MOSFET – SiC Power, Single N-Channel, TO247-4L

1200 V, 40 mΩ, 58 A

NTH4L040N120SC1

Features

- Typ. $R_{DS(on)} = 40 \text{ m}\Omega$
- Ultra Low Gate Charge ($Q_{G(tot)} = 106 \text{ nC}$)
- High Speed Switching with Low Capacitance ($C_{oss} = 137 \text{ pF}$)
- 100% Avalanche Tested
- $T_J = 175^{\circ}C$
- This Device is Pb-Free and is RoHS Compliant

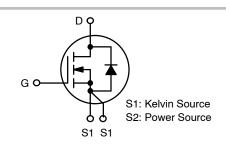
Typical Applications

- UPS
- DC/DC Converter
- Boost Inverter

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Parameter			Symbol	Value	Unit
Drain-to-Source Voltage			V _{DSS}	1200	V
Gate-to-Source Voltage			V _{GS}	-15/+25	V
Recommended Operatio of Gate-to-Source Volta		T _C < 175°C	V _{GSop}	-5/+20	V
Continuous Drain Current (Note 2)	Steady State	$T_{C} = 25^{\circ}C$	۱ _D	58	A
Power Dissipation (Note 2)			PD	319	W
Continuous Drain Current (Notes 1, 2)	Steady State	T _C = 100°C	I _D	41	A
Power Dissipation (Notes 1, 2)			PD	160	W
Pulsed Drain Current (Note 3)	T _A = 25°C		I _{DM}	232	A
Single Pulse Surge Drain Current Capability	$\begin{array}{l} T_C = 25^\circ C, t_p = 10 \; \mu s, \\ R_G = 4.7 \; \Omega \end{array}$		I _{DSC}	416	A
Operating Junction and Storage Temperature Range			T _J , T _{stg}	–55 to +175	°C
Source Current (Body Diode)			IS	32	А
Single Pulse Drain-to-Source Avalanche Energy ($I_{L(pk)} = 34 \text{ A}, L = 1 \text{ mH}$) (Note 4)		E _{AS}	578	mJ	
Maximum Lead Temperature for Soldering (1/8" from case for 5 s)		ΤL	300	°C	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.


- 1. JA is constant value to follow guide table of LV/HV discrete final datasheet generation.
- 2. The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted. 3. Repetitive rating, limited by max junction temperature.
- 4. EAS of 578 mJ is based on starting $T_J = 25^{\circ}C$; L = 1 mH, $I_{AS} = 34$ A, $V_{DD} = 120 \text{ V}, V_{GS} = 20 \text{ V}.$


ON Semiconductor®

www.onsemi.com

V _{(BR)DSS}	R _{DS(ON)} MAX	I _D MAX		
1200 V	56 mΩ @ 20 V	58 A		

N-CHANNEL MOSFET

MARKING DIAGRAM

= Assembly Location Α

Υ = Year

WW = Work Week

ΖZ = Lot Traceability

NTH4L040N120SC1 = Specific Device Code

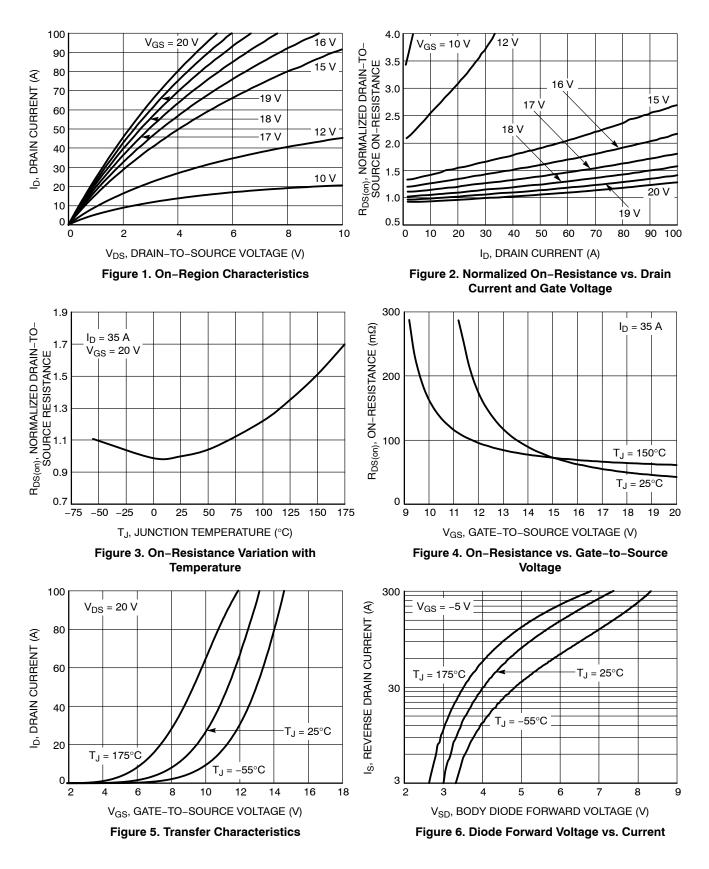
ORDERING INFORMATION

Device	Package	Shipping		
NTH4L040N120SC1	TO247-4L	30 ea / Tube		

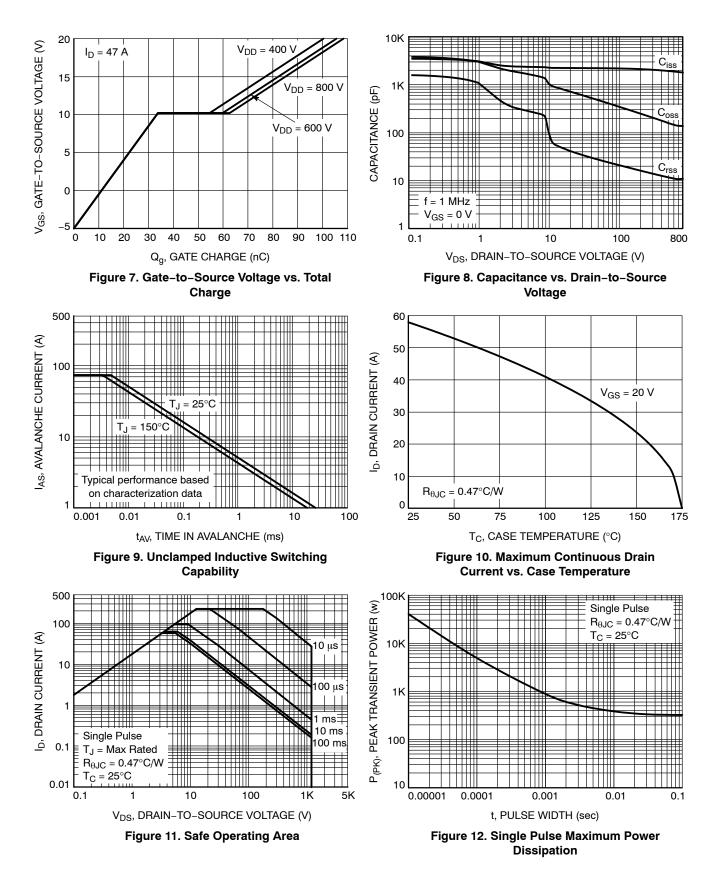
THERMAL RESISTANCE MAXIMUM RATINGS

Parameter		Мах	Unit	
Junction-to-Case - Steady State (Note 2)	$R_{\theta JC}$	0.47	°C/W	
Junction-to-Ambient - Steady State (Notes 1, 2)	$R_{\theta JA}$	40		

ELECTRICAL CHARACTERISTICS (T_J = $25^{\circ}C$ unless otherwise specified)


Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
OFF CHARACTERISTICS		•	•	•		
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	V_{GS} = 0 V, I_D = 1 mA	1200	-	-	V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T _J	I _D = 1 mA, referenced to 25°C) –	0.45	-	V/°C
Zero Gate Voltage Drain Current	I _{DSS}	$V_{GS} = 0 V,$ $T_J = 2$.5°C –	-	100	μA
		V _{DS} = 1200 V T _J = 1	75°C –	-	1	mA
Gate-to-Source Leakage Current	I _{GSS}	$V_{GS} = +25/-15 \text{ V}, \text{ V}_{DS} = 0 \text{ V}$	-	-	±1	μA
ON CHARACTERISTICS (Note 3)						
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}$, $I_D = 10 \text{ mA}$	1.8	3	4.3	V
Recommended Gate Voltage	V _{GOP}		-5	-	+20	V
Drain-to-Source On Resistance	R _{DS(on)}	V_{GS} = 20 V, I _D = 35 A, T _J = 25	5°C –	40	56	mΩ
		V_{GS} = 20 V, I_D = 35 A, T_J = 1	75°C –	70	100	
Forward Transconductance	9 _{FS}	$V_{DS} = 20 \text{ V}, \text{ I}_{D} = 35 \text{ A}$	-	20	-	S
CHARGES, CAPACITANCES & GATE RES	SISTANCE					
Input Capacitance	C _{ISS}	V _{GS} = 0 V, f = 1 MHz, V _{DS} = 8	300 V –	1762	-	pF
Output Capacitance	C _{OSS}		-	137	-	
Reverse Transfer Capacitance	C _{RSS}		-	11	-	
Total Gate Charge	Q _{G(TOT)}	$V_{GS} = -5/20 \text{ V}, \text{ V}_{DS} = 600 \text{ V},$	-	106	-	nC
Threshold Gate Charge	Q _{G(TH)}	I _D = 47 A	-	16	-	
Gate-to-Source Charge	Q _{GS}	f = 1 MHz		34	-	
Gate-to-Drain Charge	Q _{GD}			26	-	
Gate-Resistance	R _G			2.4	-	Ω
SWITCHING CHARACTERISTICS, VGS =	10 V (Note 5)	•	•	•		
Turn–On Delay Time	t _{d(ON)}	$V_{GS} = -5/20 V,$	-	17	30	ns
Rise Time	t _r	$V_{DS}^{US} = 800 \text{ V},$ $I_{D} = 47 \text{ A},$	-	20	36	
Turn–Off Delay Time	t _{d(OFF)}	$R_{G} = 4.7 \Omega$ inductive load		32	51	
Fall Time	t _f	inductive local	-	10	20	
Turn–On Switching Loss	E _{ON}		-	411	-	μJ
Turn–Off Switching Loss	E _{OFF}		-	205	-	
Total Switching Loss	E _{tot}		-	616	-	
DRAIN-SOURCE DIODE CHARACTERIST	TICS	•	•	•	•	
Continuous Drain-Source Diode Forward Current	I _{SD}	V_{GS} = -5 V, T_{J} = 25°C	-	-	32	A
Pulsed Drain-Source Diode Forward Current (Note 3)	I _{SDM}		-	-	232	
Forward Diode Voltage	V _{SD}	V_{GS} = -5 V, I _{SD} = 17.5 A, T _J =	= 25°C –	3.7	-	V
Reverse Recovery Time	t _{RR}	$V_{GS} = -5/20 \text{ V}, I_{SD} = 47 \text{ A},$	-	24	-	ns
Reverse Recovery Charge	Q _{RR}	dl _S /dt = 1000 A/µs	-	124.8	-	nC

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise specified) (continued)


Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
DRAIN-SOURCE DIODE CHARACTERISTICS						
Reverse Recovery Energy	E _{REC}	$V_{GS} = -5/20 \text{ V}, I_{SD} = 47 \text{ A},$	-	8.4	-	μJ
Peak Reverse Recovery Current	I _{RRM}	dI _S /dt = 1000 A/µs	-	10.4	-	А
Charge time	Та		-	12.4	-	ns
Discharge time	Tb		-	11.6	-	ns

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 5. Switching characteristics are independent of operating junction temperature

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

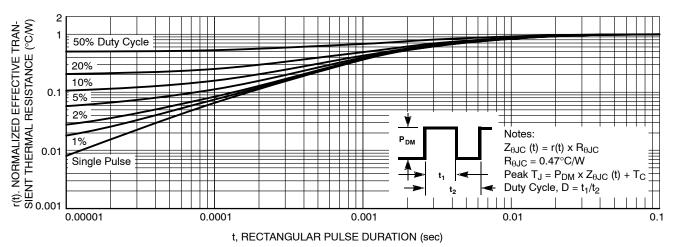
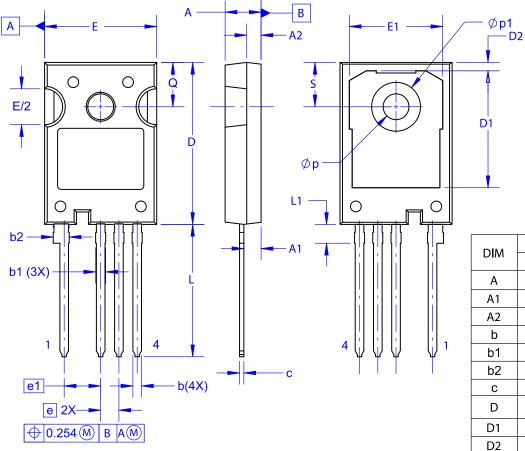



Figure 13. Junction-to-Ambient Thermal Response

PACKAGE DIMENSIONS

TO-247-4LD CASE 340CJ **ISSUE A**

NOTES:

A. NO INDUSTRY STANDARD APPLIES TO THIS PACKAGE.
B. DIMENSIONS ARE EXCLUSIVE OF BURRS,MOLD FLASH,AND TIE BAR EXTRUSIONS.
C. ALL DIMENSIONS ARE IN MILLIMETERS.
D. DRAWING CONFORMS TO ASME Y14.5-2009.

	1				
DIM	MILLIMETERS				
	MIN	NOM	MAX		
А	4.80	5.00	5.20		
A1	2.10	2.40	2.70		
A2	1.80	2.00	2.20		
b	1.07	1.20	1.33		
b1	1.20	1.40	1.60		
b2	2.02	2.22	2.42		
С	0.50	0.60	0.70		
D	22.34	22.54	22.74		
D1	16.00	16.25	16.50		
D2	0.97	1.17	1.37		
е	2	2.54 BSC	2		
e1	Ę	5.08 BSC	2		
Е	15.40	15.60	15.80		
E1	12.80	13.00	13.20		
E/2	4.80	5.00	5.20		
L	18.22	18.42	18.62		
L1	2.42	2.62	2.82		
р	3.40	3.60	3.80		
р1	6.60	6.80	7.00		
Q	5.97	6.17	6.37		
S	5.97	6.17	6.37		

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor are or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of th

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

ON Semiconductor Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative