MOSFET - Power, N-Channel, Silicon Carbide 900 V, 53.1 mΩ, 67 A TO-247-4LD

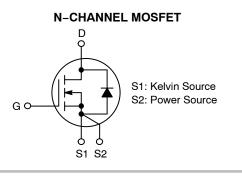
Product Preview NTH4L060N090SC1

MAXIMUM RATINGS (T _J = 25°C	unless otherw	/ise noted)		
Parameter			Symbol	Value	Unit
Drain-to-Source Voltage			V _{DSS}	900	V
Gate-to-Source Voltage			V _{GS}	+19/-8	V
Continuous Drain Current $R_{\theta JC}$	Steady State	T _C = 25°C	۱ _D	66.9	A
Power Dissipation $R_{\theta JC}$			PD	320	W
Continuous Drain Current $R_{\theta JC}$	Steady State	T _C = 100°C	۱ _D	49.0	A
Power Dissipation $R_{\theta JC}$		-	PD	160	W
Continuous Drain Current $R_{\theta JA}$	Steady	Steady State T _A = 25°C	۱ _D	TBD	A
Power Dissipation $R_{\theta JA}$	Olale	Siale	PD	TBD	W
Continuous Drain Current $R_{\theta JA}$	Steady State	T _A = 100°C	۱ _D	TBD	A
Power Dissipation $R_{\theta JA}$		<i>,</i> , , , , , , , , , ,	PD	TBD	W
Pulsed Drain Current $R_{\theta JC}$		= 25°C, = 10 μs	I _{DM}	383	A
Operating Junction and Storage Temperature			T _J , T _{stg}	–55 to +175	°C
Source Current (Body Diode)			۱ _S	86.3	А
Single Pulse Drain-to-Source Avalanche Energy (T _J = 25°C, V _{GS} = 15 V, I _{LPK} = 1 A, L = 0.1 mH, R _G = 25 Ω)			E _{AS}	TBD	mJ
Maximum Lead Temperature for Soldering, (1/8" from Case for 5 seconds)			ΤL	TBD °C	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL RESISTANCE RATINGS

Parameter	Symbol	Мах	Unit
Junction-to-Case - Steady State	$R_{\theta JC}$	0.468	°C/W
Junction-to-Ambient - Steady State	$R_{\theta JA}$	TBD	


This document contains information on a product under development. ON Semiconductor reserves the right to change or discontinue this product without notice.

ON Semiconductor®

www.onsemi.com

V _{(BR)DSS}	R _{DS(ON)} MAX	I _D MAX
900 V	53.1 m Ω @ 15 V	67 A

TO-247-4LD CASE 340CJ

ORDERING INFORMATION

Device	Package	Shipping [†]		
NTH4L060N090SC1	TO-247	TBD / Tape & Reel		

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise specified)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
OFF CHARACTERISTICS						
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	V_{GS} = 0 V, I _D = 2.50e - 04A T _C = 25°C	A, 900			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} / T _J	$\label{eq:VGS} \begin{array}{l} V_{GS} = 0 \text{ V}, \text{ I}_{D} = 2.50e - 04A \\ T_{Jmax} = 175^{\circ}\text{C} \end{array}$	λ,	-93.5		V/°C
Zero Gate Voltage Drain Current	I _{DSS}	$V_{GS} = 0 V, T_{C} = 2$	25°C		10	μA
		$V_{DS} = 900 V$ $T_C = 1$	75°C		250	
Gate-to-Source Leakage Current	I _{GSS}	$V_{DS} = 0 \text{ V}, \text{ V}_{GS} = +19/-8 \text{ V}$	/		250	nA
ON CHARACTERISTICS				-	-	
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = 15 V, I _D = 21.3 A		53.1		mΩ
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_D = 5.34e-03$	A	2.09		V
Gate Threshold Voltage Temperature Coefficient	V _{GS(TH)} / T _J	$V_{GS} = V_{DS}, I_D = 5.34e-03$	A	-5.33		mV/°C
Forward Transconductance	9 _{FS}	V _{DS} = 10 V, I _D = 21.3 A		11.2		S
CHARGES, CAPACITANCES & GATE RE	SISTANCE					
Gate-Resistance	R _G			4.93		Ω
Input Capacitance	C _{ISS}			1780		pF
Reverse Transfer Capacitance	C _{RSS}	V_{GS} = 0 V, V_{DS} = 450 V		9.94		
Output Capacitance	C _{OSS}			107		
Effective Output Capacitance	C _{OSSef}			204		
Energy Related Output Capacitance	C _{OSSer}	V _{GS} = 0 V, V _{DS} = 0 to 450	v	140		
C _{OSS} Stored Energy	E _{OSS}			14.2		μJ
Total Gate Charge	Q _{G(TOT)}			61.8		nC
Gate-to-Source Charge	Q _{GS}	$V_{GS} = 15 \text{ V}, \text{ V}_{DS} = 720 \text{ V}$ I_D = 10.7 A	,	12.1		
Gate-to-Drain Charge	Q _{GD}	$I_D = 10.7 R$		20.9		1
SWITCHING CHARACTERISTICS	1				l	
Turn-On Delay Time	t _{d(ON)}			26.3		ns
Turn–Off Delay Time	t _{d(OFF)}			33.5		mJ
Rise Time	t _r			8.95		
Fall Time	t _f	$V_{GS} = -8/15 \text{ V}, V_{DS} = 720 \text{ V}$	V,	14.4		
Turn-On Switching Loss	E _{ON}	$I_D = 10.7 \text{ A}, \text{ R}_G = 6 \Omega$		0.158		
Turn-Off Switching Loss	E _{OFF}			0.031		
Total Switching Loss	E _{tot}			0.190		
DRAIN-SOURCE DIODE CHARACTERIS					l	
Forward Diode Voltage	V _{SD}	I _D = 10.7 A		2.97		V
Reverse Recovery Time	t _{RR}			45.6		ns
Reverse Recovery Charge	Q _{RR}	V _{GS} = -8/15 V, V _{DS} = 720 ^v		149		nC
Reverse Recovery Energy	E _{REC}	$dI_S/dt = 1000 \text{ A}/\mu \text{s}, I_D = 10.7$, A	33.2		μJ
Peak Reverse Recovery Current	I _{RRM}	1		7.48		A

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

TYPICAL CHARACTERISTICS

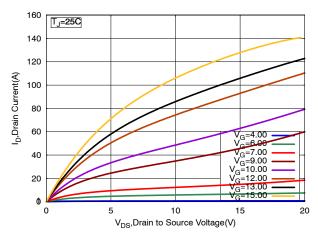


Figure 1. On–Region Characteristics

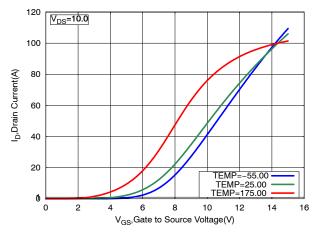


Figure 2. Transfer Characteristics

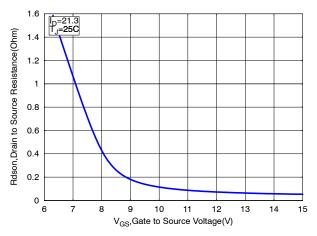


Figure 3. On–Resistance vs. VGS

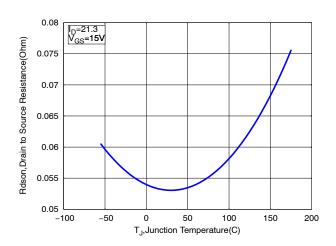


Figure 5. On-Resistance Variation with Temperature

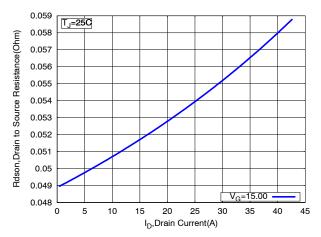


Figure 4. On-Resistance vs. Drain Current and Gate Voltage

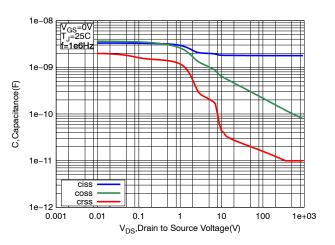


Figure 6. Capacitance Variation

TYPICAL CHARACTERISTICS

100

10

1

0.1

0.01 0.001

0.0001

l_S,Reverse Drain Current

V_{GS}=0

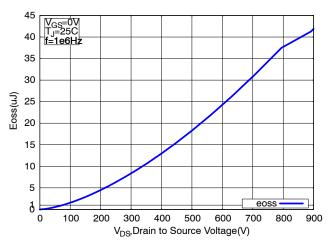


Figure 7. Eoss vs. Drain to Source Voltage

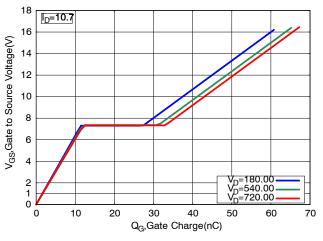


Figure 8. Gate-to-Source Voltage vs. Total Charge

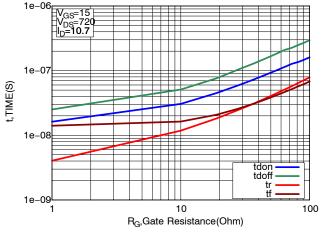
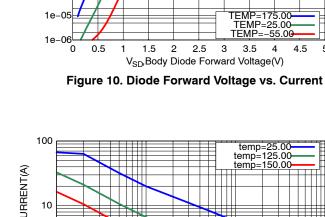



Figure 9. Resistive Switching Time Variation vs. Gate Resistance

5

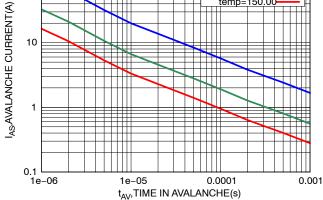
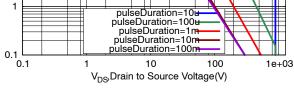
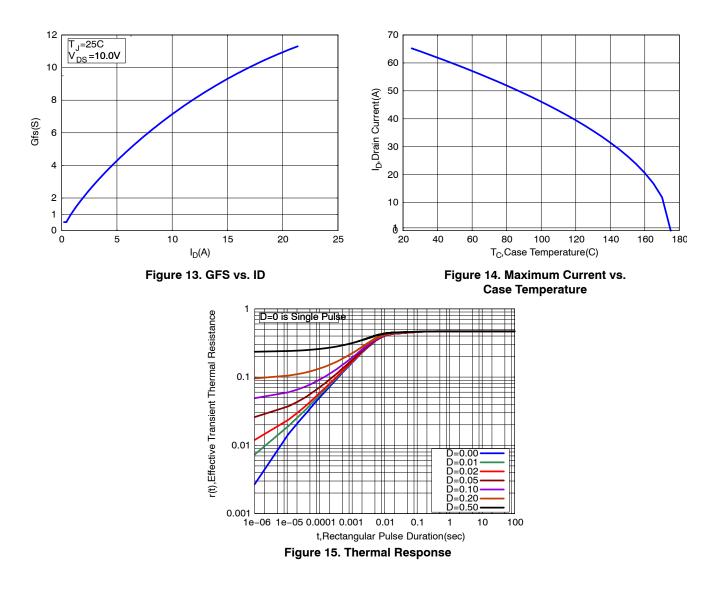
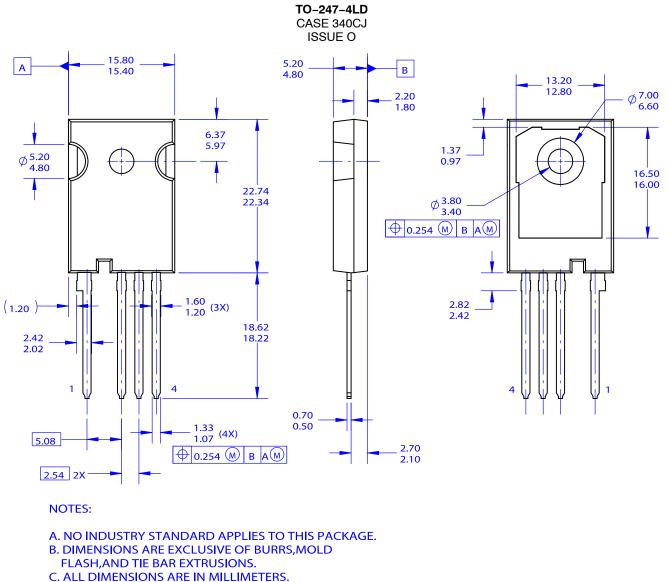



Figure 12. Ipeak vs. Time in Avalanche


1000 100 10

I_D,Drain Current(A)



TYPICAL CHARACTERISTICS

PACKAGE DIMENSIONS

D. DRAWING CONFORMS TO ASME Y14.5-2009.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor products are not application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconducts for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or de

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

ON Semiconductor Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative