LDO Regulator - High Accuracy, Low Noise 20 mA The SCP51460 is a low cost, low power, high accuracy LDO voltage regulator. This device will supply output current up to 20 mA at fixed output voltage 3.3 V with excellent regulation characteristics, making it ideal for precision regulator applications. It is designed to be stable without output capacitor. This is an important feature, when fast rise times and PCB space are in concern. The protective features include Short Circuit Current and Reverse Voltage Protection. The SCP51460 is packaged in 3 leads surface mount SOT–23 package. ### **Features** - Fixed Output Voltage 3.3 V - V_{OUT} Accuracy 1% over 0 to +100°C - Wide Input Voltage Range up to 28 V - Low Quiescent Current - Low Noise - Reverse Battery Protection - Stable Without Output Capacitor - Available in 3 leads SOT-23 Package - This Device is Pb-Free and is RoHS Compliant ### **Typical Applications** - Handheld Instruments - Precision Regulators - Data Acquisition Systems - High Accuracy Micropower Supplies Figure 1. Typical Application Schematics ## ON Semiconductor® www.onsemi.com SOT-23-3 SN1 SUFFIX CASE 318 ### MARKING DIAGRAM AND PIN ASSIGNMENT D46 = Specific Device Code M = Date Code ■ = Pb-Free Package (Note: Microdot may be in either location) ### ORDERING INFORMATION See detailed ordering and shipping information in the package dimensions section on page 5 of this data sheet. ### **Table 1. PIN FUNCTION DESCRIPTION** | Pin No. | Pin Name | Description | | | |---------|------------------|---------------------------------------|--|--| | 1 | V _{IN} | Positive Input Voltage | | | | 2 | V _{OUT} | Regulated Output Voltage | | | | 3 | GND | Power Supply Ground; Device Substrate | | | ### **Table 2. ABSOLUTE MAXIMUM RATINGS** | Rating | Symbol | Value | Unit | |---|---------------------|------------|------| | Input Voltage (Note 1) | V _{IN} | 30 | V | | Reverse Input Voltage | V _{IN} | -15 | V | | Output Short Circuit Duration (Note 2) | I _{OUT} | ∞ | sec | | Maximum Junction Temperature | T _{J(max)} | 150 | °C | | Storage Temperature | T _{STG} | -65 to 150 | °C | | ESD Capability, Human Body Model (Note 3) | ESD _{HBM} | 1000 | V | | ESD Capability, Machine Model (Note 3) | ESD _{MM} | 100 | V | Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. - 1. Refer to ELECTRICAL CHARACTERISTIS and APPLICATION INFORMATION for Safe Operating Area. - With the Input Voltage ≤ 28 V the SCP51460 is able to withstand an infinitely long time under Short Circuit Condition. This device series incorporates ESD protection and is tested by the following methods: - - ESD Human Body Model tested per AEC-Q100-002 (EIA/JÉSD22-A114) - ESD Machine Model tested per AEC-Q100-003 (EIA/JESD22-A115) - Latch up Current Maximum Rating: tested per JEDEC standard: JESD78. ### **Table 3. THERMAL CHARACTERISTICS** | Rating | Symbol | Value | Unit | |--|---------------|-------|------| | Thermal Characteristics, SOT23-3 package | $R_{ hetaJA}$ | 246 | °C/W | | Thermal Resistance, Junction-to-Ambient (Note 4) | | | | ^{4.} Soldered on 1 oz 50 mm² FR4 copper area. ### **Table 4. OPERATING RANGES** | Rating | Symbol | Min | Max | Unit | |-------------------------------------|-----------------|------------------------|-----|------| | Operating Input Voltage (Note 5) | V _{IN} | V _{OUT} + 0.9 | 28 | V | | Operating Ambient Temperature Range | T _A | 0 | 100 | °C | ^{5.} Refer to ELECTRICAL CHARACTERISTIS and APPLICATION INFORMATION for Safe Operating Area. **Table 5. ELECTRICAL CHARACTERISTICS** ($V_{IN} = V_{OUT} + 2.5 \text{ V}$, $I_{OUT} = 0$, $C_{IN} = 0.1 \mu\text{F}$, $C_{OUT} = 0 \mu\text{F}$; For typical values $T_A = 25^{\circ}\text{C}$, for min/max values $0^{\circ}\text{C} \le T_A \le 100^{\circ}\text{C}$ unless otherwise noted.) (Note 6). | Parameter | Test Conditions | Symbol | Min | Тур | Max | Unit | |--|--|---------------------|-----------------|--------------------|--------------------|---------------------------------------| | Output Voltage | | V _{OUT} | 3.267
(-1 %) | 3.3 | 3.333
(+1 %) | V | | Line Regulation | $V_{IN} = V_{OUT} + 0.9 \text{ V to } 2.5 \text{ V}$
$V_{IN} = V_{OUT} + 2.5 \text{ V to } 20 \text{ V}$ | Reg _{LINE} | -
- | 120
75 | 1000
130 | ppm/V | | Load Regulation | I _{OUT} = 100 μA, T _A = 25°C
I _{OUT} = 10 mA, T _A = 25°C
I _{OUT} = 20 mA, T _A = 25°C | Reg _{LOAD} | -
-
- | 1200
210
180 | 3000
300
300 | ppm/mA | | Load Regulation | $I_{OUT} = 100 \ \mu A, \ 0^{\circ}C \le T_{A} \le 100^{\circ}C$
$I_{OUT} = 10 \ mA, \ 0^{\circ}C \le T_{A} \le 100^{\circ}C$ | Reg _{LOAD} | -
- | 1500
260 | 4000
300 | ppm/mA | | Dropout Voltage | Oltage Measured at V_{OUT} – 2% I_{OUT} = 0 mA I_{OUT} = 10 mA | | -
- | 0.65
0.94 | 0.9
1.4 | V | | Quiescent Current $\begin{split} I_{OUT} = 0 \text{ mA, } T_A = 25^{\circ}C \\ I_{OUT} = 0 \text{ mA, } 0^{\circ}C \leq T_A \leq 100^{\circ}C \end{split}$ | | IQ | -
- | 150 | 180
220 | μΑ | | Output Short Circuit Current | nort Circuit Current V _{OUT} = 0 V, T _A = 25°C | | - | 40 | - | mA | | Reverse Leakage | V _{IN} = - 15 V, T _A = 25°C | I _{LEAK} | - | 0.1 | 10 | μΑ | | Output Noise Voltage (Note 7) | | V _N | - | 13.2
13.2 | - | μV _{PP}
μV _{rms} | Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. ### **TYPICAL CHARACTERISTICS** Figure 3. Quiescent Current vs. Input Voltage Performance guaranteed over the indicated operating temperature range by design and/or characterization tested at T_J = T_A = 25°C. Low duty cycle pulse techniques are used during testing to maintain the junction temperature as close to ambient as possible. ^{7.} Peak-to-peak noise is measured with a single pole high pass filter at 0.1 Hz and 2-pole low pass filter at 10 Hz. The unit is enclosed into still-air environment to eliminate thermocouple effects. The test time is set to 10 sec. ### **TYPICAL CHARACTERISTICS** Figure 4. Dropout Voltage vs. Output Current Figure 5. Output Voltage Change vs. Temperature Figure 6. Output Voltage vs. Input Voltage Figure 7. PSRR vs. Frequency Figure 8. Output Voltage Noise 0.1 Hz – 1 kHz Figure 9. Short Circuit Current vs. Temperature ### **APPLICATIONS INFORMATION** ### Input Decoupling Capacitor (CIN) A ceramic or tantalum $0.1~\mu F$ capacitor is recommended and should be connected close to the SCP51460 package. Higher capacitance and lower ESR will improve the overall line transient response. ### Output Decoupling Capacitor (COUT) The SCP51460 does not require any output capacitance to be stable. With no capacitor at the output the device will have faster V_{OUT} rise time and will occupy less PCB space. In some applications however the output capacitor could be added. This will improve the overall transient response. During the transients capacitors with low ESR (e.g. Ceramic capacitors) will cause more ringing than the Tantalum or Aluminum Capacitors. Table 6 shows the maximum capacitance of C_{OUT} for various load currents to avoid instability. Table 6. | I _{OUT} = I _{OUT} = 100 μA 1 mA | | I _{OUT} =
10 mA | I _{OUT} =
20 mA | | |---|--------|-----------------------------|-----------------------------|--| | >10 μF | >10 μF | 1 μF | 0.68 μF | | ### **Thermal Characteristics** As power dissipation in the SCP51460 increases, it may become necessary to provide some thermal relief. The maximum power dissipation supported by the device is dependent upon board design and layout. The board material and the ambient temperature affect the rate of junction temperature rise for the part. The maximum power dissipation the SCP51460 can handle is given by: $$P_{D(MAX)} = \frac{[T_{J(MAX)} - T_A]}{R_{\theta JA}}$$ (eq. 1) Since T_J is not recommended to exceed 100°C ($T_{J(MAX)}$), then the SCP51460 can dissipate up to 305 mW when the ambient temperature (T_A) is 25°C. The power dissipated by the SCP51460 can be calculated from the following equations: $$P_D \approx V_{in}(I_{GND}@I_{out}) + I_{out}(V_{in} - V_{out})$$ (eq. 2) or $$V_{in(MAX)} \approx \frac{P_{D(MAX)} + (V_{out} \cdot I_{out})}{I_{out} + I_{GND}}$$ (eq. 3) ### Hints Vin and GND printed circuit board traces should be as wide as possible. When the impedance of these traces is high, there is a chance to pick up noise or cause the regulator to malfunction. Place external components, especially the output capacitor, as close as possible to the SCP51460, and make traces as short as possible. ### **ORDERING INFORMATION** | Device | Device Code | Package | Shipping [†] | | |-----------------|-------------|----------------------|-----------------------|--| | SCP51460SN33T1G | D46 | SOT23-3
(Pb-Free) | 3,000 / Tape & Reel | | [†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D. ### PACKAGE DIMENSIONS SOT-23 (TO-236) CASE 318-08 **ISSUE AR** - DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. CONTROLLING DIMENSION: MILLIMETERS. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF THE BASE MATERIAL - DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS. | | MILLIMETERS | | | S INCHES | | | |-----|-------------|------|------|----------|-------|-------| | DIM | MIN | NOM | MAX | MIN | NOM | MAX | | Α | 0.89 | 1.00 | 1.11 | 0.035 | 0.039 | 0.044 | | A1 | 0.01 | 0.06 | 0.10 | 0.000 | 0.002 | 0.004 | | b | 0.37 | 0.44 | 0.50 | 0.015 | 0.017 | 0.020 | | С | 0.08 | 0.14 | 0.20 | 0.003 | 0.006 | 0.008 | | D | 2.80 | 2.90 | 3.04 | 0.110 | 0.114 | 0.120 | | E | 1.20 | 1.30 | 1.40 | 0.047 | 0.051 | 0.055 | | е | 1.78 | 1.90 | 2.04 | 0.070 | 0.075 | 0.080 | | L | 0.30 | 0.43 | 0.55 | 0.012 | 0.017 | 0.022 | | L1 | 0.35 | 0.54 | 0.69 | 0.014 | 0.021 | 0.027 | | HE | 2.10 | 2.40 | 2.64 | 0.083 | 0.094 | 0.104 | | Т | 0° | | 10° | 0° | | 10° | ### **RECOMMENDED** SOLDERING FOOTPRINT* *For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. ON Semiconductor and (III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. may be accessed at www.nsemi.com/site/poir/=atent-marking.pgi. On Semiconductor reserves the right to make changes without further notice to any products nerein. ON Semiconductor assessmentation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. ### **PUBLICATION ORDERING INFORMATION** ### LITERATURE FULFILLMENT Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative