MOSFET - Power, Single N-Channel, Source-Down TDFN9

60 V, 1.5 mΩ, 235 A

Product Preview

NTMFSS1D5N06CL

Features

- Small Footprint (5x6 mm) for Compact Design
- Low R_{DS(on)} to Minimize Conduction Losses
- Low Q_G and Capacitance to Minimize Driver Losses
- These Devices are Pb–Free, Halogen–Free / BFR Free and are RoHS Compliant

Typical Applications

- DC-DC Converters
- Power Load Switch
- Notebook Battery Management

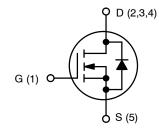
MAXIMUM RATINGS (T_{.1} = 25°C unless otherwise noted)

Parameter		Symbol	Value	Unit	
Drain-to-Source Voltage		V_{DSS}	60	V	
Gate-to-Source Voltage	Gate-to-Source Voltage			±20	V
Continuous Drain Current R _{θJC} (Note 2)	Steady	T _C = 25°C	I _D	235	Α
Power Dissipation $R_{\theta JC}$ (Note 2)	State	T _C = 25°C	P_{D}	167	W
Continuous Drain Current R _{0JA} (Notes 1, 2)	······		I _D	36	Α
Power Dissipation $R_{\theta JA}$ (Notes 1, 2)	State T _A = 25°C		P _D	3.8	W
Pulsed Drain Current	$T_A = 25^{\circ}C, t_p = 10 \ \mu s$		I _{DM}	900	Α
Operating Junction and Storage Temperature Range		T _J , T _{stg}	-55 to +150	°C	
Single Pulse Drain-to-Source Avalanche Energy (I _{L(pk)} = TBD A, L = TBD mH)		E _{AS}	451	mJ	
Lead Temperature Soldering Reflow for Soldering Purposes (1/8" from case for 10 s)		T_L	260	°C	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL RESISTANCE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Junction-to-Case - Steady State (Note 2)	$R_{\theta JC}$	0.9	°C/W
Junction-to-Ambient - Steady State (Note 2)	$R_{\theta JA}$	39	


The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted.

ON Semiconductor®

www.onsemi.com

V _{(BR)DSS}	R _{DS(ON)} MAX	I _D MAX
60 V	1.5 mΩ @ 10 V	235 A
60 V	2.3 mΩ @ 4.5 V	200 A

N-CHANNEL MOSFET

TDFN9 5x6 CASE 520AE

MARKING DIAGRAM

XXXXXX AYWZZ

XXXX = Specific Device Code A = Assembly Location

Y = Year W = Work Week ZZ = Wafer Lot

ORDERING INFORMATION

Device	Package	Shipping [†]
NTMFSS1D5N06CLT1G	TDFN9 (Pb-Free)	1500 / Tape & Reel
NTMFSS1D5N06CLT3G	TDFN9 (Pb-Free)	5000 / Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

^{2.} Surface–mounted on FR4 board using a 1 in² pad size, 2 oz. Cu pad. This document contains information on a product under development. ON Semiconductor reserves the right to change or discontinue this product without notice.

NTMFSS1D5N06CL

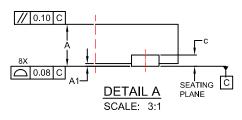
ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise specified)

Parameter	Symbol	Test Condition		Min	Тур	Max	Unit
OFF CHARACTERISTICS	•						
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$		60			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /	I _D = 250 μA, ref to 25°C			12.7		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V, V _{DS} = 60 V	T _J = 25°C			10	μΑ
Gate-to-Source Leakage Current	I _{GSS}	$V_{DS} = 0 V, V_{GS}$	= 20 V			100	nA
ON CHARACTERISTICS (Note 3)							
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_D =$	= 250 μA	1.2		2.0	V
Threshold Temperature Coefficient	V _{GS(TH)} /T _J	I _D = 250 μA, ref	to 25°C		-5.76		mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = 10 V, I _D	= 50 A		1.2	1.5	mΩ
		V _{GS} = 4.5 V, I _D	= 50 A		1.65	2.3	1
Forward Transconductance	9 _{FS}	V _{DS} = 15 V, I _D	= 50 A		151		S
Gate Resistance	R_{G}	T _A = 25°	С		TBD		Ω
CHARGES & CAPACITANCES							
Input Capacitance	C _{ISS}	V _{GS} = 0 V, f = 1 MHz, V _{DS} = 25 V			6660		pF
Output Capacitance	C _{OSS}				2953		1
Reverse Capacitance	C _{RSS}				45		
Total Gate Charge	Q _{G(TOT)}	V _{GS} = 10 V, V _{DS} = 30 V, I _D = 50 A			91		nC
Total Gate Charge	Q _{G(TOT)}	V _{GS} = 4.5 V, V _{DS} = 30 V, I _D = 50 A			41		1
Gate-to-Drain Charge	Q_{GD}				10.9		1
Gate-to-Source Charge	Q_{GS}				17.1		
Plateau Voltage	V_{GP}				2.9		V
SWITCHING CHARACTERISTICS (Note 3)							
Turn-On Delay Time	t _{d(ON)}	$V_{GS} = 4.5 \text{ V}, V_{DI}$ $I_D = 50 \text{ A}, R_G =$	₀ = 30 V,		19		ns
Rise Time	t _r	I _D = 50 A, R _G = 1.0 Ω			51		
Turn-Off Delay Time	t _{d(OFF)}				47		
Fall Time	t _f				18		
SOURCE-TO-DRAIN DIODE CHARACTERISTICS							
Forward Diode Voltage	V_{SD}	V _{GS} = 0 V,	T _J = 25°C		0.78	1.2	V
		I _S = 50 A	T _J = 125°C		0.66		
Reverse Recovery Time	t _{RR}	V _{GS} = 0 V, dl/dt = 100 A/μs, I _S = 50 A			78		ns
Charge Time	ta				36		
Discharge Time	t _b				42		
Reverse Recovery Charge	Q _{RR}				105		nC

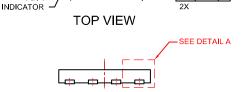
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

3. Switching characteristics are independent of operating junction temperatures.

NTMFSS1D5N06CL


PACKAGE DIMENSIONS

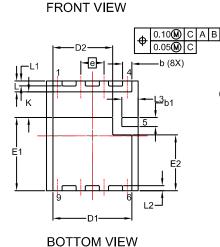
TDFN9 5x6. 1.27P

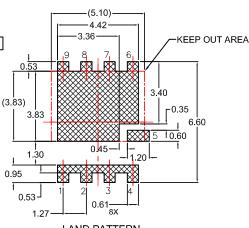

CASE 520AE ISSUE A

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2009.
- 2. CONTROLLING DIMENSION: MILLIMETERS
- 3. COPLANARITY APPLIES TO THE EXPOSED PADS AS WELL AS THE TERMINALS.
- 4. DIMENSIONS D1, D2, E1 AND E2 DO NOT INCLUDE MOLD FLASH.
- SEATING PLANE IS DEFINED BY THE TERMINALS.
 "A1" IS DEFINED AS THE DISTANCE FROM THE SEATING PLANE TO THE LOWEST POINT ON THE PACKAGE BODY.

UNIT IN MILLIMETER				
DIM	MIN	NOM	MAX	
Α	0.95	1.00	1.05	
A1	0.00	0.02	0.05	
b	0.45	0.50	0.55	
b1	0.45	0.50	0.55	
O	0.17	0.22	0.27	
D	4.90	5.00	5.10	
D1	4.10	4.30	4.50	
D2	3.16	3.26	3.36	
Е	5.90	6.00	6.10	
E1	3.90	4.00	4.10	
E2	2.95	3.05	3.15	
Ф	1,27 BSC			
K	1.30	1.40	1.50	
L	0.50	0.60	0.70	
L1	0.18	0.28	0.38	
L2	0.18	0.28	0.38	
L3	0.75	0.85	0.95	


5


В

○ 0.10 C

0.10 C

PIN 1

LAND PATTERN RECOMMENDATION

*FOR ADDITIONAL INFORMATION ON OUR PB-FREE STRATEGY AND SOLDERING DETAILS, PLEASE DOWNLOAD THE ON SEMICONDUCTOR SOLDERING AND MOUNTING TECHNIQUES REFERENCE MANUAL, SOLDERRM/D.

ON Semiconductor and the are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com

TECHNICAL SUPPORT
North American Technical Support:
Voice Mail: 1 800–282–9855 Toll Free USA/Canada

Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

ON Semiconductor Website: www.onsemi.com Phone: 0

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative