Q1 3-Phase TNPC Module

The NXH40T120L2Q1 is a power module containing a three channel T-type neutral-point clamped (TNPC) circuit. Each channel has two 1200 V, 40 A IGBTs with inverse diodes and two 650 V, 25 A IGBTs with inverse diodes. The module contains an NTC thermistor.

Features

- Low Package Height
- Compact 82.5 mm x 37.4 mm x 12 mm Package
- Options with Press-fit Pins and Solder Pins
- Options with Pre-applied Thermal Interface Material (TIM) and without Pre-applied TIM
- Thermistor
- This Device is Pb-Free and is RoHS Compliant

Applications

- Solar Inverters
- UPS
- Energy Storage Systems

Figure 1. NXH40T120L3Q1 Schematic Diagram

ON Semiconductor®

www.onsemi.com

Q1 3-TNPC CASE 180AS Solder pins follow similar pattern

MARKING DIAGRAM

ORDERING INFORMATION

See detailed ordering and shipping information on page 5 of this data sheet.

MAXIMUM RATINGS (Note 1)

Rating	Symbol	Value	Unit
IGBT (Q1, Q4, Q5, Q8, Q9, Q12)	•		
Collector – Emitter Voltage	VCES	1200	V
Gate – Emitter Voltage	VGE	±20	V
Continuous Collector Current @ $T_c = 80^{\circ}C$ ($T_J = 175^{\circ}C$)	Ι _C	40	А
Pulsed Collector Current (T _J = 175°C)	lCpulse	120	А
Maximum Power Dissipation ($T_J = 175^{\circ}C$)	Ptot	145	W
Minimum Operating Junction Temperature	Тјмім	-40	°C
Maximum Operating Junction Temperature	Тјмах	175	°C
DIODE (D1, D4, D5, D8, D9, D12)			
Peak Repetitive Reverse Voltage	VRRM	1200	V
Continuous Forward Current @ $T_c = 80^{\circ}C (T_J = 175^{\circ}C)$	l _F	25	А
Repetitive Peak Forward Current (T _J = 175°C)	IFRM	75	А
Maximum Power Dissipation (T _J = 175°C)	Ptot	55	W
Minimum Operating Junction Temperature	Тјмім	- 40	°C
Maximum Operating Junction Temperature	Тјмах	175	°C
IGBT+DIODE (Q2+D2, Q3+D3, Q6+D6, Q7+D7, Q10+D10, Q11+D11)			
Collector – Emitter Voltage	VCES	650	V
Gate – Emitter Voltage	VGE	±20	V
Continuous Collector Current @ $T_c = 80^{\circ}C$ ($T_J = 175^{\circ}C$)	Ι _c	42	А
Pulsed Collector Current (T _J = 175°C)	lCpulse	126	А
Maximum Power Dissipation (T _J = 175°C)	Ptot	146	W
Minimum Operating Junction Temperature	Тјмім	-40	°C
Maximum Operating Junction Temperature	Тјмах	175	°C
THERMAL PROPERTIES			
Storage Temperature range	Tstg	- 40 to 150	°C
INSULATION PROPERTIES			
Isolation Test Voltage, t = 1 sec, 60 Hz	Vis	3000	VRMS
Creepage Distance		12.7	mm

should not be assumed, damage may occur and reliability may be affected.
1. Refer to ELECTRICAL CHARACTERISTICS, RECOMMENDED OPERATING RANGES and/or APPLICATION INFORMATION for Safe Operating parameters.

RECOMMENDED OPERATING CONDITIONS

Rating		Min	Max	Unit
Module Operating Junction Temperature		-40	150	°C

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

ELECTRICAL CHARACTERISTICS (T_J = 25°C Unless Otherwise Noted)

Reverse Recovery Energy

Peak Rate of Fall of Recovery Current

Thermal Resistance - chip-to-heatsink

Parameter Test Conditions		Symbol	Min.	Тур.	Max.	Unit
IGBT CHARACTERISTICS (Q1, Q4, Q5, C	28, Q9, Q12)	•			•	•
Collector-Emitter Cutoff Current	$V_{GE} = 0 \text{ V}, V_{CE} = 1200 \text{ V}$	ICES	-	-	400	μA
Collector-Emitter Saturation Voltage	V_{GE} = 15 V, I _C = 40 A, T _J = 25°C	VCE(sat)	-	1.85	2.20	V
	V_{GE} = 15 V, I_C = 40 A , T_J = 150°C		-	2.25	-	
Gate-Emitter Threshold Voltage	$V_{GE} = V_{CE}$, $I_C = 1.5$ mA	VGE(TH)	4.50	-	6.50	V
Gate Leakage Current	V_{GE} = 20 V, V_{CE} = 0 V	IGES	-	-	800	nA
Turn–on Delay Time		td(on)	-	63	-	ns
Rise Time		t _r	_	22	-	
Turn–off Delay Time	$T_{\rm J} = 25^{\circ} C$	td(off)	_	199	-	
Fall Time	$V_{CE} = 350$ V, $I_C = 28$ A, $V_{GE} = \pm 15$ V, $R_G = 8$ Ω	t _f	-	23	-	
Turn-on Switching Loss per Pulse		Eon	_	560	-	μJ
Turn off Switching Loss per Pulse		Eoff	-	338	-	
Turn-on Delay Time		td(on)	-	59	-	ns
Rise Time		t _r	_	24	-	
Turn–off Delay Time	T _J = 125°C	td(off)	_	225	-	
Fall Time	$V_{CE} = 350$ V, $I_C = 28$ A, $V_{GE} = \pm 15$ V, $R_G = 8$ Ω	t _f	-	80	-	
Turn – on Switching Loss per Pulse		Eon	-	757	-	μJ
Turn off Switching Loss per Pulse		Eoff	-	910	-	
Input Capacitance		Cies	-	7753	-	pF
Output Capacitance	V _{CE} = 20 V V _{GE} = 0 V, f = 1 MHz	Coes	-	227	-	
Reverse Transfer Capacitance		Cres	-	127	-	
Total Gate Charge	V_{CE} = 350 V, I_{C} = 40 A, V_{GE} = ±15 V	Qg	-	536	_	nC
Thermal Resistance – chip-to-heatsink	Thermal grease, Thickness \leq 2.25 Mil, λ = 2.9 W/mK	RthJH	-	1.01	-	°C/W
DIODE CHARACTERISTICS (D1, D4, D5,	D8, D9, D12)					
Diode Forward Voltage	$I_F = 20 \text{ A}, \text{T}_J = 25^{\circ}\text{C}$	V _F	-	2.4	2.7	V
	I _F = 20 A, T _J = 150°C		-	1.7	-	
Reverse Recovery Time		trr	-	43	-	ns
Reverse Recovery Charge	T 0500	Qrr	-	756	_	μC
Peak Reverse Recovery Current	$I_{\rm J} = 25^{\circ} {\rm C}$ $V_{\rm CE} = 350 {\rm V}, {\rm I_{\rm C}} = 28 {\rm A},$	IRRM		35	_	А
Peak Rate of Fall of Recovery Current	V_{GE} = ±15 V, R_G = 16 Ω	di/dt	-	750	_	A/μs
Reverse Recovery Energy	-	Err	-	104	_	μJ
Reverse Recovery Time		trr	-	129	_	ns
Reverse Recovery Charge	- ····	Qrr	-	2702	_	μC
Peak Reverse Recovery Current	− T _J = 125°C V _{CE} = 350 V, I _C = 28 A,	IRRM	_	45	-	А
Poak Pate of Fall of Poessions Current	$V_{GE} = \pm 15 \text{ V}, \text{ R}_{G} = 16 \Omega$		<u> </u>	407		A/00

Thermal grease, Thickness \leq 2.25 Mil,

 $\lambda = 2.9 \text{ W/mK}$

di/dt

Err

RthJH

A/μs

μJ

°C/W

407

428

1.63

_

_

_

_

_

_

ELECTRICAL CHARACTERISTICS (T_J = 25°C Unless Otherwise Noted) (continued)

Parameter	Parameter Test Conditions				Max.	Unit		
IGBT CHARACTERISTICS (Q2, Q3, Q6, Q7, Q10, Q11)								
Collector-Emitter Cutoff Current	V_{GE} = 0 V, V_{CE} = 650 V	ICES	-	_	250	μΑ		
Collector-Emitter Saturation Voltage	V_{GE} = 15 V, I _C = 50 A, T _J = 25°C	VCE(sat)	-	1.50	-	V		
	V_{GE} = 15 V, I_C = 50 A , T_J = 150°C		_	1.53	—			
Gate-Emitter Threshold Voltage	V_{GE} = V_{CE} , I_C = 1.65 mA	Vge(th)	2.60	4.40	6.40	V		
Gate Leakage Current	V_{GE} = 20 V, V_{CE} = 0 V	IGES	_	_	400	nA		
Turn–on Delay Time		td(on)	-	54	—	ns		
Rise Time	1	t _r	-	15	—			
Turn-off Delay Time	$T_J = 25^{\circ}C$	td(off)	-	157	—			
Fall Time	$V_{CE} = 350 \text{ V}, \text{ I}_{C} = 28 \text{ A},$ $V_{GE} = \pm 15 \text{ V}, \text{ R}_{G} = 16 \Omega$	t _f	_	12	_			
Turn-on Switching Loss per Pulse		Eon	-	416	_	μJ		
Turn off Switching Loss per Pulse	1	Eoff	-	321	_			
Turn–on Delay Time		td(on)	-	52	_	ns		
Rise Time		t _r	_	16	—			
Turn-off Delay Time	T _J = 125°C	td(off)	-	178	—			
Fall Time	$V_{CE} = 350 \text{ V}, \text{ I}_{C} = 28 \text{ A},$ $V_{GE} = \pm 15 \text{ V}, \text{ R}_{G} = 16 \Omega$	t _f	_	18	_			
Turn – on Switching Loss per Pulse		Eon	_	671	—	μJ		
Turn off Switching Loss per Pulse	-	Eoff	-	444	-			
Input Capacitance		Cies	-	3137	—	pF		
Output Capacitance	V _{CE} = 20 V V _{GE} = 0 V, f = 1 MHz	Coes	-	146	_			
Reverse Transfer Capacitance		Cres	-	17	_			
Total Gate Charge	V_{CE} = 350 V, I_{C} = 40 A, V_{GE} = ±15 V	Qg	-	180	—	nC		
Thermal Resistance - chip-to-heatsink	Thermal grease, Thickness \leq 2.25 Mil, λ = 2.9 W/mK	RthJH	-	0.995	-	°C/W		
DIODE CHARACTERISTICS (D2, D3, D6,	D7, D10, D11)							
Diode Forward Voltage	$I_F = 20 \text{ A}, \text{T}_J = 25^{\circ}\text{C}$	V _F	_	1.28	-	V		
	$I_F = 20 \text{ A}, \text{T}_J = 150^{\circ}\text{C}$		_	1.18	-			
Combined IGBT + Diode Voltage Drop	$I_F = 20 \text{ A}, \text{T}_J = 25^{\circ}\text{C}$	V _F	-	3.05	3.4	V		
Reverse Recovery Time		trr	-	69	_	ns		
Reverse Recovery Charge	T OF OC	Qrr	-	1267	—	μC		
Peak Reverse Recovery Current	$V_{CE} = 350 \text{ V}, \text{ I}_{C} = 28 \text{ A},$	IRRM	_	41	—	А		
Peak Rate of Fall of Recovery Current	$V_{GE} = \pm 15 \text{ V}, \text{ R}_{G} = 8 \Omega$	di/dt	-	1599	_	A/μs		
Reverse Recovery Energy	1	Err	-	244	_	μJ		
Reverse Recovery Time		trr	_	111	_	ns		
Reverse Recovery Charge	T 10700	Qrr	_	2323	_	μC		
Peak Reverse Recovery Current	$V_{CE} = 350 \text{ V}, I_{C} = 28 \text{ A},$	IRRM	-	40	-	А		
Peak Rate of Fall of Recovery Current	V_{GE} = ±15 V, R_{G} = 8 Ω	di/dt	-	470	-	A/μs		
Reverse Recovery Energy		Err	-	510	-	μJ		

ELECTRICAL CHARACTERISTICS (T_J = 25°C Unless Otherwise Noted) (continued)

Parameter	Test Conditions	Symbol	Min.	Тур.	Max.	Unit			
THERMISTOR CHARACTERISTICS									
Nominal resistance	T = 25°C	R25		22		kΩ			
Nominal resistance	T = 100°C	R100		1468		Ω			
Deviation of R25		R/R	-5		5	%			
Power dissipation		PD		200		mW			
Power dissipation constant				2		mW/K			
B-value	B(25/50), tolerance \pm 3%			3950		К			
B-value	B(25/100), tolerance $\pm 3\%$			3998		к			

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

ORDERING INFORMATION

Orderable Part Number	Marking	Package	Shipping
NXH40T120L3Q1PG	NXH40T120L3Q1PG	Q1 3-Phase TNPC - Case 180AS Press-fit Pins (Pb-Free)	21 Units / Blister Tray
NXH40T120L3Q1SG	NXH40T120L3Q1SG	Q1 3-Phase TNPC - Case 180BN Solder Pins (Pb-Free)	21 Units / Blister Tray

TYPICAL CHARACTERISTICS – HALF BRIDGE IGBT (Q1, Q4, Q5, Q8, Q9, Q12) AND DIODE (D1, D4, D5, D8, D9, D12)

Figure 2. Typical Output Characteristics

Figure 4. Typical Transfer Characteristics

Figure 3. Typical Output Characteristics

Figure 5. Diode Forward Characteristics

TYPICAL CHARACTERISTICS – HALF BRIDGE IGBT (Q1, Q4, Q5, Q8, Q9, Q12) AND DIODE (D1, D4, D5, D8, D9, D12)

Figure 6. Transient Thermal Impedance (Half Bridge IGBT)

Figure 7. Transient Thermal Impedance (Half Bridge Diode)

TYPICAL CHARACTERISTICS – HALF BRIDGE IGBT (Q1, Q4, Q5, Q8, Q9, Q12) AND DIODE (D1, D4, D5, D8, D9, D12)

Figure 8. FBSOA

Figure 10. Gate Voltage vs. Gate Charge

TYPICAL CHARACTERISTICS – NP IGBT + DIODE (Q2+D2, Q3+D3, Q6+D6, Q7+D7, Q10+D10, Q11+D11)

Figure 11. Typical Output Characteristics (I_C versus V_{DT})

Figure 13. Typical Transfer Characteristics

Figure 12. Typical Output Characteristics $(I_C \text{ versus } V_{DT})$

Figure 14. Transient Thermal Impedance (Neutral Point IGBT + Diode)

Figure 15. FBSOA (NP IGBT + Diode)

Figure 17. Gate Voltage vs. Gate Charge

Figure 16. RBSOA (NP IGBT + Diode)

Figure 18. Typical Switching Loss E_{ON} vs. I_{C}

Figure 20. Typical Switching Loss E_{ON} vs. R_G

Figure 22. Typical Switching Time T_{DOFF} vs. I_C

Figure 19. Typical Switching Loss E_{OFF} vs. I_C

Figure 21. Typical Switching Loss E_{OFF} vs. R_G

Figure 23. Typical Switching Time T_{DON} vs. I_{C}

Figure 24. Typical Switching Time T_{DOFF} vs. R_G

Figure 25. Typical Switching Time T_{DON} vs. R_{G}

Figure 26. Typical Reverse Recovery Energy Loss vs. I_C

Figure 27. Typical Reverse Recovery Energy Loss vs. R_G

vs. R_G

Figure 31. Typical di/dt vs. R_G

Figure 32. Typical Reverse Recovery Time vs. I_C

vs. I_C

Figure 33. Typical Reverse Recovery Charge vs. I_C

TYPICAL CHARACTERISTICS - HALF BRIDGE IGBT COMMUTATES NEUTRAL POINT DIODE

Figure 36. Typical Turn ON Loss vs. I_C

1200

1000

் த் 400 ய

200

0

Figure 37. Typical Turn OFF Loss vs. I_C

Figure 38. Typical Turn ON Loss vs. $\rm R_{G}$

lc

ری Figure 39. Typical Turn OFF Loss vs. R_G

12

15

18

21

24

Ιc

Figure 44. Typical Reverse Recovery Energy Loss vs. I_C

Figure 43. Typical Turn–On Switching Time vs. R_G

Figure 45. Typical Reverse Recovery Energy Loss vs. R_G

Figure 48. Typical Reverse Recovery Peak Current vs. R_G

Figure 50. Typical Reverse Recovery Time vs. I_C

Figure 49. Typical di/dt vs. R_G

Figure 51. Typical Reverse Recovery Charge vs. I_C

Figure 53. Typical di/dt Current Slope vs. I_{C}

PACKAGE DIMENSIONS

	PIN PD	ISITION		PIN PE	ISITION
PIN	X	Y	PIN	X	Y
1	26.10	14.10	23	-4.85	3.40
2	20.10	14.10	24	-4.85	0.40
3	20.90	11.10	25	4.30	4.40
4	14.80	14.10	26	7.30	4.40
5	17.90	11.10	27	14.05	2.90
6	8.80	14.10	28	14.05	5.90
7	8.80	11.10	29	24.35	3.40
8	2.80	14.10	30	24.35	0.40
9	-0.20	12.10	31	-26.10	-2.25
10	-3.20	14.10	32	-26.10	-5.25
11	-3.20	11.10	33	-20.65	-14.10
12	-9.20	14.10	34	-17.85	-14.10
13	-9.20	11.10	35	-14.85	-14.10
14	-15.20	14.10	36	-11.85	-14.10
15	-15.20	11.10	37	-3.10	-14.10
16	-20.10	14.10	38	-0.10	-14.10
17	-18.20	11.10	39	2.90	-14.10
18	-26.10	14.10	40	5.70	-14.10
19	-21.35	5.20	41	14.30	-14.10
20	-24.35	6.20	42	17.10	-14.10
21	-12.85	0.40	43	20.10	-14.10
55	-12.85	3.40	44	23.10	-14.10
NOTE 4	1				

° ° ° ° ° ° ° ° ° ° ° ° ° ° °	2X Ø9.20 THRU HOLE
	0.00
44х \$000 0\$00 000 Ø1.45- PLATED THRU HOLE HOLE	IN FOR MOUNTING
RECOMMENDED MOUNTING PATTERN	

	MILLIM	ETERS	
DIM	MIN.	NDM.	MAX.
Α	11.50	12.00	12.50
A3	15.50	16.00	16.50
A4	1	2.83 BS	С
A5	0.10	0.20	0.30
b	1.61	1.66	1.71
b1	0.75	0.80	0.85
D	70.50	71.00	71.50
D1	82.00	82.50	83.00
D2	81.50	82.00	82.50
Ε	36.90	37.40	37.90
E2	30.30	30.80	31.30
Р	4.10	4.30	4.50
P1	9.30	9.50	9.70
P2	1.80	2.00	2.20

	PIN PD	ISITION		PIN POSITION	
PIN	х	Y	PIN	X	Y
1	26.10	-14.10	23	-4.85	-3.40
S	20.10	-14.10	24	-4.85	-0.40
ω	20.90	-11.10	25	4.30	-4.40
4	14.80	-14.10	26	7.30	-4.40
5	17.90	-11.10	27	14.05	-2.90
6	8.80	-14.10	28	14.05	-5.90
7	8.80	-11.10	29	24.35	-3.40
8	2.80	-14.10	30	24.35	-0.40
9	-0.20	-12.10	31	-26.10	2.25
10	-3.20	-14.10	32	-26.10	5.25
11	-3.20	-11.10	33	-20.65	14.10
12	-9.20	-14.10	34	-17.85	14.10
13	-9.20	-11.10	35	-14.85	14.10
14	-15.20	-14.10	36	-11.85	14.10
15	-15.20	-11.10	37	-3.10	14.10
16	-20.10	-14.10	38	-0.10	14.10
17	-18.20	-11.10	39	2.90	14.10
18	-26.10	-14.10	40	5.70	14.10
19	-21.35	-5.20	41	14.30	14.10
50	-24.35	-6.20	42	17.10	14.10
21	-12.85	-0.40	43	20.10	14.10
55	-12.85	-3.40	44	23.10	14.10

NOTES

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2009.
- 2. CONTROLLING DIMENSION: MILLIMETERS
- З.
- DIMENSIONS 6 AND 61 APPLY TO THE PLATED TERMINALS AND ARE MEASURED AT DIMENSION A4. POSITION OF THE CENTER OF THE TERMINALS 4.
- IS DETERMINED FROM DATUM B THE CENTER OF DIMENSION D, X DIRECTION, AND FROM DATUM A, Y DIRECTION. POSITIONAL TOLERANCE, AS NOTED IN DRAWING, APPLIES TO EACH TERMINAL IN BOTH DIRECTIONS.
- PACKAGE MARKING IS LOCATED AS SHOWN ON 5. THE SIDE OPPOSITE THE PACKAGE ORIENTATION FEATURES.

PACKAGE DIMENSIONS

NOTES

- 1. DIMENSIONING AND TOLERANCING PERASME Y14.5M, 2009.
- 2. CONTROLLING DIMENSION: MILLIMETERS
- 3. DIMENSIONS 5 APPLIES TO THE PLATED TERMINALS AND IS
- MEASURED BETWEEN 1.00 AND 3.00 FROM THE TERMINAL TIP. 4. POSITION OF THE CENTER OF THE TERMINALS AND MOUNTING HOLES IS DETERMINED FROM DATUM B THE CENTER OF DIMENSION D,
- X DIRECTION, AND FROM DATUM A, Y DIRECTION. POSITIONAL TOLERANCE, AS NOTED IN THE DRAWING, APPLIES TO EACH TERMINAL IN BOTH DIRECTIONS.

NOM.

12.00

11.40

16.40

0.30

1.00

71.00

82.50

82.00

37.40

30.80

4.40

4.75

2.00 REF

Х

-4.85

-4.85

4.30

7.30

14.05

14.05

24.35

24.35

-26.10

-26.10

-20.65

-17.85

-14.85

-11.85

-3.10

-0.10

2.90

5.70

14.30

17.10

20.10

23.10

PIN POSITION

MAX.

12.50

11.90

16.90

0.60

1.10

71.50

83.00

82.50

37.90

31.30

4.50

4.95

Y

-3.40

-0.40

-4.40

-4.40

-2.90

-5.90

-3.40

-0.40

2.25

5.25

14.10

14.10

14.10

14.10

14.10

14.10

14.10

14.10

14.10

14.10

14.10

14.10

5. PACKAGE MARKING IS LOCATED AS SHOWN ON THE SIDE OPPOSITE THE PACKAGE ORIENTATION FEATURES.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has using and shells unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributo

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe. Middle East and Africa Technical Support:

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative