

$\frac{\text{MOSFET}}{\text{SuperFET}^{\mathbb{R}}}$ - N-Channel SuperFET[®] V, FRFET[®] 600 V, 55 m Ω , 45 A

NVB055N60S5F

Features

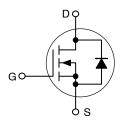
- Ultra Low Gate Charge & Low Effective Output Capacitance
- Lower FOM (R_{DS(on) max.} x Q_{g typ.} & R_{DS(on) max.} x E_{OSS})
- AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb-Free and are RoHS Compliant

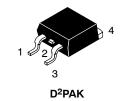
MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Parameter	Symbol	Value	Unit	
Drain-to-Source Voltage	V_{DSS}	600	V	
Gate-to-Source Voltage	e DC		±30	V
	AC (f > 1 Hz)		±30	
Continuous Drain Current	T _C = 25°C	I _D	45	Α
	T _C = 100°C		28	
Power Dissipation	T _C = 25°C	P_{D}	275	W
Pulsed Drain Current	T 0500	I _{DM}	159	Α
Pulsed Source Current (Body Diode)	T _C = 25°C, t _P = 10 μs	I _{SM}	159	
Operating Junction and Storage Range	T _J , T _{stg}	-55 to +150	°C	
Source Current (Body Diode)	I _S	45	Α	
Single Pulse Avalanche Energy	$(I_L = 7 A,$ $R_G = 25 \Omega)$	E _{AS}	417	mJ
Avalanche Current	I _{AS}	7	Α	
Repetitive Avalanche Energy (N	E _{AR}	2.78	mJ	
MOSFET dv/dt	dvdt	120	V/ns	
Peak Diode Recovery dv/dt (No		70		
Lead Temperature for Soldering (1/8" from case for 10 s)	TL	260	°C	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

- 1. Repetitive rating: pulse-width limited by maximum junction temperature.
- 2. $I_{SD} \le 22.5$ A, di/dt ≤ 200 A/ μ s, $V_{DD} \le 400$ V, starting $T_J = 25^{\circ}C$.


THERMAL RESISTANCE


Parameter	Symbol	Value	Unit
Thermal Resistance, Junction-to-Case (Notes 3, 4)	$R_{ heta JC}$	0.45	°C/W
Thermal Resistance, Junction-to-Ambient (Notes 3, 4)	$R_{\theta JA}$	62.5	

- The entire application environment impacts the thermal resistance values shown.They are not constants and are only valid for the particular conditions noted.
- Assembled to an infinite heatsink with perfect heat transfer from the case (assumes 0 K/W thermal interface).

V _{(BR)DSS}	R _{DS(on)} TYP	I _D MAX	
600 V	55 m Ω @ V _{GS} = 10 V	45 A	

N-CHANNEL MOSFET

MARKING DIAGRAM

CASE 418AJ

&Z = Assembly Plant Code &3 = Date Code (Year & Week) &K = Assembly Lot

V055N60S5F = Specific Device Code

ORDERING INFORMATION

See detailed ordering and shipping information on page 2 of this data sheet.

ELECTRICAL CHARACTERISTICS

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
OFF CHARACTERISTICS	I	1		1		1
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 \text{ V}, I_D = 1 \text{ mA}, T_J = 25^{\circ}\text{C}$	600			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	$V_{(BR)DSS}/\Delta T_{J}$	I _D = 10 mA, Referenced to 25°C		581		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V, V _{DS} = 600 V, T _J = 25°C			10	μΑ
Gate-to-Source Leakage Current	I _{GSS}	V _{GS} = ±30 V, V _{DS} = 0 V			±100	nA
ON CHARACTERISTICS						
Drain-to-Source On Resistance	R _{DS(on)}	$V_{GS} = 10 \text{ V}, I_D = 22.5 \text{ A}, T_J = 25^{\circ}\text{C}$		44	55	mΩ
Gate Threshold Voltage	V _{GS(th)}	$V_{GS} = V_{DS}, I_D = 5.2 \text{ mA}, T_J = 25^{\circ}\text{C}$	3.2	4.12	4.8	V
Gate Threshold Voltage Temperature Coefficient	$V_{GS(th)}/\Delta T_{J}$	$V_{GS} = V_{DS}$, $I_D = 5.2$ mA		-6.61		mV/°C
Forward Transconductance	9FS	V _{DS} = 20 V, I _D = 22.5 A		44.8		S
CHARGES, CAPACITANCES & GATE	RESISTANCE			•		
Input Capacitance	C _{ISS}	V 400 V V 0 0 V V 0 70 V V		4603		pF
Output Capacitance	C _{OSS}	$V_{DS} = 400 \text{ V}, V_{GS} = 0 \text{ V}, f = 250 \text{ KHz}$		72.9		
Energy Related Output Capacitance	C _{OSS(er)}	V _{DS} = 0 to 400 V, V _{GS} = 0 V		125		
Total Gate Charge	Q _{G(TOT)}			85.2		nC
Gate-to-Source Charge	Q _{GS}	$V_{DD} = 400 \text{ V}, I_D = 22.5 \text{ A}, V_{GS} = 10 \text{ V}$		26.2		
Gate-to-Drain Charge	Q_{GD}	- VGS - 10 V		24.9		
Gate Resistance	R_{G}	f = 1 MHz		4.32		Ω
SWITCHING CHARACTERISTICS				•	•	
Turn-On Delay Time	t _{d(ON)}			44		ns
Rise Time	t _r	V _{GS} = 0/10 V, V _{DD} = 400 V.		26.2		
Turn-Off Delay Time	t _{d(OFF)}	$V_{GS} = 0/10 \text{ V}, V_{DD} = 400 \text{ V}, \\ I_{D} = 22.5 \text{ A}, R_{G} = 4.7 \Omega$		108		
Fall Time	t _f			2.6		
SOURCE-TO-DRAIN DIODE CHARAG	CTERISTICS			•		Į.
Forward Diode Voltage	V _{SD}	$V_{GS} = 0 \text{ V}, I_{SD} = 22.5 \text{ A}, T_{J} = 25^{\circ}\text{C}$		1.07		V
		V _{GS} = 0 V, I _{SD} = 22.5 A, T _J = 150°C		0.82		
Reverse Recovery Time	t _{RR}	V _{GS} = 0 V, I _{SD} = 22.5 A,		128		ns
Reverse Recovery Charge	Q _{RR}	$dI/dt = 100 \text{ A/}\mu\text{s}, V_{DD} = 400 \text{ V}$		758		
	1	1				

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

PACKAGE MARKING AND ORDERING INFORMATION

Part Number	Top Marking	Package	Packing Method	Reel Size	Tape Width	Quantity
NVB055N60S5F	V055N60S5F	D ² PAK	Tape & Reel [†]	330 mm	24 mm	800 Units

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

TYPICAL CHARACTERISTICS

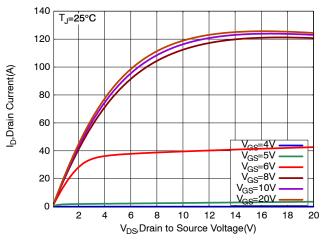


Figure 1. On-Region Characteristics

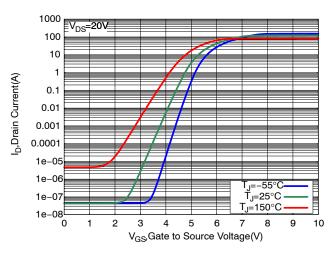


Figure 2. Transfer Characteristics

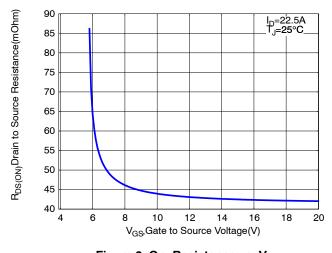


Figure 3. On–Resistance vs. V_{GS}

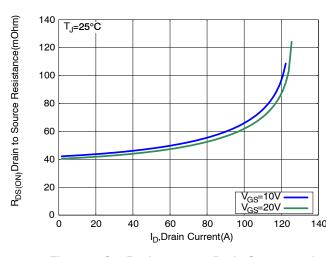


Figure 4. On-Resistance vs. Drain Current and Gate Voltage

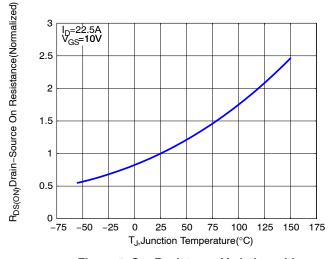


Figure 5. On–Resistance Variation with Temperature

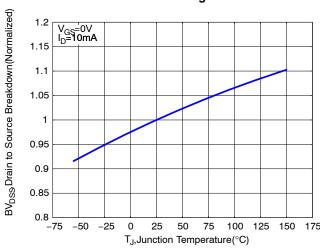
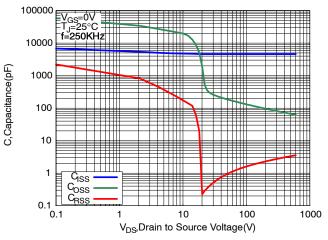



Figure 6. Breakdown Voltage Variation with Temperature

TYPICAL CHARACTERISTICS

V_{GS} Gate to Source Voltage(V)

I_D=22.5A 8 6 2 V_{DD}=120V V_{DD}=360V $V_{DD}^{55}=400V$ 0 0 10 20 30 40 50 90 Q_G,Gate Charge(nC)

Figure 7. Capacitance Variation

Figure 8. Gate-to-Source Voltage vs. Total Charge

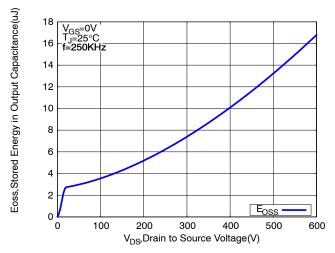


Figure 9. Eoss vs. Drain-to-Source Voltage

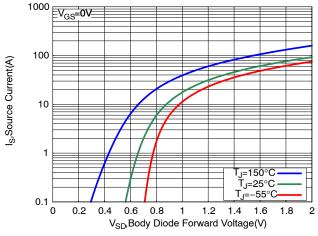


Figure 10. Diode Forward Voltage vs. Current

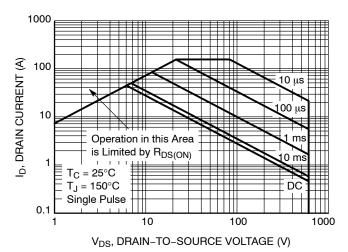


Figure 11. Maximum Rated Forward Biased Safe Operating Area

TYPICAL CHARACTERISTICS

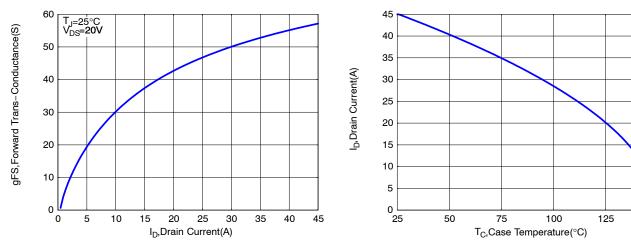
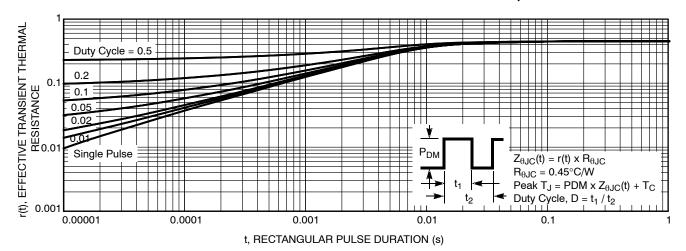
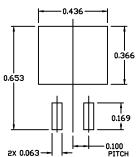


Figure 12. g_{FS} vs. I_D

Figure 13. Maximum Current vs. Case Temperature

150

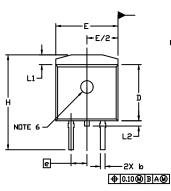



Figure 14. Thermal Response

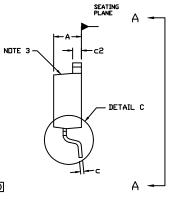
SUPERFET is a registered trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.

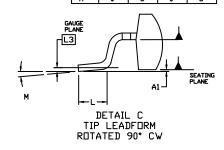
D²PAK-3 (TO-263, 3-LEAD) CASE 418AJ ISSUE F

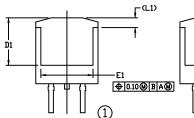
DATE 11 MAR 2021

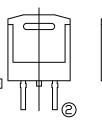

RECOMMENDED MOUNTING FOOTPRINT

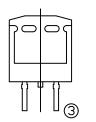
For additional information on our Pb-Free strategy and soldering details, please download the DN Semiconductor Soldering and Mounting Table Semiconductor Manual Table 17 PROBLED

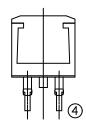

NOTES

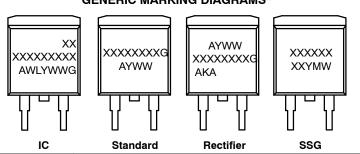

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2009.
- 2. CONTROLLING DIMENSION: INCHES
- 3. CHAMFER OPTIONAL.
- 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED 0.005 PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY AT DATUM H.
- 5. THERMAL PAD CONTOUR IS OPTIONAL WITHIN DIMENSIONS E, L1, D1, AND E1.
- 6. OPTIONAL MOLD FEATURE.
- 7. ①,② ... DPTIONAL CONSTRUCTION FEATURE CALL DUTS.


	INCHES		MILLIN	METERS	
DIM	MIN.	MAX.	MIN.	MAX.	
A	0.160	0.190	4.06	4.83	
A1	0.000	0.010	0.00	0.25	
b	0.020	0.039	0.51	0.99	
С	0.012	0.029	0.30	0.74	
c2	0.045	0.065	1.14	1.65	
D	0.330	0.380	8.38	9.65	
D1	0.260		6.60		
E	0.380	0.420	9.65	10.67	
E1	0.245		6.22		
e	0.100	BSC	2.54	BSC	
Н	0.575	0.625	14.60	15.88	
L	0.070	0.110	1.78	2.79	
L1		0.066		1.68	
L2		0.070		1.78	
L3	0.010 BSC		0.25	BSC	
м	n•	8.	n•	8.	




VIEW A-A





VIEW A-A

OPTIONAL CONSTRUCTIONS

GENERIC MARKING DIAGRAMS*

XXXXXX = Specific Device Code A = Assembly Location

WL = Wafer Lot
Y = Year
WW = Work Week
W = Week Code (SSG)
M = Month Code (SSG)
G = Pb-Free Package
AKA = Polarity Indicator

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " •", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:

98AON56370E

Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.

DESCRIPTION:

D²PAK-3 (TO-263, 3-LEAD)

PAGE 1 OF 1

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer pu

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative