MOSFET - Power, Single N-Channel

80 V, 29 mΩ, 22 A

NVTFS6H880NL

Features

- Small Footprint (3.3 x 3.3 mm) for Compact Design
- Low R_{DS(on)} to Minimize Conduction Losses
- Low Capacitance to Minimize Driver Losses
- NVTFS6H880NLWF Wettable Flanks Product
- AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb-Free and are RoHS Compliant

MAXIMUM RATINGS (T_J = 25° C unless otherwise noted)

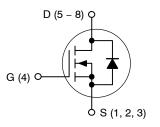
,				
Parameter			Value	Unit
Drain-to-Source Voltage			80	V
Gate-to-Source Voltage			±20	V
	$T_{C} = 25^{\circ}C$	I _D	22	А
Steady	T _C = 100°C		15]
State	T _C = 25°C	PD	33	W
	$T_C = 100^{\circ}C$		17	
	$T_A = 25^{\circ}C$	۱ _D	6.6	А
Steady	T _A = 100°C		4.7]
State	T _A = 25°C	PD	3.1	W
	$T_A = 100^{\circ}C$		1.5	
T _A = 25	°C, t _p = 10 μs	I _{DM}	83	А
Operating Junction and Storage Temperature Range			–55 to +175	°C
Source Current (Body Diode)			28	А
Single Pulse Drain-to-Source Avalanche Energy (I _{L(pk)} = 1 A)			70	mJ
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)			260	°C
	e Steady State Steady State T _A = 25 Storage T Niode) Source Ave	e T _C = 25°C T _C = 100°C T _C = 25°C T _C = 100°C T _C = 100°C T _C = 100°C T _A = 25°C T _A = 100°C Storage Temperature biode) Source Avalanche biodering Purposes	e V_{DSS} e V_{GS} Steady Steady State $T_C = 25^{\circ}C$ ID $T_C = 100^{\circ}C$ $T_C = 100^{\circ}C$ PD $T_C = 100^{\circ}C$ ID $T_A = 25^{\circ}C$ ID $T_A = 25^{\circ}C$ ID $T_A = 25^{\circ}C$ PD $T_A = 25^{\circ}C$ PD $T_A = 100^{\circ}C$ $T_A = 100^{\circ}C$ T	$\begin{array}{c c c c c c } e & V_{DSS} & 80 \\ \hline & V_{GS} & \pm 20 \\ \hline & V_{GS} & \pm 20 \\ \hline & V_{GS} & \pm 20 \\ \hline & & I_{D} & 22 \\ \hline & T_{C} = 25^{\circ}C & I_{D} & 22 \\ \hline & T_{C} = 100^{\circ}C & 15 \\ \hline & T_{C} = 25^{\circ}C & P_{D} & 33 \\ \hline & T_{C} = 100^{\circ}C & I_{D} & 6.6 \\ \hline & T_{A} = 100^{\circ}C & I_{D} & 6.6 \\ \hline & T_{A} = 100^{\circ}C & I_{D} & 6.6 \\ \hline & T_{A} = 100^{\circ}C & I_{D} & 6.6 \\ \hline & T_{A} = 100^{\circ}C & I_{D} & 6.1 \\ \hline & T_{A} = 25^{\circ}C & P_{D} & 3.1 \\ \hline & T_{A} = 25^{\circ}C & P_{D} & 3.1 \\ \hline & T_{A} = 25^{\circ}C & I_{D} & 83 \\ \hline & Storage Temperature & T_{J}, T_{stg} & -55 \text{ to} \\ +175 \\ \hline & \text{biode} & I_{S} & 28 \\ \hline & \text{Source Avalanche} & E_{AS} & 70 \\ \hline & \text{oldering Purposes} & T_{L} & 260 \\ \hline \end{array}$

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL RESISTANCE MAXIMUM RATINGS (Note 1)

Parameter	Symbol	Value	Unit
Junction-to-Case - Steady State (Note 3)	$R_{\theta JC}$	4.6	°C/W
Junction-to-Ambient - Steady State (Note 3)	$R_{\theta JA}$	49	

- 1. The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted.
- 2. Psi (Ψ) is used as required per JESD51-12 for packages in which substantially less than 100% of the heat flows to single case surface.
- 3. Surface-mounted on FR4 board using a 650 mm², 2 oz. Cu pad.
- Continuous DC current rating. Maximum current for pulses as long as 1 second is higher but is dependent on pulse duration and duty cycle.



ON Semiconductor®

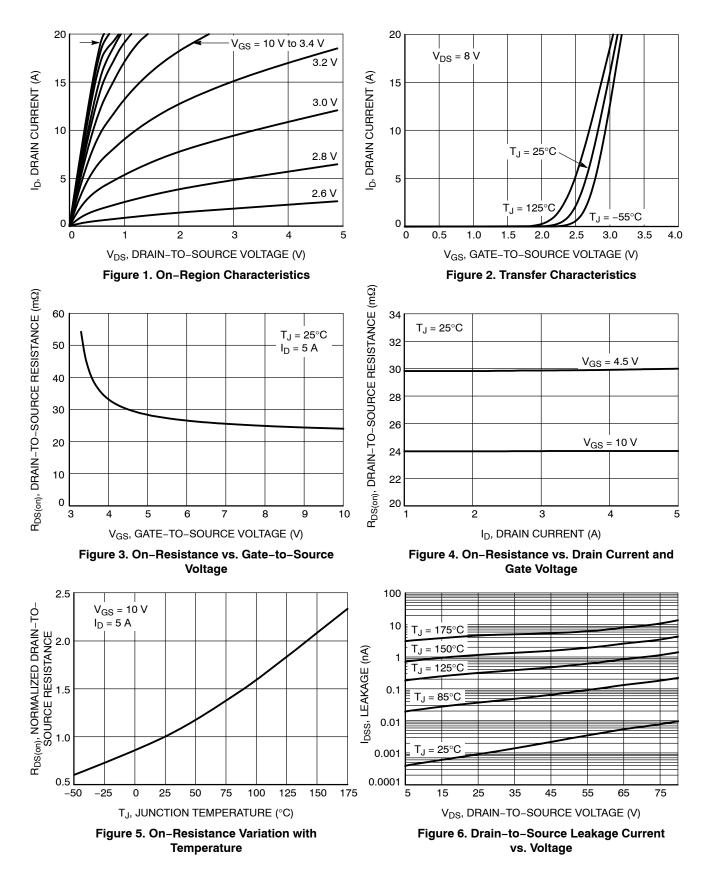
www.onsemi.com

V _{(BR)DSS}	R _{DS(ON)} MAX	I _D MAX
80 V	29 mΩ @ 10 V	00.4
	38 mΩ @ 4.5 V	22 A

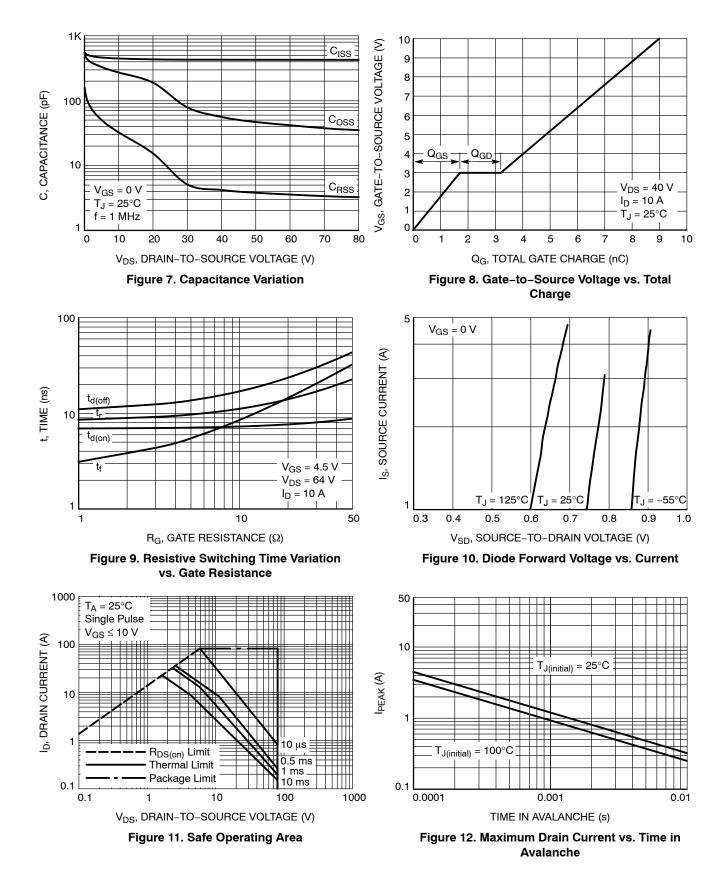
N-Channel

MARKING DIAGRAM sd bο WDFN8 S Е XXXX ÞΟ S AYWWþρ (µ8FL) CASE 511AB G hΟ XXXX = Specific Device Code Α = Assembly Location Y = Year WW = Work Week = Pb-Free Package (Note: Microdot may be in either location)

ORDERING INFORMATION


See detailed ordering, marking and shipping information in the package dimensions section on page 5 of this data sheet.

ELECTRICAL CHARACTERISTICS (T_J = 25° C unless otherwise noted)

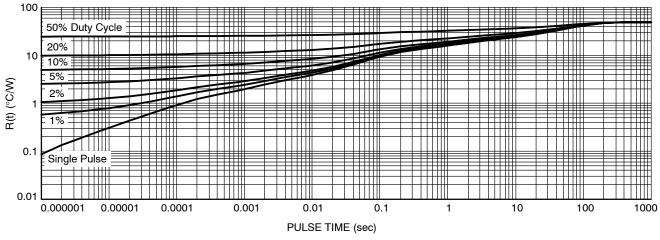

Parameter	Symbol	Test Condition		Min	Тур	Max	Unit
OFF CHARACTERISTICS							
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	V_{GS} = 0 V, I _D = 250 μ A		80			V
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V,	$T_J = 25^{\circ}C$			10	μΑ
		$V_{\rm DS} = 80$ V	T _J = 125°C			100	
Gate-to-Source Leakage Current	I _{GSS}	$V_{DS} = 0 V, V_{GS}$	_S = 20 V			100	nA
ON CHARACTERISTICS (Note 5)							
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_D$	= 20 μA	1.2		2.0	V
Threshold Temperature Coefficient	V _{GS(TH)} /T _J				-5.2		mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = 10 V	I _D = 5 A		24	29	mΩ
		V _{GS} = 4.5 V	I _D = 5 A		30	38	mΩ
Forward Transconductance	9 _{FS}	$V_{DS} = 8 V, I_{D}$	= 10 A		31		S
CHARGES, CAPACITANCES & GATI	E RESISTANCE						
Input Capacitance	C _{ISS}			431			
Output Capacitance	C _{OSS}	V_{GS} = 0 V, f = 1 MHz, V_{DS} = 40 V			56		pF
Reverse Transfer Capacitance	C _{RSS}				4		
Total Gate Charge	Q _{G(TOT)}	V _{GS} = 10 V, V _{DS} = 40 V; I _D = 10 A			9		
Threshold Gate Charge	Q _{G(TH)}				1		
Gate-to-Source Charge	Q _{GS}				1.7		nC
Gate-to-Drain Charge	Q _{GD}	V_{GS} = 4.5 V, V_{DS} =	40 V; I _D = 10A		1.5		
Plateau Voltage	V _{GP}				3		V
Total Gate Charge	Q _{G(TOT)}				4		nC
SWITCHING CHARACTERISTICS (N	ote 6)						
Turn-On Delay Time	t _{d(ON)}				7		
Rise Time	t _r	V _{GS} = 4.5 V. V _G	s = 64 V.		9		
Turn-Off Delay Time	t _{d(OFF)}	V _{GS} = 4.5 V, V _D I _D = 10 A, R _G	= 2.5 Ω		12		ns
Fall Time	t _f		·		4		
DRAIN-SOURCE DIODE CHARACTE	RISTICS						
Forward Diode Voltage	V _{SD}	V _{GS} = 0 V,	$T_J = 25^{\circ}C$		0.82	1.2	
		$I_{\rm S} = 5 \rm A$	T _J = 125°C		0.68		- V
Reverse Recovery Time	t _{RR}	V _{GS} = 0 V, dIS/dt = 100 A/µs, I _S = 10 A			25		1
Charge Time	t _a				17		ns
Discharge Time	t _b				8		
Reverse Recovery Charge	Q _{RR}				17		nC

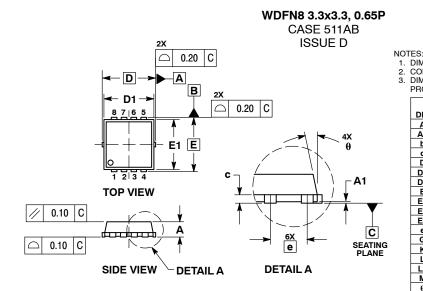
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 5. Pulse Test: pulse width $\leq 300 \ \mu$ s, duty cycle $\leq 2\%$. 6. Switching characteristics are independent of operating junction temperatures.

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS




Figure 13. Thermal Response

DEVICE ORDERING INFORMATION

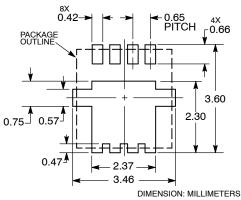
Device	Marking	Package	Shipping [†]
NVTFS6H880NLTAG	880L	WDFN8 (Pb-Free)	1500 / Tape & Reel
NVTFS6H880NLWFTAG	80LW	WDFN8 (Pb-Free, Wettable Flanks)	1500 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

PACKAGE DIMENSIONS

e/2

D2


BOTTOM VIEW

М

 DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
CONTROLLING DIMENSION: MILLIMETERS.
DIMENSION D1 AND E1 DO NOT INCLUDE MOLD FLASH PROTRUSIONS OR GATE BURRS.

	м	LLIMETE	RS	INCHES			
DIM	MIN	NOM	MAX	MIN	NOM	MAX	
Α	0.70	0.75	0.80	0.028	0.030	0.031	
A1	0.00		0.05	0.000		0.002	
b	0.23	0.30	0.40	0.009	0.012	0.016	
С	0.15	0.20	0.25	0.006	0.008	0.010	
D		3.30 BSC		0.130 BSC			
D1	2.95	3.05	3.15	0.116	0.120	0.124	
D2	1.98	2.11	2.24	0.078	0.083	0.088	
E		3.30 BSC			0.130 BSC		
E1	2.95	3.05	3.15	0.116	0.120	0.124	
E2	1.47	1.60	1.73	0.058	0.063	0.068	
E3	0.23	0.30	0.40	0.009	0.012	0.016	
е	0.65 BSC			0.026 BSC			
G	0.30	0.41	0.51	0.012	0.016	0.020	
к	0.65	0.80	0.95	0.026	0.032	0.037	
L	0.30	0.43	0.56	0.012	0.017	0.022	
L1	0.06	0.13	0.20	0.002	0.005	0.008	
Μ	1.40	1.50	1.60	0.055	0.059	0.063	
θ	0 °		12 °	0 °		12 °	

SOLDERING FOOTPRINT*

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use a a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products harmlese against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of

PUBLICATION ORDERING INFORMATION

ax b A B

4X I

E3 📕

0.10 C

0.05 C

A E2

¥

G-

 \oplus

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

ON Semiconductor Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative