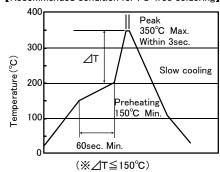


- 2. Because excessive dwell time can detrimentally affect solderability, soldering duration shall be kept as close to recommended time as possible.
- 3. The allowable number of reflow soldering is two (2) times.

Technical considerations

[Wave soldering]

[Recommended condition for Pb-free soldering]



Caution

- 1. Make sure the inductors are preheated sufficiently.
- 2. The temperature difference between the inductor and melted solder should be within 130°C.
- 3. Cooling after soldering should be as gradual as possible.
- 4. The allowable number of wave soldering is one (1) time.
- 5. Wave soldering must not be applied to the inductors designated as for reflow soldering only.

[Hand soldering]

[Recommended condition for Pb-free soldering]

Caution

- 1. It is recommended to use a 20W soldering iron with a maximum tip diameter of 1.0 mm.
- 2. The soldering iron shall not directly touch inductors
- 3. The allowable number of hand soldering is one (1) time $\,$

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

5. Cleaning Cleaning conditions 1. When cleaning the PC board after the Inductors are all mounted, select the appropriate cleaning solution according to the type of flux Precautions used and purpose of the cleaning (e.g. to remove soldering flux or other materials from the production process.) 2. Cleaning conditions should be determined after verifying, through a test run, that the cleaning process does not affect the inductor's characteristics. **♦**Cleaning conditions 1. The use of inappropriate solutions can cause foreign substances such as flux residue to adhere to the inductor, resulting in a degradation of the inductor's electrical properties (especially insulation resistance). 2. Inappropriate cleaning conditions (insufficient or excessive cleaning) may detrimentally affect the performance of the inductors. Technical In the case of ultrasonic cleaning, too much power output can cause excessive vibration of the PC board which may lead to the cracking considerations of the inductor or the soldered portion, or decrease the terminal electrodes' strength. Therefore, the following conditions should be carefully checked: 20W/ℓ or less Ultrasonic output Ultrasonic frequency 40kHz or less Ultrasonic washing period 5 min. or less

6. Resin coating and mold

Precautions

- 1. With some type of resins a decomposition gas or chemical reaction vapor may remain inside the resin during the hardening period or while left under normal storage conditions resulting in the deterioration of the inductor's performance.
- 2. Thermal expansion and thermal shrinkage characteristics of resins may lead to the deterioration of inductors' performance.
- 3. When a resin hardening temperature is higher than inductor operating temperature, the stresses generated by the excessive heat may lead to damage in inductors.

7. Handling

- ◆Breakaway PC boards (splitting along perforations)
 - 1. When splitting the PC board after mounting inductors and other components, care is required so as not to give any stresses of deflection or twisting to the board.
 - 2. Board separation should not be done manually, but by using the appropriate devices.
- ◆General handling precautions
 - · Always wear static control bands to protect against ESD.
 - · Keep the inductors away from all magnets and magnetic objects.
- Use non-magnetic tweezers when handling inductors.
 - · Any devices used with the inductors (soldering irons, measuring instruments) should be properly grounded.
 - · Keep bare hands and metal products (i.e., metal desk) away from inductor electrodes or conductive areas that lead to chip electrodes.
 - Keep inductors away from items that generate magnetic fields such as speakers or coils.
 - ◆Mechanical considerations

Be careful not to subject the inductors to excessive mechanical shocks.

- (1) If inductors are dropped on the floor or a hard surface they should not be used.
- (2) When handling the mounted boards, be careful that the mounted components do not come in contact with or bump against other boards or components.

8. Storage conditions

◆Storage

Precautions

To maintain the solderability of terminal electrodes and to keep the packaging material in good condition, care must be taken to control temperature and humidity in the storage area. Humidity should especially be kept as low as possible.

Recommended conditions

Ambient temperature: 30°C or below Humidity: 70% RH or below

The ambient temperature must be kept below 40°C. Even under ideal storage conditions, solderability of inductor is deteriorated as time passes, so inductors should be used within 6 months from the time of delivery.

•Inductor should be kept where no chlorine or sulfur exists in the air.

Technical considerations

♦Storage

If the parts are stocked in a high temperature and humidity environment, problems such as reduced solderability caused by oxidation of terminal electrodes and deterioration of taping/packaging materials may take place. For this reason, components should be used within 6 months from the time of delivery. If exceeding the above period, please check solderability before using the inductors.

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).