# MOSFET - Symmetrical Dual N-Channel 80 V, 18 mΩ, 26 A

#### NTTFD018N08LC

#### **General Description**

This device includes two specialized N-Channel MOSFETs in a dual package. The switch node has been internally connected to enable easy placement and routing of synchronous buck converters. The control MOSFET (Q2) and synchronous (Q1) have been designed to provide optimal power efficiency.

#### Features

Q1: N-Channel

- Max  $r_{DS(on)} = 18 \text{ m}\Omega$  at  $V_{GS} = 10 \text{ V}$ ,  $I_D = 7.8 \text{ A}$
- Max  $r_{DS(on)} = 29 \text{ m}\Omega$  at  $V_{GS} = 4.5$ ,  $I_D = 6.2 \text{ A}$

Q2: N-Channel

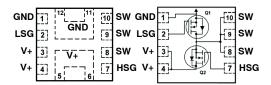
- Max  $r_{DS(on)} = 18 \text{ m}\Omega$  at  $V_{GS} = 10 \text{ V}$ ,  $I_D = 7.8 \text{ A}$
- Max  $r_{DS(on)} = 29 \text{ m}\Omega$  at  $V_{GS} = 4.5$ ,  $I_D = 6.2 \text{ A}$
- Low Inductance Packaging Shortens Rise/Fall Times, Resulting in Lower Switching Losses
- RoHS Compliant

#### **Typical Applications**

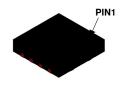
- 48 V Input Primary Half Bridge
- Communications
- General Purpose Point of Load

#### **PIN DESCRIPTION**

| Pin        | Name      | Description                    |
|------------|-----------|--------------------------------|
| 1, 11, 12  | GND (LSS) | Low Side Source                |
| 2          | LSG       | Low Side Gate                  |
| 3, 4, 5, 6 | V + (HSD) | High Side Drain                |
| 7          | HSG       | High Side Gate                 |
| 8, 9, 10   | SW        | Switching Node, Low Side Drain |




#### ON Semiconductor®


#### www.onsemi.com

| V <sub>(BR)DSS</sub> | R <sub>DS(ON)</sub> MAX | I <sub>D</sub> MAX |
|----------------------|-------------------------|--------------------|
| 80 V                 | 18 mΩ @ 10 V            | 26 A               |
|                      | 29 mΩ @ 4.5 V           | 21 A               |

#### **ELECTRICAL CONNECTION**



**Dual N-Channel MOSFET** 





Top

Bottom

Power Clip 33 Symmetric (WQFN12) CASE 510CJ

#### **MARKING DIAGRAM**

D018 AYWWZZ

D018 = Specific Device Code
A = Assembly Plant Code
Y = Numeric Year Code
WW = Work Week Code
ZZ = Assembly Lot Code

#### **ORDERING INFORMATION**

See detailed ordering and shipping information on page 2 of this data sheet.

#### ORDERING INFORMATION AND PACKAGE MARKING

| Device        | Marking | Package             | Shipping <sup>†</sup>      |
|---------------|---------|---------------------|----------------------------|
| NTTFD018N08LC | D018    | WQFN12<br>(Pb-Free) | 3000 Units/<br>Tape & Reel |

<sup>†</sup>For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

#### MOSFET MAXIMUM RATINGS (T<sub>A</sub> = 25°C, Unless otherwise specified)

| Symbol                            |                   | Paran                    | neter                        |          | Q1            | Q2            | Units |  |
|-----------------------------------|-------------------|--------------------------|------------------------------|----------|---------------|---------------|-------|--|
| $V_{DS}$                          | Drain to Source   | Voltage                  |                              |          | 80            | 80            | V     |  |
| $V_{GS}$                          | Gate to Source \  | /oltage                  |                              |          | ±20           | ±20           | V     |  |
| I <sub>D</sub>                    | Drain Current     | -Continuous              | T <sub>C</sub> = 25°C        | (Note 4) | 26            | 26            | Α     |  |
|                                   |                   | -Continuous              | T <sub>C</sub> = 100°C       | (Note 4) | 16            | 16            |       |  |
|                                   |                   | -Continuous              | T <sub>A</sub> = 25°C        |          | 6 (Note 1a)   | 6 (Note 1b)   |       |  |
|                                   |                   | -Pulsed                  | T <sub>A</sub> = 25°C        |          | 349           | 349           |       |  |
| E <sub>AS</sub>                   | Single Pulse Ava  | alanche Energy (L = 1 m  | H, I <sub>L(pk)</sub> = 8 A) | (Note 3) | 32            | 32            | mJ    |  |
| $P_{D}$                           | Power Dissipation | n for Single Operation   | T <sub>C</sub> = 25°C        |          | 26            | 26            | W     |  |
|                                   | Power Dissipation | n for Single Operation   | T <sub>A</sub> = 25°C        |          | 1.7 (Note 1a) | 1.7 (Note 1b) |       |  |
| I <sub>S</sub>                    | Source Current (  | Body Diode)              |                              |          | 21            | 21            | Α     |  |
| T <sub>J</sub> , T <sub>STG</sub> | Operating and S   | torage Junction Tempera  | ature Range                  |          | –55 to        | -55 to +150   |       |  |
| TL                                | Lead Temperatu    | re for Soldering Purpose | es (1/8" from case for 10 s) |          | 260           | 260           | °C    |  |

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

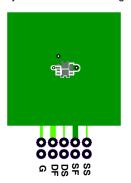
#### THERMAL CHARACTERISTICS

| Symbol          | Parameter                               | Q1            | Q2            | Units |
|-----------------|-----------------------------------------|---------------|---------------|-------|
| $R_{\theta JC}$ | Thermal Resistance, Junction to Case    | 4.8           | 4.8           | °C/W  |
| $R_{\theta JA}$ | Thermal Resistance, Junction to Ambient | 70 (Note 1a)  | 70 (Note 1b)  |       |
| $R_{\theta JA}$ | Thermal Resistance, Junction to Ambient | 135 (Note 1c) | 135 (Note 1c) |       |

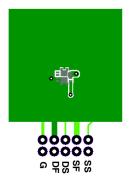
#### **ELECTRICAL CHARACTERISTICS** (T<sub>J</sub> = 25°C unless otherwise noted)

| Symbol            | Parameter                                    | Test Conditions                                   | Туре | Min. | Тур.  | Max. | Units |  |  |
|-------------------|----------------------------------------------|---------------------------------------------------|------|------|-------|------|-------|--|--|
| OFF CHAR          | OFF CHARACTERISTICS                          |                                                   |      |      |       |      |       |  |  |
| BV <sub>DSS</sub> | Drain to Source Breakdown Voltage            | $I_D = 250 \mu A, V_{GS} = 0 V$                   | Q1   | 80   |       |      | V     |  |  |
|                   |                                              | $I_D = 250 \mu\text{A},  V_{GS} = 0  \text{V}$    | Q2   | 80   |       |      |       |  |  |
|                   | Breakdown Voltage Temperature<br>Coefficient | I <sub>D</sub> = 250 μA, referenced to 25°C       | Q1   |      | 76.81 |      | mV/°C |  |  |
|                   |                                              | I <sub>D</sub> = 250 μA, referenced to 25°C       | Q2   |      | 76.81 |      | ]     |  |  |
| I <sub>DSS</sub>  | Zero Gate Voltage Drain Current              | V <sub>DS</sub> = 64 V, V <sub>GS</sub> = 0 V     | Q1   |      |       | 1    | μΑ    |  |  |
|                   |                                              | V <sub>DS</sub> = 64 V, V <sub>GS</sub> = 0 V     | Q2   |      |       | 1    |       |  |  |
| I <sub>GSS</sub>  | Gate to Source Leakage Current, Forward      | $V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}$ | Q1   |      |       | ±100 | μΑ    |  |  |
|                   |                                              | $V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}$ | Q2   |      |       | ±100 |       |  |  |

#### **ELECTRICAL CHARACTERISTICS** ( $T_J = 25^{\circ}C$ unless otherwise noted)


| Symbol              | Parameter                                                   | Test Conditions                                                                                 | Type | Min. | Тур.  | Max. | Units |
|---------------------|-------------------------------------------------------------|-------------------------------------------------------------------------------------------------|------|------|-------|------|-------|
| ON CHAR             | ACTERISTICS                                                 |                                                                                                 |      |      |       |      |       |
| V <sub>GS(th)</sub> | Gate to Source Threshold Voltage                            | $V_{GS} = V_{DS}$ , $I_D = 44 \mu A$                                                            | Q1   | 1.0  | 1.5   | 2.5  | V     |
|                     |                                                             | $V_{GS} = V_{DS}$ , $I_D = 44 \mu A$                                                            | Q2   | 1.0  | 1.5   | 2.5  | 5     |
|                     | Gate to Source Threshold Voltage<br>Temperature Coefficient | I <sub>D</sub> = 44 μA, referenced to 25°C                                                      | Q1   |      | -5.71 |      | mV/°C |
|                     |                                                             | I <sub>D</sub> = 44 μA, referenced to 25°C                                                      | Q2   |      | -5.71 |      | 1     |
| r <sub>DS(on)</sub> | Drain to Source On Resistance                               | V <sub>GS</sub> = 10 V, I <sub>D</sub> = 7.8 A                                                  | Q1   |      | 15    | 18   | mΩ    |
|                     |                                                             | $V_{GS} = 4.5 \text{ V}, I_D = 6.2 \text{ A}$                                                   |      |      | 22    | 29   |       |
|                     |                                                             | $V_{GS} = 10 \text{ V}, I_D = 7.8 \text{ A}, T_J = 125^{\circ}\text{C}$                         |      |      | 25    |      |       |
| r <sub>DS(on)</sub> | Drain to Source On Resistance                               | V <sub>GS</sub> = 10 V, I <sub>D</sub> = 7.8 A                                                  | Q2   |      | 15    | 18   | mΩ    |
|                     |                                                             | $V_{GS} = 4.5 \text{ V}, I_D = 6.2 \text{ A}$                                                   |      |      | 22    | 29   |       |
|                     |                                                             | V <sub>GS</sub> = 10 V, I <sub>D</sub> = 7.8 A,<br>T <sub>J</sub> = 125°C                       |      |      | 25    |      |       |
| 9 <sub>FS</sub>     | Forward Transconductance                                    | V <sub>DS</sub> = 5 V, I <sub>D</sub> = 7.8 A                                                   | Q1   |      | 23    |      | S     |
|                     |                                                             | V <sub>DS</sub> = 5 V, I <sub>D</sub> = 7.8 A                                                   | Q2   |      | 23    |      |       |
| DYNAMIC             | CHARACTERISTICS                                             | ·                                                                                               |      |      |       |      |       |
| C <sub>ISS</sub>    | Input Capacitance                                           | Q1:                                                                                             | Q1   |      | 856   |      | pF    |
|                     | ' '                                                         | $V_{DS} = 40 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ Mhz}$                                | Q2   |      | 856   |      | 1     |
| C <sub>OSS</sub>    | Output Capacitance                                          | Q2:                                                                                             | Q1   |      | 230   |      | pF    |
|                     |                                                             | V <sub>DS</sub> = 40 V, V <sub>GS</sub> = 0 V, f = 1 MHz                                        | Q2   |      | 230   |      |       |
| C <sub>RSS</sub>    | Reverse Transfer Capacitance                                |                                                                                                 | Q1   |      | 10    |      | pF    |
|                     | ·                                                           |                                                                                                 | Q2   |      | 10    |      |       |
| R <sub>G</sub>      | Gate Resistance                                             | T <sub>A</sub> = 25°C                                                                           | Q1   | 0.1  | 0.5   | 2    | Ω     |
| _                   |                                                             |                                                                                                 | Q2   | 0.1  | 0.5   | 2    |       |
| SWITCHIN            | G CHARACTERISTICS                                           |                                                                                                 | 1    |      |       |      | ı     |
| td <sub>(ON)</sub>  | Turn – On Delay Time                                        | Q1:                                                                                             | Q1   |      | 9.4   |      | ns    |
|                     |                                                             | $V_{DD} = 40 \text{ V}, V_{GS} = 4.5 \text{ V},$<br>$I_{D} = 6.2 \text{ A}, R_{GEN} = 6 \Omega$ | Q2   |      | 9.4   |      |       |
| t <sub>r</sub>      | Rise Time                                                   |                                                                                                 | Q1   |      | 5.8   |      | ns    |
|                     |                                                             | Q2:<br>V <sub>DD</sub> = 40 V, V <sub>GS</sub> = 4.5 V,                                         | Q2   |      | 5.8   |      |       |
| t <sub>D(OFF)</sub> | Turn – Off Delay Time                                       | $I_D$ = 6.2 A, $R_{GEN}$ = 6 Ω                                                                  | Q1   |      | 14.6  |      | ns    |
|                     |                                                             |                                                                                                 | Q2   |      | 14.6  |      |       |
| t <sub>f</sub>      | Fall Time                                                   |                                                                                                 | Q1   |      | 5.5   |      | ns    |
|                     |                                                             |                                                                                                 | Q2   |      | 5.5   |      | 1     |
| Qg                  | Total Gate Charge                                           | V <sub>GS</sub> = 0V to 10 V                                                                    | Q1   |      | 12.4  |      | nC    |
|                     |                                                             |                                                                                                 | Q2   |      | 12.4  |      |       |
| Qg                  | Total Gate Charge                                           | V <sub>GS</sub> = 0V to 4.5 V                                                                   | Q1   |      | 6.0   |      | nC    |
| Ü                   |                                                             |                                                                                                 | Q2   |      | 6.0   |      |       |
| Q <sub>gs</sub>     | Gate to Source Gate Charge                                  | Q1:<br>V <sub>DD</sub> = 40 V,                                                                  | Q1   | -    | 1.94  |      | nC    |
| -yə                 |                                                             | I <sub>D</sub> = 6.2 A<br>Q2:                                                                   | Q2   |      | 1.94  |      | -     |
| Q <sub>gd</sub>     | Gate to Drain "Miller" Charge                               | $V_{DD} = 40 \text{ V},$                                                                        | Q1   |      | 1.71  |      | nC    |
| ⊶gd                 | Gate to Drain Willer Charge                                 | $I_D = 6.2 \text{ A}$                                                                           |      |      |       |      | 110   |
|                     |                                                             |                                                                                                 | Q2   |      | 1.71  |      |       |

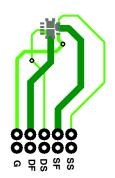
#### ELECTRICAL CHARACTERISTICS (T<sub>J</sub> = 25°C unless otherwise noted)


| Symbol                             | Parameter                                      | Test Conditions                                        | Туре | Min. | Тур. | Max. | Units |  |
|------------------------------------|------------------------------------------------|--------------------------------------------------------|------|------|------|------|-------|--|
| DRAIN-SOURCE DIODE CHARACTERISTICS |                                                |                                                        |      |      |      |      |       |  |
| $V_{SD}$                           | Source to Drain Diode Forward Voltage          | V <sub>GS</sub> = 0 V, I <sub>S</sub> = 7.8 A (Note 2) | Q1   |      | 0.82 | 1.5  | V     |  |
|                                    |                                                | V <sub>GS</sub> = 0 V, I <sub>S</sub> = 7.8 A (Note 2) | Q2   |      | 0.82 | 1.5  |       |  |
| t <sub>rr</sub>                    | Reverse Recovery Time  Reverse Recovery Charge | Q1:                                                    | Q1   |      | 13.3 |      | ns    |  |
|                                    |                                                | I <sub>F</sub> = 7.8 A, di/dt = 300 A/μs               | Q2   |      | 13.3 |      |       |  |
| Q <sub>rr</sub>                    |                                                | - Q2:<br>I <sub>F</sub> = 7.8 A, di/dt = 300 A/μs      | Q1   |      | 18.1 |      | nC    |  |
|                                    |                                                |                                                        | Q2   |      | 18.1 |      |       |  |
| t <sub>rr</sub>                    | Reverse Recovery Time                          | Q1:                                                    | Q1   |      | 10.3 |      | ns    |  |
|                                    |                                                | I <sub>F</sub> = 7.8 A, di/dt = 1000 A/μs              | Q2   |      | 10.3 |      |       |  |
| Q <sub>rr</sub>                    | Reverse Recovery Charge                        | - Q2:<br>I <sub>F</sub> = 7.8 A, di/dt = 1000 A/μs     | Q1   |      | 51   |      | nC    |  |
|                                    |                                                |                                                        | Q2   |      | 51   |      |       |  |

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

1.  $R_{\theta JA}$  is determined with the device mounted on a 1 in<sup>2</sup> pad 2 oz copper pad on a 1.5  $\times$  1.5 in. board of FR-4 material.  $R_{\theta CA}$  is determined by the user's board design.




a) 70°C/W when mounted on a 1 in<sup>2</sup> pad of 2 oz copper.



b) 70°C/W when mounted on a 1 in<sup>2</sup> pad of 2 oz copper.



c) 135°C/W when mounted on a minimum pad of 2 oz copper.



d) 135°C/W when mounted on a minimum pad of 2 oz copper.

- Pulse Test: Pulse Width < 300 μs, Duty cycle < 2.0%.</li>
   Q1: E<sub>AS</sub> of 32 mJ is based on starting T<sub>J</sub> = 25°C; N-ch: L = 1 mH, I<sub>AS</sub> = 8 A, V<sub>DD</sub> = 80 V, V<sub>GS</sub> = 10 V. 100% test at L = 1 mH, I<sub>AS</sub> = 8.2 A. Q2: E<sub>AS</sub> of 32 mJ is based on starting T<sub>J</sub> = 25°C; N-ch: L = 1 mH, I<sub>AS</sub> = 8 A, V<sub>DD</sub> = 80 V, V<sub>GS</sub> = 10 V. 100% test at L = 1 mH, I<sub>AS</sub> = 8.2 A.
   Computed continuous current limited to Max Junction Temperature only, actual continuous current will be limited by thermal
- & electro-mechanical application board design.

#### **TYPICAL CHARACTERISTICS**

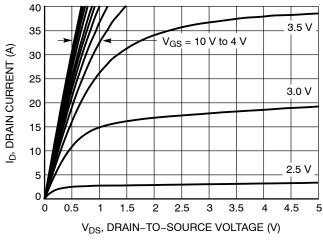



Figure 1. On-Region Characteristics

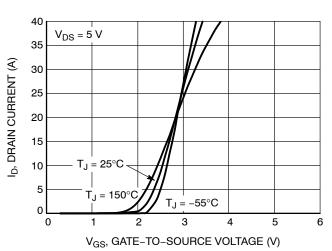



Figure 2. Transfer Characteristics

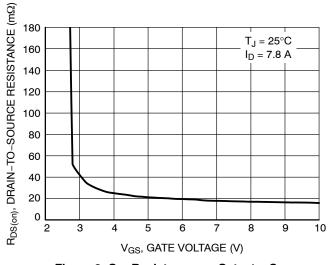



Figure 3. On-Resistance vs. Gate-to-Source Voltage

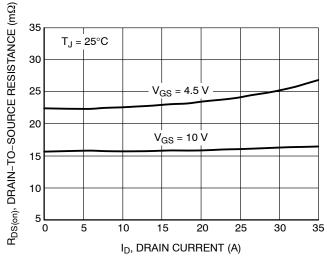



Figure 4. On-Resistance vs. Drain Current and Gate Voltage

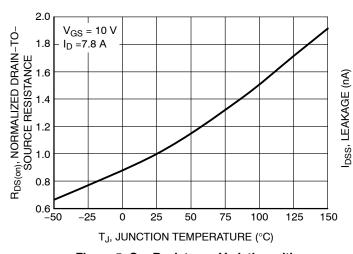



Figure 5. On–Resistance Variation with Temperature

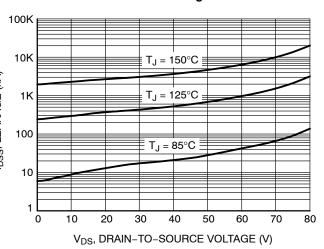



Figure 6. Drain-to-Source Leakage Current vs. Voltage

#### **TYPICAL CHARACTERISTICS**

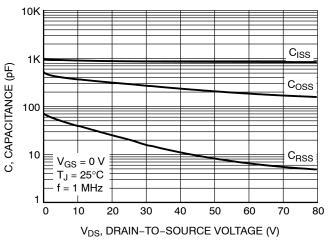



Figure 7. Capacitance Variation

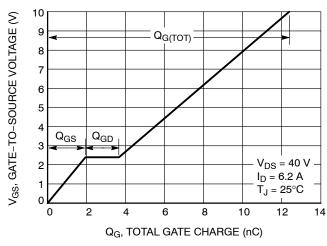



Figure 8. Gate-to-Source and Drain-to-Source Voltage vs. Total Charge

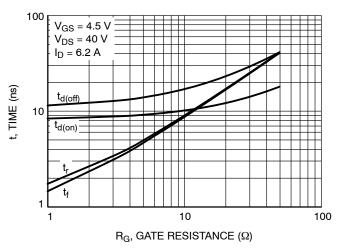



Figure 9. Resistive Switching Time Variation vs. Gate Resistance

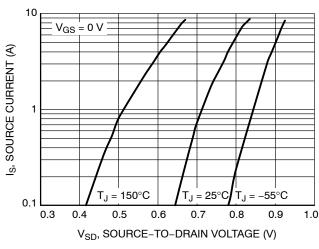



Figure 10. Diode Forward Voltage vs. Current

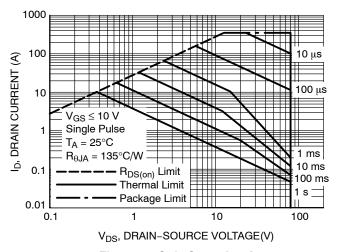



Figure 11. Safe Operating Area

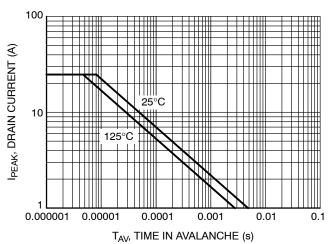



Figure 12.  $I_{\mbox{\scriptsize PEAK}}$  vs. Time in Avalanche

#### **TYPICAL CHARACTERISTICS**

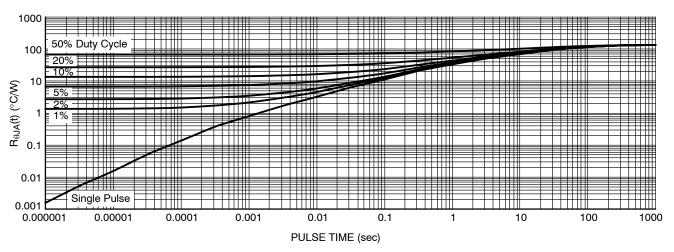
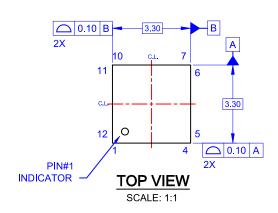
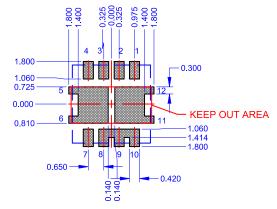
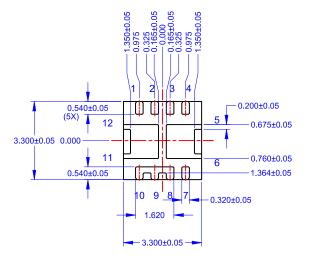





Figure 13. Thermal Characteristics

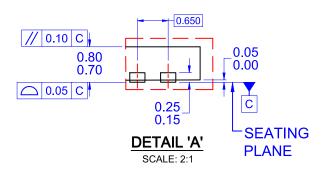
#### **PACKAGE DIMENSIONS**

# **WQFN12 3.3X3.3, 0.65P**CASE 510CJ ISSUE O






#### LAND PATTERN RECOMMENDATION


SCALE 1:1



## FRONT VIEW SCALE: 1:1



### BOTTOM VIEW SCALE: 1:1



#### NOTES: UNLESS OTHERWISE SPECIFIED

- A) DRAWING DOES NOT FULLY CONFORM TO JEDEC REGISTRATION MO-220, VARIATION WEEC-1
- B) ALL DIMENSIONS ARE IN MILLIMETERS.
- C) DIMENSIONS DO NOT INCLUDE BURRS OR MOLD FLASH. MOLD FLASH OR BURRS DOES NOT EXCEED 0.10MM.

ON Semiconductor and (III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <a href="www.onsemi.com/site/pdf/Patent-Marking.pdf">www.onsemi.com/site/pdf/Patent-Marking.pdf</a>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability. arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

#### **PUBLICATION ORDERING INFORMATION**

LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com TECHNICAL SUPPORT

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

ON Semiconductor Website: www.onsemi.com

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative