MOSFET - Power, Dual N- & P-Channel, μ8FL

100 V, 70 mΩ, 9.5 A, -100 V, 186 mΩ, -5 A

NTTBC070NP10M5L

Features

- Small Footprint (3 x 3 mm) for Compact Design
- Low R_{DS(on)} to Minimize Conduction Losses
- Low Q_G and Capacitance to Minimize Driver Losses
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

Typical Applications

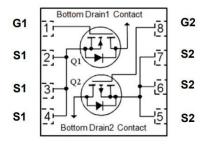
- Power Tools, Battery Operated Vacuums
- UAV/Drones, Material Handling
- Motor Drive, Home Automation

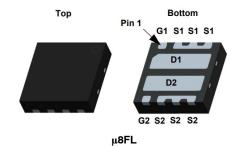
MAXIMUM RATINGS (T_J = 25°C, Unless otherwise specified)

Pai	Parameter			Q1	Q2	Unit
Drain-to-Source	Breakdowi	n Voltage	V _{(BR)DSS}	100	-100	٧
Gate-to-Source	Gate-to-Source Voltage			±20	±20	٧
Continuous Drain Current R ₀ JC (Note 2)	Steady State	T _C = 25°C	I _D	9.5	-5	А
Power Dissipation R _{θJC} (Note 2)			P _D	14	10	W
Continuous Drain Current R ₀ JA (Note 1, 2)	Steady State	T _A = 25°C	I _D	3.5	-2.2	Α
Power Dissipation R _{0JA} (Note 1, 2)			P _D	1.9	1.9	W
Pulsed Drain Current	T _A = 25°0	C, t _p = 10 μs	I _{DM}	33	33	Α
Operating Junctio perature Range	Operating Junction and Storage Temperature Range			–55 to	+150	°C
Source Current (E	Source Current (Body Diode)			12	8	Α
Single Pulse Drain-to-Source Avalanche Energy ($I_L = 7.3 \text{ A}, 7.8 \text{ A}, L = 1 \text{ mH}$)			E _{AS}	26	30	mJ
Lead Temperature Soldering Reflow for Soldering Purposes (1/8" from case for 10 s)			TL	260	260	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

- 1. Surface-mounted on FR4 board using 1 in² pad size, 1 oz Cu pad.
- The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted.




ON Semiconductor®

www.onsemi.com

V _{(BR)DSS}	R _{DS(ON)} MAX	I _D MAX
100 V	70 mΩ @ 10 V	9.5 A
-100 V	186 mΩ @ 10 V	–5 A

Dual-Channel MOSFET

CASE 511DG

MARKING DIAGRAM

&Y&Z&2&K 70NP 10M5L

&Y = ON Semiconductor Logo &Z = Assembly Plant Code &2 = Numeric Date Code

&K = Lot Code

70NP10M5L = Specific Device Code

ORDERING INFORMATION

See detailed ordering and shipping information on page 10 of this data sheet.

THERMAL CHARACTERISTICS

Symbol	Parameter	Q1	Q2	Unit
$R_{ heta JC}$	Junction-to-Case - Steady State (Note 3)	8.9	12.5	°C/W
$R_{ heta JA}$	Junction-to-Ambient - Steady State (Note 3)	65	65	

^{3.} The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted.

ELECTRICAL CHARACTERISTICS (Q1, N-CHANNEL) (T_J = 25°C unless otherwise noted)

Parameter	Symbol	Test Conditions		Min	Тур	Max	Unit
OFF CHARACTERISTICS	· ·				-	<u>-</u>	-
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$		100			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} / T _J	I _D = 250 μA, ref to 25°C			70		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	$V_{GS} = 0 V$, $T_{J} = 25^{\circ}C$				1	μΑ
		$V_{DS} = 100 \text{ V}$	T _J = 125°C			100	1
Gate-to-Source Leakage Current	I _{GSS}	$V_{DS} = 0 V$, $V_{GS} = 1$	±20 V			±100	nA
ON CHARACTERISTICS							
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}$, $I_D = 2$	24 μΑ	1.0		3.0	V
Negative Threshold Temperature Coefficient	V _{GS(TH)} [/] T _J	$I_D = 24 \mu A$, ref to	25°C		7.1		mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = 10 V, I _D =	1.3A		47	70	mΩ
	l i	$V_{GS} = 4.5 \text{ V}, I_D =$	1.0 A		67	102	1
Forward Transconductance	9FS	$V_{DS} = 5 \text{ V}, I_{D} = 4 \text{ A}$			6.2		S
Gate-Resistance	R_{G}	T _A = 25°C			0.74		Ω
CHARGES & CAPACITANCES							
Input Capacitance	C _{ISS}	V _{GS} = 0 V, f = 1 MHz, V _{DS} = 50 V			252		pF
Output Capacitance	C _{OSS}				64		7
Reverse Transfer Capacitance	C _{RSS}				3		1
Total Gate Charge	Q _{G(TOT)}				3		nC
Threshold Gate Charge	Q _{G(TH)}	., 50.			0.6		1
Gate-to-Source Charge	Q _{GS}	$V_{GS} = 4.5 \text{ V}, V_{DS} = 50 \text{ V}$	/, I _D = 1.3 A		1.0		1
Gate-to-Drain Charge	Q_{GD}				1.1		1
Total Gate Charge	Q _{G(TOT)}	., ,,,,,			5.6		1
Plateau Voltage	V _{GP}	$V_{GS} = 10 \text{ V}, V_{DD} = 50 \text{ V}$, I _D = 1.3 A		2.6		V
SWITCHING CHARACTERISTICS					•	•	
Turn-On Delay Time	t _{d(ON)}				5.3		ns
Rise Time	t _r	V _{GS} = 10 V, V _{DS} = 50 V	. In = 1.3 A.		2.5		1
Turn-Off Delay Time	t _{d(OFF)}	$R_{\rm G} = 6 \Omega$			12.4		1
Fall Time	t _f				7.5		1
Turn-On Delay Time	t _{d(ON)}	Voc = 4.5 V. Voc = 50 V. In = 1.3 A			7.6		ns
Rise Time	t _r				7.6		1
Turn-Off Delay Time	t _{d(OFF)}	V_{GS} = 4.5 V, V_{DS} = 50 V R_G = 6 Ω	, .U,		10.4		1
Fall Time	t _f				9		1

ELECTRICAL CHARACTERISTICS (Q1, N-CHANNEL) (T_J = 25°C unless otherwise noted) (continued)

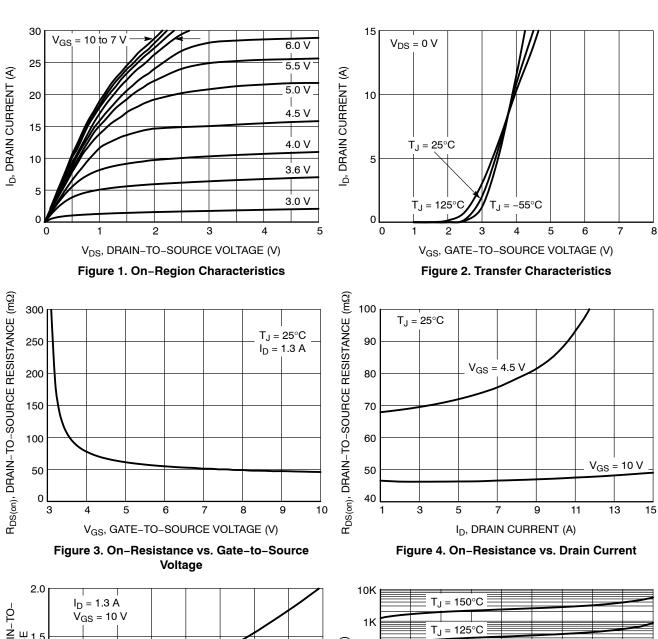
Parameter	Symbol	Test Conditions		Min	Тур	Max	Unit
OFF CHARACTERISTICS							
Forward Diode Voltage	V_{SD}	V _{GS} = 0 V,	T _J = 25°C		0.75	1.2	V
		$V_{GS} = 0 V$, $I_{S} = 1.3 A$	T _J = 125°C		0.6		1
Reverse Recovery Time	t _{RR}	V _{GS} = 0 V, dI _S /dt = 50 A/μs, I _S = 1.2 A			28		ns
Charge Time	t _a				13		1
Discharge Time	t _b				15		
Reverse Recovery Charge	Q_{RR}				8		nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

ELECTRICAL CHARACTERISTICS (Q2, P-CHANNEL) (T_J = 25°C unless otherwise noted)

Parameter	Symbol	Test Conditions		Min	Тур	Max	Unit
OFF CHARACTERISTICS	•				•		•
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 \text{ V}, I_D = -250 \mu\text{A}$		-100			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} / T _J	I _D = -250 μA, ref to	25°C		60		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	$V_{GS} = 0 \text{ V}, V_{DS} = -100 \text{ V}$ $T_J = 25^{\circ}\text{C}$ $T_J = 125^{\circ}\text{C}$				-1	μΑ
		$V_{GS} = 0 \text{ V}, V_{DS} = -100 \text{ V}$	T _J = 125°C			-100	1
Gate-to-Source Leakage Current	I _{GSS}	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 20 \text{ V}$				±100	nA
ON CHARACTERISTICS	•				•	•	
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_D = -\epsilon$	40 μΑ	-2.0		-4.0	V
Negative Threshold Temperature Coefficient	V _{GS(TH)} / T _J	I _D = -40 μA, ref to	25°C		6.6		mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	$V_{GS} = -10 \text{ V}, I_D = -2.2 \text{ A}$ $V_{GS} = -6 \text{ V}, I_D = -1.4 \text{ A}$			146	186	mΩ
					178	284	1
Forward Transconductance	9FS	V _{DS} = 5 V, I _D = -4 A			5.9		S
Gate-Resistance	R_{G}	T _A = 25°C			1.75		Ω
CHARGES & CAPACITANCES	•	•			•	•	
Input Capacitance	C _{ISS}	V _{GS} = 0 V, f = 1 MHz, V _{DS} = -50 V			256		pF
Output Capacitance	C _{OSS}				63		1
Reverse Transfer Capacitance	C _{RSS}	1			3		1
Total Gate Charge	Q _{G(TOT)}				7.3		nC
Threshold Gate Charge	Q _{G(TH)}	1.,,			1.5		1
Gate-to-Source Charge	Q_{GS}	$V_{GS} = -10 \text{ V}, V_{DS} = -50 \text{ V}$	/, I _D = −2.2 A		2.4		1
Gate-to-Drain Charge	Q_{GD}	1			1.2		1
Total Gate Charge	Q _{G(TOT)}				4.6		nC
Plateau Voltage	V_{GP}	$V_{GS} = -6 \text{ V}, V_{DD} = -50 \text{ V}, I_D = -2.2 \text{ A}$			4.5		V
SWITCHING CHARACTERISTICS	-	-			-	-	-
Turn-On Delay Time	t _{d(ON)}				8.9		ns
Rise Time	t _r	$V_{GS} = -10 \text{ V}, V_{DS} = -50 \text{ V}, I_{D} = -2.2 \text{ A},$ $R_{G} = 6 \Omega$			3.6		1
Turn-Off Delay Time	t _{d(OFF)}				13.2		1
Fall Time	t _f				3.4		1

ELECTRICAL CHARACTERISTICS (Q2, P-CHANNEL) (T_J = 25°C unless otherwise noted) (continued)


Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Turn-On Delay Time	t _{d(ON)}			10.8		ns
Rise Time	t _r	$V_{GS} = -6 \text{ V}, V_{DS} = -50 \text{ V}, I_{D} = -2.2 \text{ A},$		4.8		
Turn-Off Delay Time	t _{d(OFF)}	$R_G = 6 \Omega$		10		
Fall Time	t _f			4.1		

OFF CHARACTERISTICS

Forward Diode Voltage	V_{SD}	V _{GS} = 0 V,	T _J = 25°C	-0.86	-1.2	V
		$V_{GS} = 0 \text{ V},$ $I_{S} = -2.2 \text{ A}$	T _J = 125°C	-0.72		
Reverse Recovery Time	t _{RR}	$V_{GS} = 0 \text{ V, } dI_{S}/dt = 100 \text{ A/}\mu\text{s,}$ $I_{S} = -1.1 \text{ A}$		34		ns
Charge Time	t _a			27		
Discharge Time	t _b			7		
Reverse Recovery Charge	Q_{RR}			53		nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

TYPICAL CHARACTERISTICS - N-CHANNEL

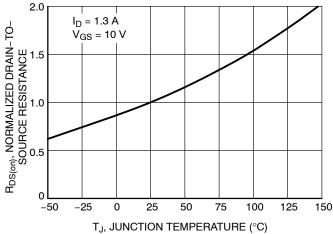


Figure 5. On–Resistance Variation with Temperature

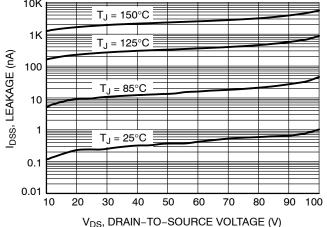


Figure 6. Drain-to-Source Leakage Current vs. Voltage

TYPICAL CHARACTERISTICS - N-CHANNEL

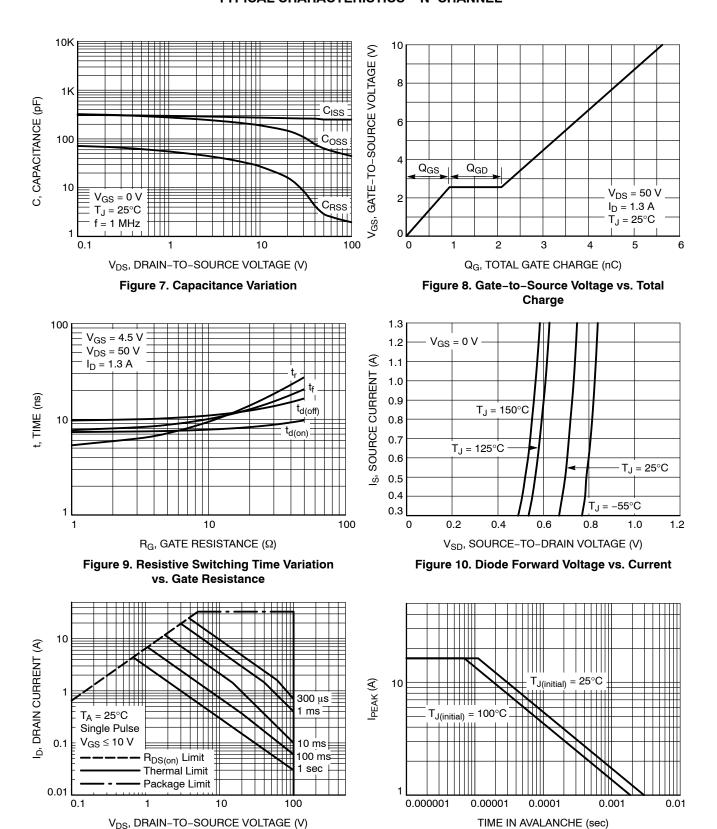


Figure 12. I_{PEAK} vs. Time in Avalanche

Figure 11. Safe Operating Area

TYPICAL CHARACTERISTICS - N-CHANNEL

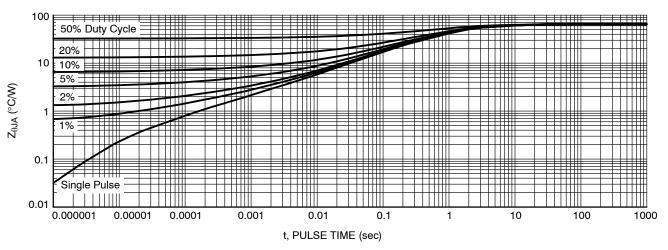


Figure 13. Junction-to-Ambient Transient Thermal Response

TYPICAL CHARACTERISTICS - P-CHANNEL

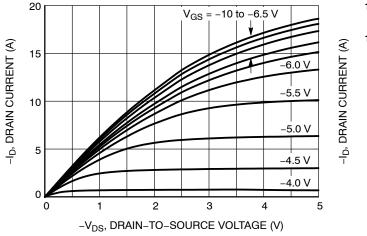


Figure 14. On-Region Characteristics

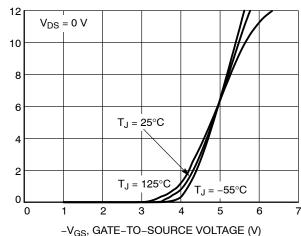


Figure 15. Transfer Characteristics

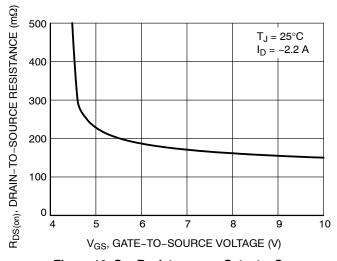


Figure 16. On-Resistance vs. Gate-to-Source Voltage

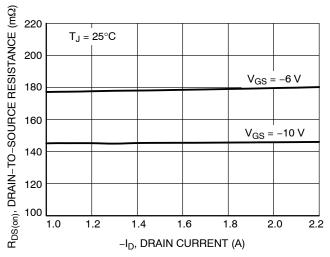


Figure 17. On-Resistance vs. Drain Current

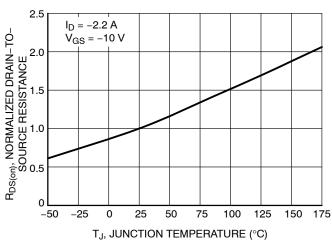


Figure 18. On-Resistance Variation with Temperature

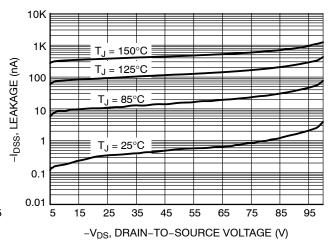


Figure 19. Drain-to-Source Leakage Current vs. Voltage

TYPICAL CHARACTERISTICS - P-CHANNEL

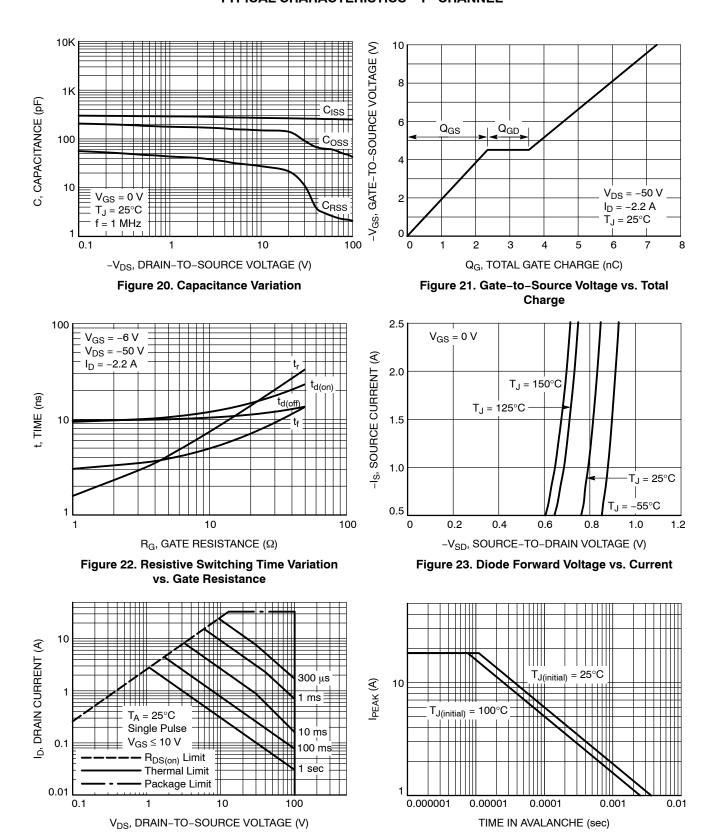


Figure 25. IPEAK vs. Time in Avalanche

Figure 24. Safe Operating Area

TYPICAL CHARACTERISTICS - P-CHANNEL

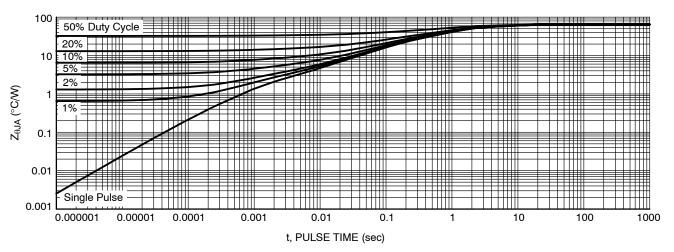


Figure 26. Junction-to-Ambient Transient Thermal Response

ORDERING INFORMATION

Device	Device Marking	Package	Shipping (Qty / Packing) [†]
NTTBC070NP10M5L	70NP10M5L	μ8FL (Pb–Free/Halogen Free)	3000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

PACKAGE DIMENSIONS

WDFN8 3x3, 0.65P CASE 511DG **ISSUE A** B PIN DNE REFERENCE **A3** TOP VIEW DETAIL B DETAIL B // 0.10 C ○ 0.08 C SEATING NOTE 4 **PLANE** C SIDE VIEW -8X L -סת 2X b2 4X L2 8 (0.20)5 2X 0.755 2X E2 (0.35)

e

BOTTOM VIEW

NDTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M. 2009.
- 2. CONTROLLING DIMENSION: MILLIMETERS
- 3. DIMENSION 6 APPLIES TO PLATED
 TERMINALS AND IS MEASURED BETWEEN
 0.15 AND 0.30MM FROM THE TERMINAL TIP.
- COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS.

	MILLIMETERS				
DIM	MIN.	N□M.	MAX.		
Α	0.70	0.75	0.80		
A1	0.00		0.05		
A3	Ū	0.20 REF	-		
ھ	0.30	0.35	0.40		
p2		1.65 REF			
D	2.90	3.00	3.10		
D2	2.45	2.50	2.55		
E	2.90	3.00	3.10		
E2	1.40	1.50	1.60		
ŋ		0.65 BSC	;		
К	0.25				
K2	(0.35 REF			
١	0.27	0.32	0.37		
L2	C).163 REF	-		

ON Semiconductor and ware trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor nessure any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages,

<u>rco</u>.20>5×

nformation on our Pb-Free strategy and 5, please download the DN Semiconductor ounting Techniques Reference Manual,

0.52

RECOMMENDED

MOUNTING FOOTPRINT*

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com

ON Semiconductor Website: www.onsemi.com

8X b-0.10 C A B 0.05 C

NOTE 3

TECHNICAL SUPPORT
North American Technical Support:
Voice Mail: 1 800–282–9855 Toll Free USA/Canada

Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative