MOSFET – Power, Single N-Channel

60 V, 6.8 mΩ, 71 A

NVTYS006N06CL

Features

- Small Footprint (3.3 x 3.3 mm) for Compact Design
- Low RDS(on) to Minimize Conduction Losses
- Low Capacitance to Minimize Driver Losses
- AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb-Free and are RoHS Compliant

MAXIMUM RATINGS (T_J = 25° C unless otherwise noted)

Parameter			Symbol	Value	Unit
Drain-to-Source Voltage			V _{DSS}	60	V
Gate-to-Source Voltage			V _{GS}	±20	V
Continuous Drain	Steady State	$T_C = 25^{\circ}C$	۱ _D	71	А
Current R _{θJC} (Notes 1, 2, 3, 4)		T _C = 100°C		50	
Power Dissipation		$T_{C} = 25^{\circ}C$	PD	61	W
$R_{\theta JC}$ (Notes 1, 2, 3)		T _C = 100°C		31	
Continuous Drain	Steady	$T_A = 25^{\circ}C$	۱ _D	16	А
Current R _{θJA} (Notes 1, 3, 4)		T _A = 100°C		11	
Power Dissipation	State	$T_A = 25^{\circ}C$	PD	3.2	W
$R_{\theta JA}$ (Notes 1, 3)		T _A = 100°C		1.6	
Pulsed Drain Current	$T_A = 25^{\circ}C, t_p = 10 \ \mu s$		I _{DM}	322	А
Operating Junction and Storage Temperature Range			T _J , T _{stg}	–55 to +175	°C
Source Current (Body Diode)			۱ _S	51	А
Single Pulse Drain-to-Source Avalanche Energy (I _{L(pk)} = 3.6 A)			E _{AS}	115	mJ
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)		ΤL	260	°C	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

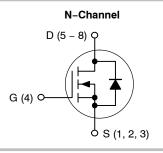
THERMAL RESISTANCE MAXIMUM RATINGS (Note 1)

Parameter	Symbol	Value	Unit
Junction-to-Case - Steady State (Note 3)	$R_{\theta JC}$	2.4	°C/W
Junction-to-Ambient - Steady State (Note 3)	$R_{\theta JA}$	47	

1. The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted.

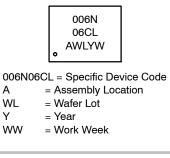
2. Psi (Ψ) is used as required per JESD51–12 for packages in which substantially less than 100% of the heat flows to single case surface.

3. Surface-mounted on FR4 board using a 650 mm², 2 oz. Cu pad.


4. Continuous DC current rating. Maximum current for pulses as long as 1 second is higher but is dependent on pulse duration and duty cycle.

ON Semiconductor®

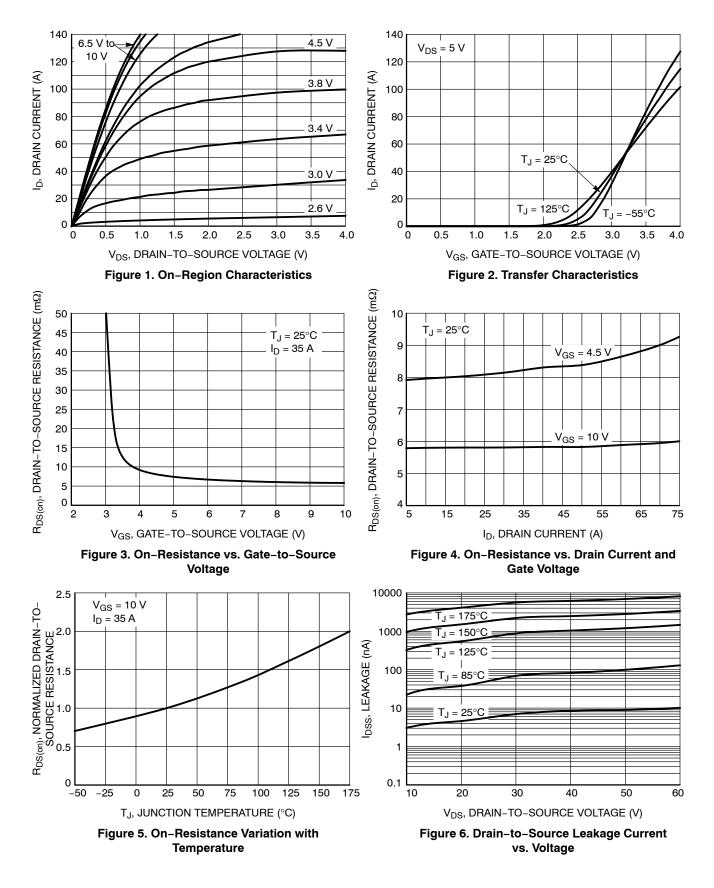
www.onsemi.com


V _{(BR)DSS}	R _{DS(on)} MAX	I _D MAX	
60 V	6.8 mΩ @ 10 V	71 A	
00 V	10 mΩ @ 4.5 V		

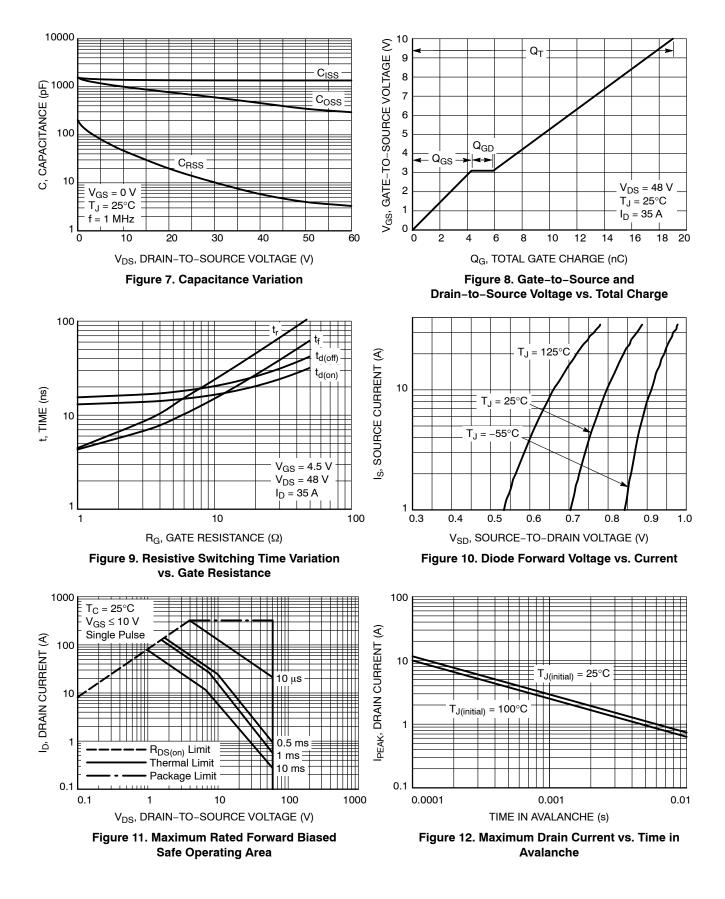
LFPAK8 3.3x3.3 CASE 760AD

MARKING DIAGRAM

ORDERING INFORMATION


See detailed ordering, marking and shipping information in the package dimensions section on page 5 of this data sheet.

ELECTRICAL CHARACTERISTICS (T_J = 25° C unless otherwise specified)


Parameter	Symbol	Test Condition		Min	Тур	Max	Unit
OFF CHARACTERISTICS					•		
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	V_{GS} = 0 V, I _D = 250 µA		60			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} / T _J				28		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	$V_{GS} = 0 V_{.}$	$T_J = 25^{\circ}C$			10	μA
		V _{GS} = 0 V, V _{DS} = 60 V	T _J = 125°C			250	1
Gate-to-Source Leakage Current	I _{GSS}	V _{DS} = 0 V, V _{GS} = 20 V				100	nA
ON CHARACTERISTICS (Note 5)							
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}$, $I_D = 53 \ \mu A$		1.2		2.0	V
Threshold Temperature Coefficient	V _{GS(TH)} /T _J				-4.8		mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = 10 V	I _D = 35 A		5.8	6.8	mΩ
		V _{GS} = 4.5 V	I _D = 35 A		8.1	10	
Forward Transconductance	9 _{FS}	V _{DS} = 5 V, I _E	₀ = 35 A		67		S
CHARGES AND CAPACITANCES							
Input Capacitance	C _{ISS}				1330		pF
Output Capacitance	C _{OSS}	V _{GS} = 0 V, f = 1 MH	łz, V _{DS} = 25 V		740		
Reverse Transfer Capacitance	C _{RSS}				11		1
Total Gate Charge	Q _{G(TOT)}	V _{GS} = 4.5 V, V _{DS} = 48 V; I _D = 35 A			8		nC
Total Gate Charge	Q _{G(TOT)}	V_{GS} = 10 V, V_{DS} = 48 V; I_{D} = 35 A			19		nC
Threshold Gate Charge	Q _{G(TH)}	V _{GS} = 10 V, V _{DS} = 48 V; I _D = 35 A			2		nC
Gate-to-Source Charge	Q _{GS}				4.3		1
Gate-to-Drain Charge	Q _{GD}				1.6		1
Plateau Voltage	V _{GP}				3.1		V
SWITCHING CHARACTERISTICS (Note 6	δ)						
Turn-On Delay Time	t _{d(ON)}				13.6		ns
Rise Time	tr	V _{GS} = 4.5 V. V			7.7		1
Turn-Off Delay Time	t _{d(OFF)}	V_{GS} = 4.5 V, V_{DS} = 48 V, I _D = 35 A, R _G = 2.5 Ω			16.3		1
Fall Time	t _f				6.1		
DRAIN-SOURCE DIODE CHARACTERIS	TICS						
Forward Diode Voltage	V _{SD}	V _{GS} = 0 V,	$T_J = 25^{\circ}C$		0.9	1.2	V
		$I_{\rm S} = 35 \rm{A}$ $T_{\rm J} = 125^{\circ}\rm{C}$		0.8		1	
Reverse Recovery Time	t _{RR}	V _{GS} = 0 V, dI _S /d _t = 100 A/µs, I _S = 35 A			37		ns
Charge Time	t _a				18		1
Discharge Time	t _b				19		1
Reverse Recovery Charge	Q _{RR}				22		nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 5. Pulse Test: pulse width \leq 300 μ s, duty cycle \leq 2%. 6. Switching characteristics are independent of operating junction temperatures.

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

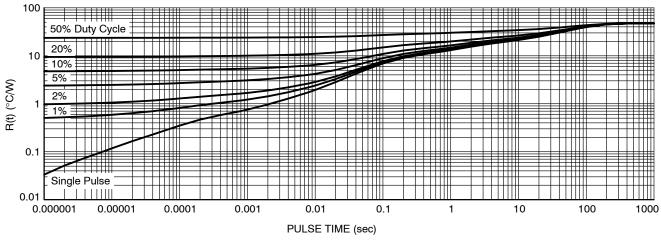
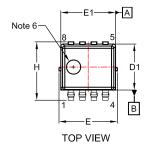
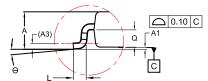
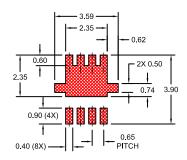


Figure 13. Thermal Characteristics

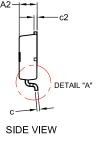

DEVICE ORDERING INFORMATION

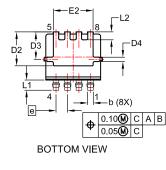

Device	Marking	Package	Shipping [†]
NVTYS006N06CLTWG	006N 06CL	LFPAK33	3000 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.


PACKAGE DIMENSIONS

LFPAK8 3.3x3.3, 0.65P CASE 760AD ISSUE E




DETAIL 'A' SCALE: 2:1

LAND PATTERN RECOMMENDATION

*FOR ADDITIONAL INFORMATION ON OUR PB-FREE STRATEGY AND SOLDERING DETAILS, PLEASE DOWNLOAD THE ON SEMICONDUCTOR SOLDERING AND MOUNTING TECHNIQUES REFERENCE MANUAL, SOLDERRM/D.

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
- 2. CONTROLLING DIMENSION: MILLIMETERS
- DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR BURRS. MOLD FLASH, PROTRUSIONS OR BURRS SHALL NOT EXCEED 0.150mm PER SIDE.
- DIMENSIONS D AND E ARE DETERMINED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY.
- 5. DATUMS A AND B ARE DETERMINED AT DATUM PLANE H.
- 6. OPTIONAL MOLD FEATURE.

DIM	MILLIMETERS				
Biw	MIN.	NOM.	MAX.		
А	0.95	1.05	1.15		
A1	0.00	0.05	0.10		
A2	0.95	1.00	1.05		
A3		0.15 RE	н		
b	0.27	0.32	0.37		
С	0.12	0.17	0.22		
c2	0.12	0.17	0.22		
D1	2.50	2.60	2.70		
D2	1.82	1.92	2.02		
D3	1.46	1.56	1.66		
D4	0.20	0.25	0.30		
E	3.20	3.30	3.40		
E1	3.00	3.10	3.20		
E2	2.15	2.25	2.35		
е	0.65 BSC				
Н	3.20	3.30	3.40		
L	0.25	0.37	0.50		
L1	0.48	0.58	0.68		
L2	0.35	0.45	0.55		
Q	0.45	0.50	0.55		
Φ	0°	4°	8°		

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor are of the in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor hauch as and or similar classification in a foreign jurisdiction or any devices intended for implantation in the fuman body. Should Buyer purchase or use ON semiconductor hauch as against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com

TECHNICAL SUPPORT

ON Semiconductor Website: www.onsemi.com

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative