MOSFET - Power, Single N-Channel, PQFN8 5x6 150 V, 11.5 mΩ, 78 A # NTMFS011N15MC # **Features** - Small Footprint (5 x 6 mm) for Compact Design - Low R_{DS(on)} to Minimize Conduction Losses - Low Q_G and Capacitance to Minimize Driver Losses - These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant #### **Typical Applications** - Synchronous Rectification - AC-DC and DC-DC Power Supplies - AC-DC Adapters (USB PD) SR - Load Switch # **MAXIMUM RATINGS** ($T_J = 25^{\circ}C$, Unless otherwise specified) | Para | Parameter | | Symbol | Value | Unit | |---|-----------------------------------|-----------------------------------|-----------------|-------|------| | Drain-to-Source Breakdown Voltage | | V _{(BR)DSS} | 150 | V | | | Gate-to-Source Volta | Gate-to-Source Voltage | | V_{GS} | ±20 | V | | Continuous Drain Current $R_{\theta JC}$ (Note 2) | Steady
State | T _C = 25°C | I _D | 78 | Α | | Power Dissipation R _{θJC} (Note 2) | | | P _D | 147 | W | | Continuous Drain Current $R_{\theta JA}$ (Note 1, 2) | Steady
State | T _A = 25°C | I _D | 10.7 | Α | | Power Dissipation $R_{\theta JA}$ (Note 1, 2) | | | P _D | 2.7 | W | | Pulsed Drain Cur-
rent | $T_A = 25^{\circ}C, t_p = 250$ µs | | I _{DM} | 259 | Α | | Operating Junction and Storage Temperature | | T _J , T _{stg} | –55 to
+150 | °C | | | Source Current (Body Diode) | | I _S | 133 | Α | | | Single Pulse Drain-to-Source Avalanche
Energy (I _{AV} = 39 A, L = 0.1 mH) | | E _{AS} | 76.1 | mJ | | | Lead Temperature Soldering Reflow for Soldering Purposes (1/8" from case for 10 s) | | TL | 300 | °C | | Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. - 1. Surface-mounted on FR4 board using 1 in² pad size, 1 oz Cu pad. - The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted. # ON Semiconductor® #### www.onsemi.com | V _{(BR)DSS} | V _{(BR)DSS} R _{DS(ON)} MAX | | |----------------------|--|------| | 150 V | 11.5 mΩ @ 10 V | 35 A | | | 13.2 mΩ @ 8 V | 18 A | #### **N-Channel MOSFET** PQFN8 5x6 (Power 56) CASE 483AE #### **MARKING DIAGRAM** A = Assembly Location Y = Year W = Work W = Work Week ZZ = Lot Traceability #### **ORDERING INFORMATION** See detailed ordering and shipping information on page 2 of this data sheet. #### THERMAL CHARACTERISTICS | Symbol | Parameter | Max | Unit | |----------------|---|-----|------| | $R_{ heta JC}$ | Junction-to-Case – Steady State (Note 5) | | °C/W | | $R_{ hetaJA}$ | Junction-to-Ambient - Steady State (Note 5) | 46 | | # **ORDERING INFORMATION** | Device | Device Marking | Package | Shipping (Qty / Packing) [†] | |---------------|----------------|--|---------------------------------------| | NTMFS011N15MC | NTMFS011N15MC | PQFN8 5x6 (Power 56)
(Pb-Free/Halogen Free) | 3000 / Tape & Reel | [†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. # **ELECTRICAL CHARACTERISTICS** ($T_J = 25^{\circ}C$ unless otherwise noted) | Symbol | Parameter | Test Conditions | | Min | Тур | Max | Unit | |---------------------------------------|--|--|------------------------|-----|------|------|-------| | OFF CHARAC | TERISTICS | | | | | | | | V _{(BR)DSS} | Drain – to – Source Breakdown Voltage | $V_{GS} = 0 \text{ V, I}_{D} = 250 \mu\text{A}$ | | 150 | | | V | | V _{(BR)DSS} / T _J | Drain – to – Source Breakdown Voltage
Temperature Coefficient | I _D = 250 μA, ref to | 25°C | | 85 | | mV/°C | | I _{DSS} | Zero Gate Voltage Drain Current | V 0VV 100V | T _J = 25°C | | | 1 | μΑ | | | | $V_{GS} = 0 \text{ V}, V_{DS} = 120 \text{ V}$ | T _J = 125°C | | | 100 | | | I_{GSS} | Gate – to – Source Leakage Current | V _{DS} = 0 V, V _{GS} = 3 | ±20 V | | | ±100 | nA | | ON CHARACT | ERISTICS (Note 3) | | | | | | | | V _{GS(TH)} | Gate Threshold Voltage | $V_{GS} = V_{DS}$, $I_D = 19$ | 94 μΑ | 2.5 | 3.35 | 4.5 | V | | V _{GS(TH)} / I _J | Negative Threshold Temperature
Coefficient | I _D = 250 μA, ref to 25°C | | | -7.2 | | mV/°C | | R _{DS(on)} | Drain – to – Source On Resistance | V _{GS} = 10 V, I _D = 3 | 35 A | | 9.0 | 11.5 | mΩ | | | | V _{GS} = 8 V, I _D = 18 A | | | 9.7 | 13.2 | 1 | | g _{FS} | Forward Transconductance | V _{DS} = 10 V, I _D = 18 A | | | 96 | 116 | S | | R _G | Gate-Resistance | T _A = 25°C | | | 0.9 | 1.1 | Ω | | CHARGES & C | CAPACITANCES | | | | | | | | CISS | Input Capacitance | | | | 2478 | 3592 | pF | | Coss | Output Capacitance | V _{GS} = 0 V, f = 1 MHz, \ | _{DS} = 75 V | | 728 | 1092 | 1 | | CRSS | Reverse Transfer Capacitance | | | | 7.9 | 15 | 1 | | Q _{G(TOT)} | Total Gate Charge | V _{GS} = 8 V, V _{DS} = 75 V, I _D = 35 A | | | 30.6 | 46 | nC | | Q _{G(TOT)} | Total Gate Charge | | | | 30.7 | 46 | 1 | | Q _{GS} | Gate-to-Source Charge | ., | / L 05 A | | 12.8 | | 1 | | Q _{SW} | Switching Charge | $V_{GS} = 10 \text{ V}, V_{DS} = 75 \text{ V}, I_{D} = 35 \text{ A}$ $V_{GS} = 0 \text{ V}, V_{DD} = 75 \text{ V}$ | | | 9.4 | | 1 | | Q _{GD} | Gate-to-Drain Charge | | | | 4.5 | | 1 | | Qoss | Output Charge | | | | 95 | | 1 | | V _{GP} | Plateau Voltage | V _{GS} = 10 V, V _{DS} = 75 V, I _D = 35 A | | | 5.1 | | V | | SWITCHING C | HARACTERISTICS (Note 3) | | | | - | - | • | | t _{d(ON)} | Turn – On Delay Time | | | | 19.8 | | ns | | t _r | Rise Time | V_{GS} = 10 V, V_{DS} = 75 V, I_D = 35 A, R_G = 6 Ω | | | 4.7 | | 1 | | t _{d(OFF)} | Turn – Off Delay Time | | | | 25.5 | | 1 | | t _f | Fall Time | | | | 4.0 | | 1 | # ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted) (continued) | Symbol | Parameter | Test Conditions | | Min | Тур | Max | Unit | | |------------------------------------|-------------------------|---|------------------------|-----|-------|-----|------|--| | DRAIN-SOURCE DIODE CHARACTERISTICS | | | | | | | | | | V _{SD} | Forward Diode Voltage | $V_{GS} = 0 \text{ V, } I_S = 35 \text{ A}$ | T _J = 25°C | | 0.869 | | V | | | | | | T _J = 125°C | | 0.725 | | | | | t _{RR} | Reverse Recovery Time | V_{GS} = 0 V, dI _S /dt = 300 A/ μ s, I _S = 35 A | | | 48.8 | | ns | | | Q _{RR} | Reverse Recovery Charge | | | | 227 | | nC | | | t _{RR} | Reverse Recovery Time | $V_{GS} = 0 \text{ V, dI}_S/\text{dt} = 1000 \text{ A/}\mu\text{s,}$ $I_S = 35 \text{ A}$ | | | 36.4 | | ns | | | Q_{RR} | Reverse Recovery Charge | | | | 407 | | nC | | Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 3. Switching characteristics are independent of operating junction temperatures. #### NOTES: 4. $R_{\theta JA}$ is determined with the device mounted on a 1 in² pad 2 oz copper pad on a 1.5 x 1.5 in. board of FR-4 material. $R_{\theta CA}$ is determined by the user's board design. a) 46°C/W when mounted on a 1 in² pad of 2 oz copper. b) 116°C/W when mounted on a minimum pad of 2 oz copper. - Pulse Test: Pulse Width < 300 μs, Duty cycle < 2.0%. E_{AS} of 196 mJ is based on starting T_J = 25°C; L = 3 mH, I_{AS} = 12.7 A, V_{DD} = 100 V, V_{GS} = 15 V. 100% tested at L = 0.1 mH, I_{AS} = 41 A. Pulsed I_D please refer to Fig 11 SOA graph for more details. Compute Continuous current limited to Max Junction Temperature only, actual continuous current will be limited by thermal & electro-mechanical application board design. # TYPICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted.) V_{SD}, BODY DIODE FORWARD VOLTAGE (V) Figure 6. Source-to-Drain Diode Forward Voltage vs. Source Current V_{GS}, GATE-TO-SOURCE VOLTAGE (V) Figure 5. Transfer Characteristics # **TYPICAL CHARACTERISTICS** ($T_J = 25^{\circ}C$ unless otherwise noted.) Figure 7. Gate Charge Characteristics Figure 8. Capacitance vs. Drain-to-Source Voltage Figure 9. Unclamped Inductive Switching Capability Figure 10. Maximum Continuous Drain Current vs. Case Temperature Figure 11. Forward Bias Safe Operating Area Figure 12. Single Pulse Maximum Power Dissipation # TYPICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted.) Figure 13. Junction-to-Case Transient Thermal Response Curve #### **PACKAGE DIMENSIONS** # PQFN8 5X6, 1.27P CASE 483AE ISSUE A ON Semiconductor and (III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability. arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. #### **PUBLICATION ORDERING INFORMATION** LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 ON Semiconductor Website: www.onsemi.com Phone: 011 421 33 790 2910 For additional information, please contact your local Sales Representative