MOSFET - Single N-Channel 80 V, 21 m Ω , 24 A

NTTFD021N08C

General Description

This device includes two specialized N-Channel MOSFETs in a dual package. The switch node has been internally connected to enable easy placement and routing of synchronous buck converters. The control MOSFET (Q2) and synchronous (Q1) have been designed to provide optimal power efficiency.

Features

Q1: N-Channel

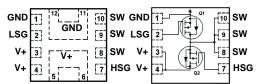
- Max $r_{DS(on)} = 21 \text{ m}\Omega$ at $V_{GS} = 10 \text{ V}$, $I_D = 7.8 \text{ A}$
- Max $r_{DS(on)}$ = 55 m Ω at V_{GS} = 6 V, I_D = 3.9 A Q2: N–Channel
- Max $r_{DS(on)} = 21 \text{ m}\Omega$ at $V_{GS} = 10 \text{ V}$, $I_D = 7.8 \text{ A}$
- Max $r_{DS(on)} = 55 \text{ m}\Omega$ at $V_{GS} = 6 \text{ V}$, $I_D = 3.9 \text{ A}$
- Low Inductance Packaging Shortens Rise/Fall Times, Resulting in Lower Switching Losses
- RoHS Compliant

Applications

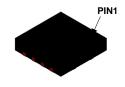
- Computing
- Communications
- General Purpose Point of Load

PIN DESCRIPTION

Pin	Name	Description
1, 11, 12	GND (LSS)	Low Side Source
2	LSG	Low Side Gate
3, 4, 5, 6	V + (HSD)	High Side Drain
7	HSG	High Side Gate
8, 9, 10	SW	Switching Node, Low Side Drain



ON Semiconductor®


www.onsemi.com

V _{(BR)DSS}	R _{DS(ON)} MAX	I _D MAX
80 V	21 mΩ @ 10 V	24 A
00 V	55 mΩ @ 6 V	247

ELECTRICAL CONNECTION

Dual N-Channel MOSFET

Top

Bottom

Power Clip 33 Symmetric (WQFN12) CASE 510CJ

MARKING DIAGRAM

O D021 AYWWZZ

D021 = Specific Device Code
A = Assembly Plant Code
Y = Numeric Year Code
WW = Work Week Code
ZZ = Assembly Lot Code

ORDERING INFORMATION

See detailed ordering and shipping information on page 2 of this data sheet.

ORDERING INFORMATION AND PACKAGE MARKING

Device	Marking	Package	Shipping [†]
NTTFD021N08C	D021	WQFN12 (Pb-Free)	3000 Units/ Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

MOSFET MAXIMUM RATINGS ($T_A = 25$ °C, Unless otherwise specified)

Symbol	Parame	eter		Q1	Q2	Units
V_{DS}	Drain-to-Source Voltage	80	80	V		
V_{GS}	Gate-to-Source Voltage			±20	±20	V
I _D	Drain Current –Continuous	T _C = 25°C	(Note 4)	24	24	Α
	-Continuous	T _C = 100°C	(Note 4)	15	15	
	-Continuous	T _A = 25°C		6 (Note 1a)	6 (Note 1b)	
	-Pulsed	T _A = 25°C		349	349	
E _{AS}	Single Pulse Avalanche Energy (L = 1 mH	, I _{L(pk)} = 7.9 A)	(Note 3)	31	31	mJ
P_{D}	Power Dissipation for Single Operation	T _C = 25°C		26	26	W
	Power Dissipation for Single Operation	T _A = 25°C		1.7 (Note 1a)	1.7 (Note 1b)	
T _J , T _{STG}	Operating and Storage Junction Temperature Range			–55 to	+150	°C
TL	Lead Temperature for Soldering Purposes	(1/8" from case for 10 s)		260	260	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

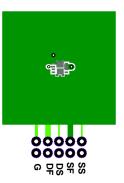
THERMAL CHARACTERISTICS

Symbol	Parameter	Q1	Q2	Units
$R_{\theta JC}$	Thermal Resistance, Junction-to-Case	4.8	4.8	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient	70 (Note 1a)	70 (Note 1b)	
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient	135 (Note 1c)	135 (Note 1c)	

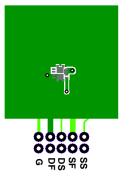
ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

Symbol	Parameter	Test Conditions	Туре	Min	Тур	Max	Units
OFF CHARACTERISTICS							
BV _{DSS}	Drain-to-Source Breakdown Voltage	$I_D = 250 \mu A, V_{GS} = 0 V$	Q1	80			V
		$I_D = 250 \mu A, V_{GS} = 0 V$	Q2	80]
$\frac{\Delta BV_{DSS}}{\Delta T_{J}}$	Breakdown Voltage Temperature	I_D = 250 μ A, referenced to 25°C	Q1		68.2		mV/°C
ΔT_J	ΔT _J Coefficient	I _D = 250 μA, referenced to 25°C	Q2		68.2]
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = 80 \text{ V}, V_{GS} = 0 \text{ V}$	Q1			1	μΑ
		$V_{DS} = 80 \text{ V}, V_{GS} = 0 \text{ V}$	Q2			1]
I _{GSS}	Gate-to-Source Leakage Current, Forward	$V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}$	Q1			±100	nA
		$V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}$	Q2			±100	

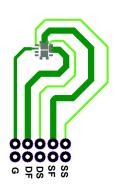
ELECTRICAL CHARACTERISTICS (T_{.I} = 25°C unless otherwise noted)

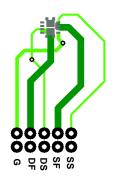

Symbol	Parameter	Test Conditions	Type	Min	Тур	Max	Units
ON CHAR	ACTERISTICS		•		•	•	
V _{GS(th)}	Gate-to-Source Threshold Voltage	$V_{GS} = V_{DS}, I_D = 44 \mu A$	Q1	2	2.8	4	V
		$V_{GS} = V_{DS}$, $I_D = 44 \mu A$	Q2	2	2.8	4	
$\Delta V_{GS(th)}$	Gate-to-Source Threshold Voltage	$I_D = 44 \mu A$, referenced to $25^{\circ}C$	Q1		-8.86		mV/°C
ΔT_{J}	Temperature Coefficient	$I_D = 44 \mu A$, referenced to $25^{\circ}C$	Q2		-8.86		
r _{DS(on)}	Drain-to-Source On Resistance	$V_{GS} = 10 \text{ V}, I_D = 7.8 \text{ A}$	Q1		16.4	21	mΩ
		$V_{GS} = 6 \text{ V}, I_D = 3.9 \text{ A}$			26	55	
		$V_{GS} = 10 \text{ V}, I_D = 7.8 \text{ A},$ $T_J = 125^{\circ}\text{C}$			28.9		1
r _{DS(on)}	Drain-to-Source On Resistance	$V_{GS} = 10 \text{ V}, I_D = 7.8 \text{ A}$	Q2		16.4	21	mΩ
		$V_{GS} = 6 \text{ V}, I_D = 3.9 \text{ A}$			26	55	
		$V_{GS} = 10 \text{ V}, I_D = 7.8 \text{ A},$ $T_J = 125^{\circ}\text{C}$			28.9		
9FS	Forward Transconductance	$V_{DS} = 5 \text{ V}, I_D = 7.8 \text{ A}$	Q1		227		S
		V _{DS} = 5 V, I _D = 7.8 A	Q2		227		
YNAMIC	CHARACTERISTICS		•		•	•	•
C _{ISS}	Input Capacitance	Q1:	Q1		572		pF
		$V_{DS} = 40 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ Mhz}$	Q2		572		1
C _{OSS}	Output Capacitance	Q 2:	Q1		227		pF
		$V_{DS} = 40 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}$	Q2		227		
C_{RSS}	Reverse Transfer Capacitance		Q1		11		pF
			Q2		11		<u></u>
R_{G}	Gate Resistance	T _A = 25°C	Q1	0.1	0.6	1.2	Ω
			Q2	0.1	0.6	1.2	1
WITCHIN	IG CHARACTERISTICS					-	
td _(ON)	Turn-On Delay Time	Q1:	Q1		8		ns
		$V_{DD} = 40 \text{ V}, I_{D} = 7.8 \text{ A}, R_{GEN} = 6 \Omega$	Q2		8		
t _r	Rise Time	02:	Q1		2		ns
		Q2: $V_{DD} = 40 \text{ V}, I_{D} = 7.8 \text{ A},$	Q2		2		1
t _{D(OFF)}	Turn-Off Delay Time	$R_{GEN} = 6 \Omega$	Q1		12		ns
			Q2		12		1
t _f	Fall Time		Q1		3		ns
			Q2		3		
Qg	Total Gate Charge	V _{GS} = 0 V to 10 V	Q1		8.4		nC
			Q2		8.4		
Qg	Total Gate Charge	$V_{GS} = 0 \text{ V to 6 V}$	Q1		5.5		nC
J		04:	Q2		5.5		1
Q _{gs}	Gate-to-Source Gate Charge	Q1: V _{DD} = 40 V,			2.5		nC
·93		I _D = 7.8 A Q2:	Q2		2.5		1
Q _{gd}	Gate-to-Drain "Miller" Charge	$V_{DD} = 40 \text{ V},$	Q1		1.8	-	nC
⊶gd	Cate-to-Brain Willier Charge	$I_D = 7.8 \text{ A}$					- '''
			Q2		1.8		

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)


Symbol	Parameter	Test Conditions	Туре	Min	Тур	Max	Units	
DRAIN-SOURCE DIODE CHARACTERISTICS								
V _{SD}	Source-to-Drain Diode Forward Volt-	$V_{GS} = 0 \text{ V, } I_S = 7.8 \text{ A}$ (Note 2)	Q1		0.82	1.5	V	
	lage	V _{GS} = 0 V, I _S = 7.8 A (Note 2)	Q2		0.82	1.5		
t _{rr}	Reverse Recovery Time	Q1:	Q1		31		ns	
		I _F = 7.8 A, di/dt = 300 A/μs Q2:	Q2		31]	
Q _{rr}	Reverse Recovery Charge	I _F = 7.8 A, di/dt = 300 A/μs	Q1		33		nC	
			Q2		33]	
t _{rr}	Reverse Recovery Time	Q1:	Q1		13		ns	
		I _F = 7.8 A, di/dt = 1000 A/μs Q2:	Q2		13			
Q _{rr}	Reverse Recovery Charge I _F = 7.8 A, di/dt = 1000 A/μs	Q1		88		nC		
			Q2		88			

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.


1. $R_{\theta JA}$ is determined with the device mounted on a 1 in² pad 2 oz copper pad on a 1.5 \times 1.5 in. board of FR-4 material. $R_{\theta CA}$ is determined by the user's board design.


a) 70°C/W when mounted on a 1 in² pad of 2 oz copper.

b) 70°C/W when mounted on a 1 in² pad of 2 oz copper.

c) 135°C/W when mounted on a minimum pad of 2 oz copper.

d) 135°C/W when mounted on a minimum pad of 2 oz copper.

- 2. Pulse Test: Pulse Width < 300 μ s, Duty cycle < 2.0%.
- Q1: E_{AS} of 31 mJ is based on starting T_J = 25°C; N-ch: L = 1 mH, I_{AS} = 7.9 A, V_{DD} = 80 V, V_{GS} = 15 V. 100% test at L = 1 mH, I_{AS} = 8 A. Q2: E_{AS} of 31 mJ is based on starting T_J = 25°C; N-ch: L = 1 mH, I_{AS} = 7.9 A, V_{DD} = 80 V, V_{GS} = 15 V. 100% test at L = 1 mH, I_{AS} = 8 A.
 Computed continuous current limited to Max Junction Temperature only, actual continuous current will be limited by thermal
- & electro-mechanical application board design.

TYPICAL CHARACTERISTICS

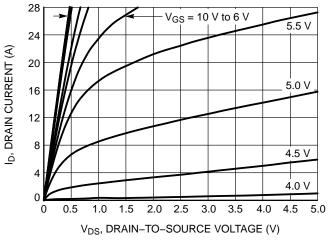


Figure 1. On-Region Characteristics

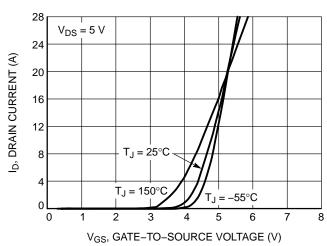


Figure 2. Transfer Characteristics

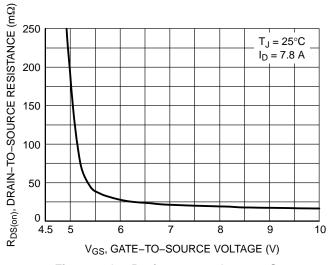


Figure 3. On-Resistance vs. Gate-to-Source Voltage

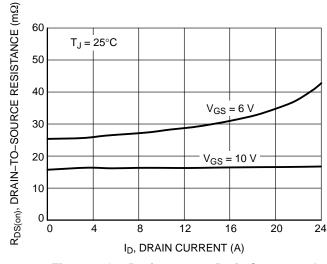


Figure 4. On-Resistance vs. Drain Current and Gate Voltage

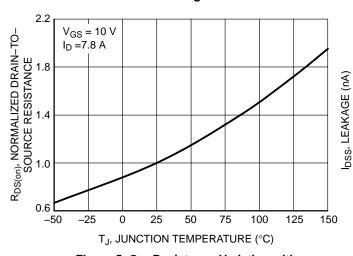


Figure 5. On–Resistance Variation with Temperature

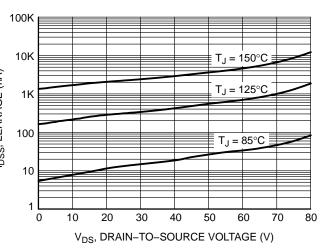


Figure 6. Drain-to-Source Leakage Current vs. Voltage

TYPICAL CHARACTERISTICS

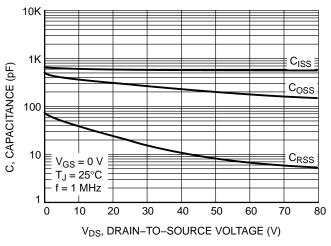


Figure 7. Capacitance Variation

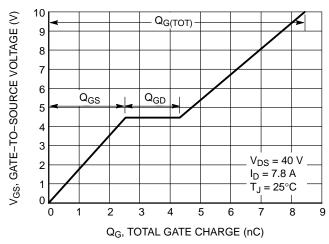


Figure 8. Gate-to-Source and Drain-to-Source Voltage vs. Total Charge

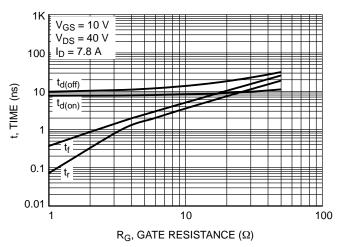


Figure 9. Resistive Switching Time Variation vs. Gate Resistance

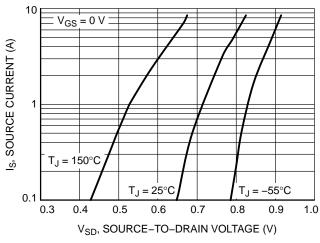


Figure 10. Diode Forward Voltage vs. Current

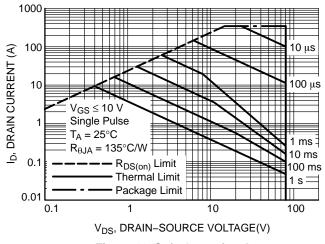


Figure 11. Safe Operating Area

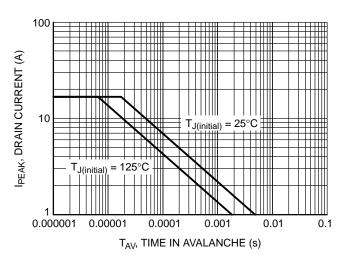


Figure 12. I_{PEAK} vs. Time in Avalanche

TYPICAL CHARACTERISTICS

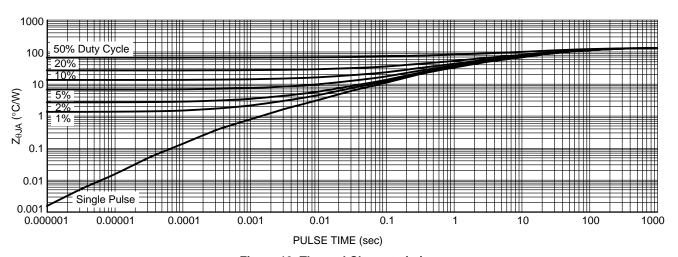
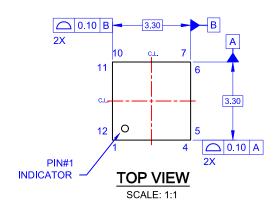
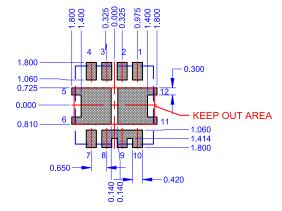
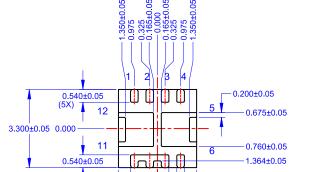
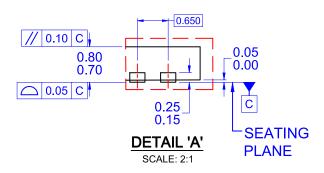




Figure 13. Thermal Characteristics

WQFN12 3.3X3.3, 0.65PCASE 510CJ ISSUE O

DATE 31 MAR 2017


LAND PATTERN RECOMMENDATION


SCALE 1:1

0.320±0.05

FRONT VIEW SCALE: 1:1

NOTES: UNLESS OTHERWISE SPECIFIED

- A) DRAWING DOES NOT FULLY CONFORM TO JEDEC REGISTRATION MO-220, VARIATION WEEC-1
- B) ALL DIMENSIONS ARE IN MILLIMETERS.
- C) DIMENSIONS DO NOT INCLUDE BURRS OR MOLD FLASH. MOLD FLASH OR BURRS DOES NOT EXCEED 0.10MM.

BOTTOM VIEW

-3.300±0.05 →

1.620

SCALE: 1:1

DOCUMENT NUMBER:	98AON13806G	Electronic versions are uncontrolled except when accessed directly from the Document Reposite Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	WQFN12 3.3X3.3, 0.65P		PAGE 1 OF 1		

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

ON Semiconductor and the are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor and see no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com

ON Semiconductor Website: www.onsemi.com

TECHNICAL SUPPORT
North American Technical Support:
Voice Mail: 1 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: a Phone: 00421 33 790 2910

Phone: 011 421 33 790 2910 For additional information, please contact your local Sales Representative