<u>MOSFET</u> – Single N-Channel, SUPERFET[®] III, FRFET[®]

650 V, 65 A, 40 mΩ

NVH4L040N65S3F

Features

- Ultra Low Gate Charge & Low Effective Output Capacitance
- Lower FOM (R_{DS(on) max.} x Q_{g typ.} & R_{DS(on) max.} x E_{OSS})
- AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb-Free and are RoHS Compliant

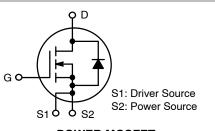
MAXIMUM RATINGS (T_C = 25°C unless otherwise noted)

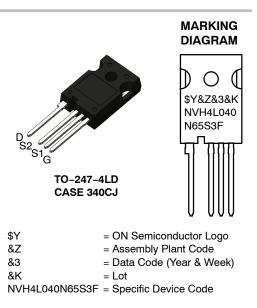
Parameter	Symbol	Value	Unit		
Drain-to-Source Voltage	V _{DSS}	650	V		
Gate-to-Source Voltage - DC	V _{GSS}	±30	V		
Gate-to-Source Voltage - AC (f > 1 Hz)	V_{GSS}	±30	V		
Drain Current – Continuous ($T_C = 25^{\circ}C$)	Ι _D	65	А		
Drain Current – Continuous ($T_C = 100^{\circ}C$)	Ι _D	45	А		
Drain Current – Pulsed (Note 3)	I _{DM}	162.5	А		
Power Dissipation $(T_C = 25^{\circ}C)$	PD	446	W		
Power Dissipation – Derate Above 25°C	PD	3.57	W/°C		
Operating Junction and Storage Temperature Range	T _J , T _{STG}	–55 to +150	°C		
Single Pulsed Avalanche Energy (Note 4)	E _{AS}	1009	mJ		
Repetitive Avalanche Energy (Note 3)	E _{AR}	4.46	mJ		
MOSFET dv/dt	dv/dt	100	V/ns		
Peak Diode Recovery dv/dt (Note 5)	dv/dt	50	V/ns		
Max. Lead Temperature for Soldering Purposes $(1/8''$ from case for 5 s)	ΤL	300	°C		

THERMAL CHARACTERISTICS

Parameter	Symbol	Value	Unit
Thermal Resistance, Junction-to-Case, Max. (Notes 1, 2)	$R_{\theta JC}$	0.28	°C/W
Thermal Resistance, Junction-to-Ambient, Max. (Notes 1, 2)	$R_{\theta JA}$	40	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.


- 1. The entire application environment impacts the thermal resistance values shown. They are not constants and are only valid for the particular conditions noted.
- 2. Assembled to an infinite heatsink with perfect heat transfer from the case (assumes 0 K/W thermal interface).
- 3. Repetitive rating: pulse-width limited by maximum junction temperature.
- 4. $I_{AS} = 9 \text{ A}, R_G = 25 \Omega$, starting $T_J = 25^{\circ}\text{C}$. 5. $I_{SD} \le 32.5 \text{ A}, \text{ di/dt} \le 200 \text{ A/}\mu\text{s}, V_{DD} \le 400 \text{ V}, \text{ starting } T_J = 25^{\circ}\text{C}$.

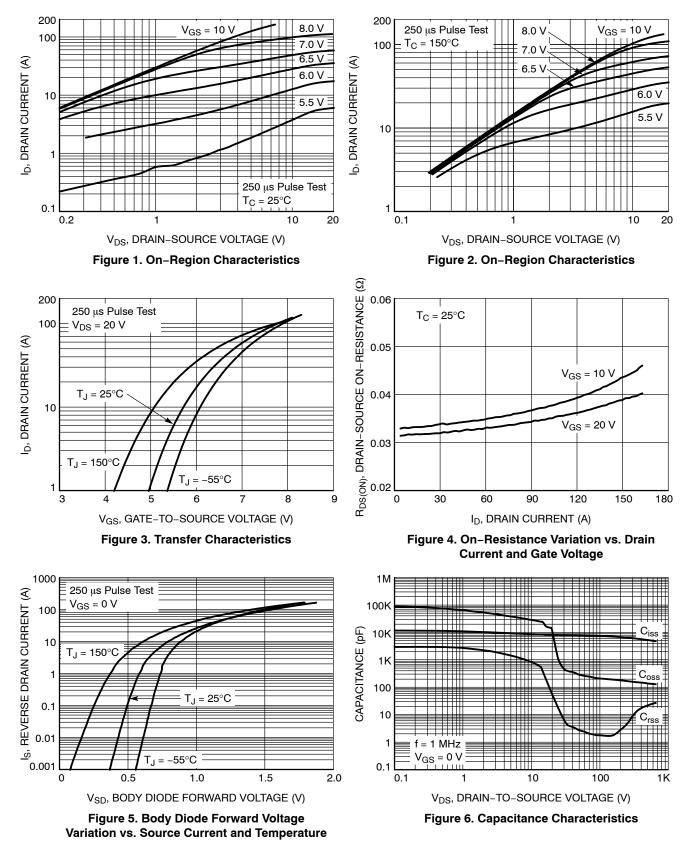

ON Semiconductor®

www.onsemi.com

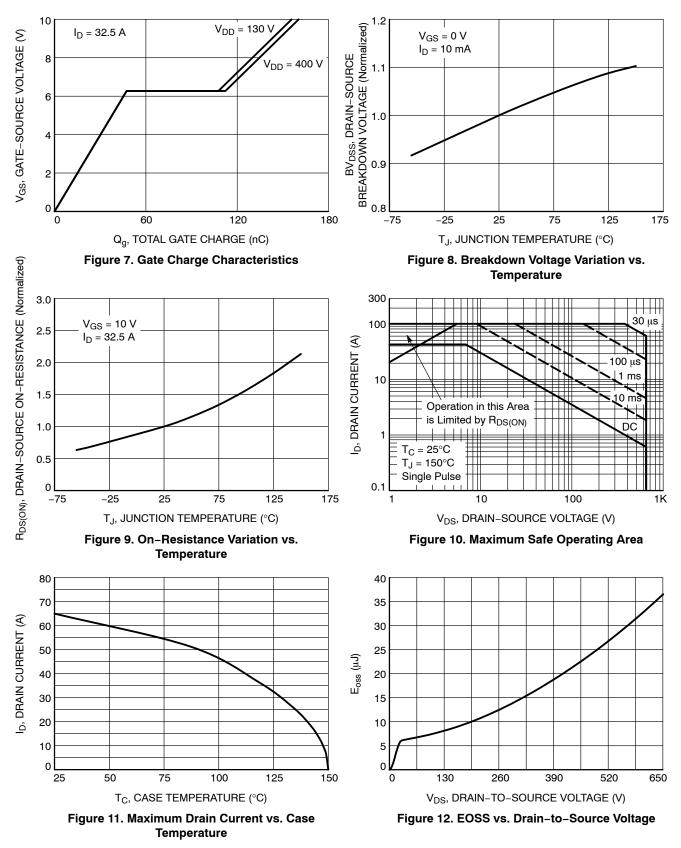
V _{DSS}	R _{DS(ON)} MAX	I _D MAX
650 V	40 mΩ @ 10 V	65 A

POWER MOSFET

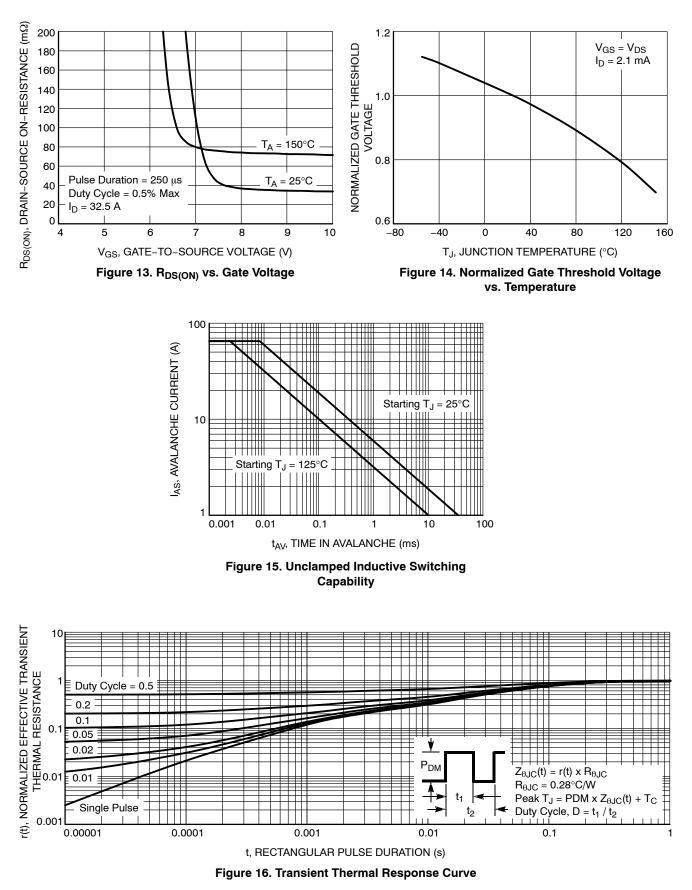
ORDERING INFORMATION


	Device	Package	Shipping
NVH	4L040N65S3F	TO-247-4LD (Pb-Free)	30 Units / Tube

ELECTRICAL CHARACTERISTICS ($T_C = 25^{\circ}C$ unless otherwise noted)


Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
OFF CHARACTERISTICS		·		•	•	
Drain-to-Source Breakdown Voltage	BV _{DSS}	V_{GS} = 0 V, I_D = 1 mA, T_J = 25°C	650			V
Drain-to-Source Breakdown Voltage	BV _{DSS}	V_{GS} = 0 V, I _D = 10 mA, T _J = 150°C	700			V
Breakdown Voltage Temperature Coefficient	$\Delta {\rm BV}_{\rm DSS}/$ $\Delta {\rm T}_{\rm J}$	I_D = 10 mA, Referenced to 25°C		640		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	$V_{GS} = 0 \text{ V}, V_{DS} = 650 \text{ V}$			10	μA
		V_{DS} = 520 V, T_{C} = 125°C		103		
Gate-to-Body Leakage Current	I _{GSS}	V_{GS} = ±30 V, V_{DS} = 0 V			±100	nA
ON CHARACTERISTICS				•		
Gate Threshold Voltage	V _{GS(th)}	$V_{GS} = V_{DS}$, $I_D = 2.1$ mA	3.0		5.0	V
Threshold Temperature Coefficient	$\Delta V_{GS(th)} / \Delta T_J$	$V_{GS} = V_{DS}$, $I_D = 2.1$ mA		-9		mV/°C
Static Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = 10 V, I _D = 32.5 A		33.8	40	mΩ
Forward Transconductance	9fs	V _{DS} = 20 V, I _D = 32.5 A		40		S
DYNAMIC CHARACTERISTICS				+	ł	
Input Capacitance	C _{iss}			5665		pF
Output Capacitance	C _{oss}	V _{GS} = 0 V, V _{DS} = 400 V, f = 1 MHz		148		1
Reverse Transfer Capacitance	C _{rss}			15.8		
Effective Output Capacitance	Coss(eff.)	V_{DS} = 0 V to 400 V, V_{GS} = 0 V		1347		pF
Energy Related Output Capacitance	C _{oss(er.)}	V_{DS} = 0 V to 400 V, V_{GS} = 0 V		240		pF
Total Gate Charge at 10 V	Q _{G(TOT)}			160		nC
Threshold Gate Charge	Q _{G(TH)}	V _{GS} = 10 V, V _{DS} = 400 V, I _D = 32.5 A (Note 6)		28.9		
Gate-to-Source Gate Charge	Q _{GS}			47		
Gate-to-Drain "Miller" Charge	Q _{GD}			65		
Equivalent Series Resistance	ESR	f = 1 MHz		1.9		Ω
SWITCHING CHARACTERISTICS				•		
Turn-On Delay Time	t _{d(on)}			39		ns
Turn-On Rise Time	t _r	$V_{GS} = 10 V, V_{DD} = 400 V,$		27		ns
Turn-Off Delay Time	t _{d(off)}	l _D = 32.5 A, R _g = 2.2 Ω (Note 6)		105		ns
Turn-Off Fall Time	t _f			7		ns
SOURCE-DRAIN DIODE CHARACTER	ISTICS					•
Maximum Continuous Source-to- Drain Diode Forward Current	I _S	V _{GS} = 0 V			65	A
Maximum Pulsed Source-to-Drain Diode Forward Current	I _{SM}	V _{GS} = 0 V			162.5	A
Source-to-Drain Diode Forward Voltage	V _{SD}	V _{GS} = 0 V, I _{SD} = 32.5 A			1.3	V
Reverse Recovery Time	t _{rr}			145.9		ns
Charge Time	ta	V _{GS} = 0 V, dI _F /dt = 100 A/µs,		117.3		1
Discharge Time	t _b	$I_{SD} = 32.5 \text{ A}$		28.8		1
Reverse Recovery Charge	Q _{rr}			744.5		nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 6. Essentially independent of operating temperature typical characteristics.


TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

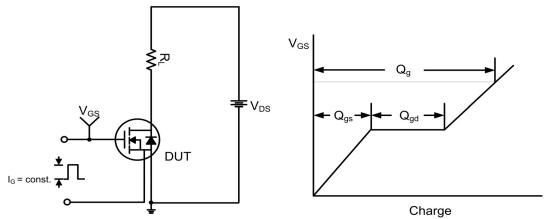


Figure 17. Gate Charge Test Circuit & Waveform

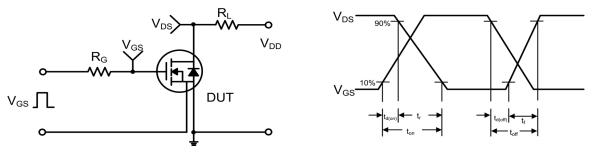
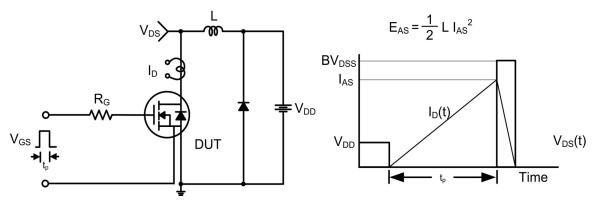



Figure 18. Resistive Switching Test Circuit & Waveforms

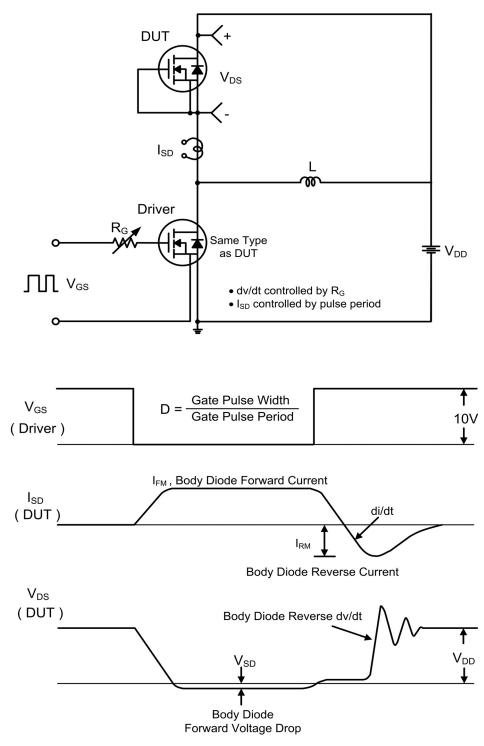
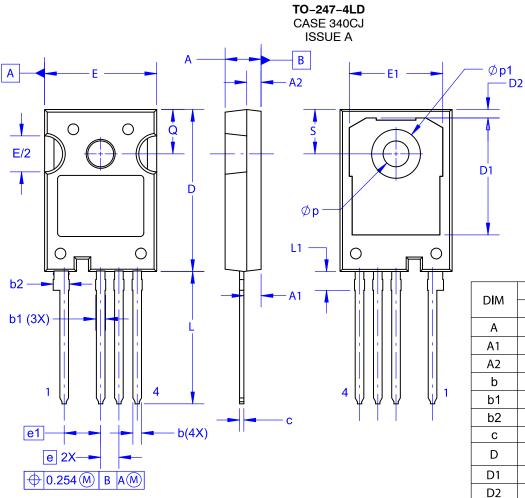



Figure 20. Peak Diode Recovery dv/dt Test Circuit & Waveforms

SUPERFET and FRFET are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.

PACKAGE DIMENSIONS

NOTES:

A. NO INDUSTRY STANDARD APPLIES TO THIS PACKAGE. B. DIMENSIONS ARE EXCLUSIVE OF BURRS,MOLD

- FLASH, AND TIE BAR EXTRUSIONS. C. ALL DIMENSIONS ARE IN MILLIMETERS. D. DRAWING CONFORMS TO ASME Y14.5-2009.

	1				
DIM	MILLIMETERS				
DIM	MIN	NOM	MAX		
А	4.80	5.00	5.20		
A1	2.10	2.40	2.70		
A2	1.80	2.00	2.20		
b	1.07	1.20	1.33		
b1	1.20	1.40	1.60		
b2	2.02	2.22	2.42		
С	0.50	0.60	0.70		
D	22.34	22.54	22.74		
D1	16.00	16.25	16.50		
D2	0.97	1.17	1.37		
е	2	2.54 BSC			
e1	Ę	5.08 BSC			
Е	15.40	15.60	15.80		
E1	12.80	13.00	13.20		
E/2	4.80	5.00	5.20		
L	18.22	18.42	18.62		
L1	2.42	2.62	2.82		
р	3.40	3.60	3.80		
p1	6.60	6.80	7.00		
Q	5.97	6.17	6.37		
S	5.97	6.17	6.37		

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor are of the in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor haves such unitended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death a

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

ON Semiconductor Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 **Europe, Middle East and Africa Technical Support:** Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative