Product Preview

Power MOSFET

25 V, 152 A, Single N-Channel, Power33

Features

- Small Footprint for Compact Design
- Low R_{DS(on)} to Minimize Conduction Losses
- Low Q_G and Capacitance to Minimize Driver Losses
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

Typical Applications

- DC-DC Converters
- Power Load Switch
- Notebook Battery Management

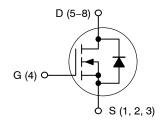
MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Para	Symbol	Value	Unit		
Drain-to-Source Volta	V_{DSS}	25	٧		
Gate-to-Source Volta	ge		V_{GS}	+16, -12	V
Continuous Drain Current R _{B.IC}		T _C = 25°C	I _D	152	Α
(Note 1)	Steady	T _C = 85°C		110	
Power Dissipation $R_{\theta JC}$ (Note 1)	State	T _C = 25°C	P _D	48	W
Continuous Drain		T _A = 25°C	I _D	36	Α
Current R _{θJA} (Notes 1, 3)	Steady	T _A = 85°C		26	
Power Dissipation R _{θJA} (Notes 1, 3)	State	T _A = 25°C	P _D	2.7	W
Continuous Drain		T _A = 25°C	I _D	20	Α
Current R _{θJA} (Notes 2, 3)	Steady	T _A = 85°C		14	
Power Dissipation R _{0JA} (Notes 2, 3)	State	T _A = 25°C	P _D	0.8	W
Pulsed Drain Current	T _A = 25	°C, t _p = 10 μs	I _{DM}	TBD	Α
Single Pulse Drain-to-Source Avalanche Energy (I _{L(pk)} = TBD A, L = 0.1 mH) (Note 4)			E _{AS}	TBD	mJ
Operating Junction and Storage Temperature Range			T _J , T _{stg}	-55 to +150	°C
Lead Temperature Soldering Reflow for Soldering Purposes (1/8" from case for 10 s)			TL	260	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

- 1. Surface-mounted on FR4 board using a 1 in 2 pad size, 2 oz Cu pad.
- 2. Surface-mounted on FR4 board using minimum pad size, 2 oz Cu pad.
- The entire application environment impacts the thermal resistance values shown. They are not constants and are only valid for the particular conditions noted. Actual continuous current will be limited by thermal & electro– mechanical application board design. R_{0CA} is determined by the user's board design.
- 4. 100% UIS tested at L = 0.1 mH, I_{AV} = TBD A.

This document contains information on a product under development. ON Semiconductor reserves the right to change or discontinue this product without notice.



ON Semiconductor®

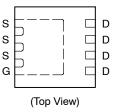
www.onsemi.com

V _{(BR)DSS}	R _{DS(ON)} MAX	I _D MAX
25.\/	1.3 mΩ @ 10 V	150 A
25 V	1.8 mΩ @ 4.5 V	152 A

NMOS

PQFN8 (Power33) CASE 483AW

MARKING DIAGRAM



2EMN = Specific Device Code A = Assembly Location

Y = Year
WW = Work Week
= Pb-Free Package

(Note: Microdot may be in either location)

PIN CONNECTIONS

ORDERING INFORMATION

See detailed ordering and shipping information on page 4 of this data sheet.

THERMAL RESISTANCE RATINGS

Parameter					ol	Max	Unit	
Junction-to-Case - Steady State (Note 1)					;	2.7	°C/W	
Junction-to-Ambient - Steady State (Note	1)			$R_{\theta JA}$		47		
Junction-to-Ambient - Steady State (Note	2)			$R_{\theta JA}$		152		
ELECTRICAL CHARACTERISTICS (T _J = 25°C unless o	otherwise specified)			-			
Parameter Symbol Test Condition			Min	Тур	Max	Unit		
OFF CHARACTERISTICS								
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 \text{ V}, I_D$	= 250 μΑ	25			V	
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /	I _D = 250 μA, ref to 25°C			TBD		mV/°C	
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V, V _{DS} = 20 V	T _J = 25°C			1.0	_	
			T _J = 125°C			100	μΑ	
Gate-to-Source Leakage Current	I _{GSS}	V _{DS} = 0 V, V _{GS} = +16 V, -12 V				±100	±nA	
ON CHARACTERISTICS (Note 5)								
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_{D}$	= 700 μΑ	1.2		2.0	V	
Threshold Temperature Coefficient	V _{GS(TH)} /T _J	I _D = 934 μA, re	ef to 25°C		TBD		mV/°C	
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = 10 V	I _D = 30 A		1.15	1.3		
		V _{GS} = 4.5 V	I _D = 27 A		1.4	1.8	mΩ	
Forward Transconductance	9FS	V _{DS} = 5 V, I _D = 27 A			TBD		S	
Gate Resistance	R _G	T _A = 25°C		_	0.8		Ω	
CHARGES & CAPACITANCES						•	_	
Input Capacitance	C _{ISS}				3159			
						1	7	

Input Capacitance	C _{ISS}		3159	
Output Capacitance	C _{OSS}	V _{GS} = 0 V, V _{DS} = 13 V, f = 1 MHz	860	pF
Reverse Capacitance	C _{RSS}		41	1
Total Gate Charge	Q _{G(TOT)}		19	
Threshold Gate Charge	Q _{G(TH)}	1 , , , , , , , , , , , , , , , ,	TBD	1
Gate-to-Drain Charge	Q_{GD}	$V_{GS} = 4.5 \text{ V}, V_{DS} = 13 \text{ V}; I_D = 27 \text{ A}$	2.8	nC
Gate-to-Source Charge	Q_{GS}		7.6	
Total Gate Charge	Q _{G(TOT)}	V _{GS} = 10 V, V _{DS} = 13 V; I _D = 30 A	38	

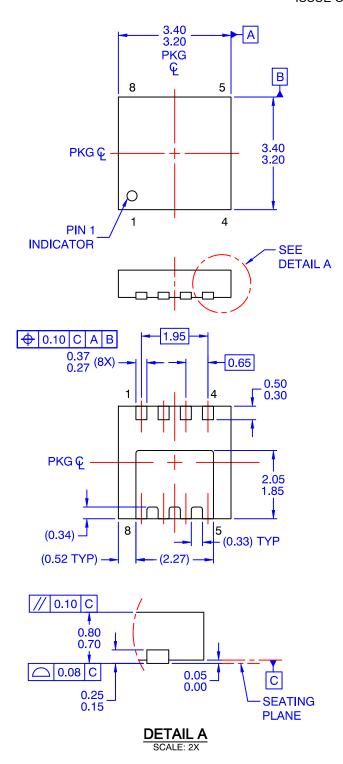
SWITCHING CHARACTERISTICS, $V_{GS} = 4.5 V$ (Note 5)

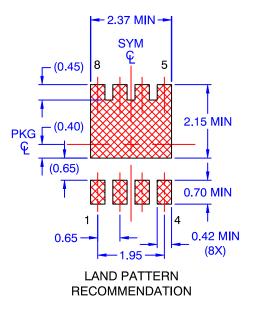
Turn-On Delay Time	t _{d(ON)}		TBD	
Rise Time	t _r	V _{GS} = 4.5 V, V _{DD} = 13 V,	TBD	
Turn-Off Delay Time	t _{d(OFF)}	$I_D = 27 \text{ A}, R_G = 6 \Omega$	TBD	ns
Fall Time	t _f		TBD	

SWITCHING CHARACTERISTICS, V_{GS} = 10 V (Note 5)

Turn-On Delay Time	t _{d(ON)}		TBD	
Rise Time	t _r	V_{GS} = 10 V, V_{DD} = 13 V, I_{D} = 30 A, R_{G} = 6 Ω	TBD	
Turn-Off Delay Time	t _{d(OFF)}		TBD	ns
Fall Time	t _f		TBD	

SOURCE-TO-DRAIN DIODE CHARACTERISTICS


Forward Diode Voltage	V_{SD}	V _{GS} = 0 V,	T _J = 25°C	0.77	1.3	V
		I _S = 30 A	T _J = 125°C	0.63		V
Reverse Recovery Time	t _{RR}	V_{GS} = 0 V, dl/dt = 100 A/ μ s, I_S = 30 A		TBD		ns
Reverse Recovery Charge	Q _{RR}			TBD		nC


Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

5. Switching characteristics are independent of operating junction temperatures.

PACKAGE DIMENSIONS

PQFN8 3.3X3.3, 0.65P CASE 483AW ISSUE O

NOTES: UNLESS OTHERWISE SPECIFIED

- A) PACKAGE STANDARD REFERENCE: JEDEC MO-240, ISSUE A, VAR. BA, DATED OCTOBER 2002.
- B) ALL DIMENSIONS ARE IN MILLIMETERS.
- C) DIMENSIONS DO NOT INCLUDE BURRS OR MOLD FLASH. MOLD FLASH OR BURRS DOES NOT EXCEED 0.10MM.
- D) DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.

ORDERING INFORMATION

Device	Marking	Package	Shipping [†]
NTTFS1D8N02P1E	2EMN	Power33 (Pb-Free)	3000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

ON Semiconductor and III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. Coverage may be accessed at www.onsemi.com/site/par/-atent_-warking.pgr. On Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free

Phone: 421 33 790 2910

Europe, Middle East and Africa Technical Support:

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative