Onsemi

MOSFET - Power, Single N-Channel, SUPERFET[®], with Zener Diode, DPAK 600 V, 280 mΩ, 13 A NTD280N60S5Z

Description

SUPERFET V MOSFET Easy Drive series combines excellent switching performance without sacrificing ease of use and EMI issues for both hard and soft switching topologies.

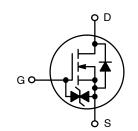
Features

- $650 \text{ V} @ \text{T}_{\text{J}} = 150^{\circ}\text{C}$, Typ.
- $R_{DS(on)} = 224 \text{ m}\Omega$
- 100% Avalanche Tested
- Pb-Free, Halogen Free / BFR Free and are RoHS Compliant

Applications

- Computing / Display Power Supplies
- Telecom / Server Power Supplies
- Lighting / Charger / Adapter / Industrial Power Supplies

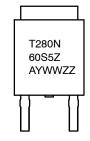
ABSOLUTE MAXIMUM RATINGS (T₁ = 25°C unless otherwise noted)


Parameter		Symbol	Value	Unit
			600	V
Drain-to-Source Voltage		V _{DSS}	600	
Gate-to-Source Voltage	DC	V _{GS}	±20	V
	AC (f > 1 Hz)		±20	
Continuous Drain Current	$T_{C} = 25^{\circ}C$	I _D	13	А
	T _C = 100°C		8	
Power Dissipation	$T_{C} = 25^{\circ}C$	PD	89	W
Pulsed Drain Current (Note 1)	T _C = 25°C	I _{DM}	39	А
Pulsed Source Current (Body Diode) (Note 1)		I _{SM}	39	A
Operating Junction and Storage Temperature Range		T _J , T _{STG}	–55 to +150	°C
Source Current (Body Diode)		I _S	13	А
Single Pulse Avalanche Energy	l _L = 2.9 A R _G = 25 Ω	E _{AS}	82	mJ
Avalanche Current		I _{AS}	2.9	А
Repetitive Avalanche Energy (Note 1)		E _{AR}	0.89	mJ
MOSFET dv/dt		dv/dt	120	V/ns
Peak Diode Recovery dv/dt (Note 2)			50	
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)		ΤL	260	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. *Drain current limited by maximum junction temperature.

1. Repetitive rating: pulse-width limited by maximum junction temperature.

2. $I_{SD} \le 5.5$ A, di/dt ≤ 200 A/s, $V_{DD} \le 400$ V, starting $T_J = 25^{\circ}$ C.


V _{(BR)DSS}	R _{DS(ON)} MAX	I _D MAX
600 V	280 m Ω @ V _{GS} = 10 V	13 A

N-CHANNEL MOSFET

MARKING DIAGRAM

T280N60S5Z = Specific Device Code

= Assembly Location А Υ

= Year

ΖZ

ww = Work Week = Lot Code

ORDERING INFORMATION

Device	Package	Shipping [†]
NTD280N60S5Z	DPAK (Pb-Free)	2500 / Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

THERMAL CHARACTERISTICS

Reverse Recovery Time

Reverse Recovery Charge

Parameter	Symbol	Value	Unit
Thermal Resistance, Junction-to-Case	$R_{ extsf{ heta}JC}$	1.4	°C/W
Thermal Resistance, Junction-to-Ambient	R _{θJA}	52	

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit	
OFF CHARACTERISTICS		•			•		
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	V_{GS} = 0 V, I_D = 1 mA, T_J = 25 $^{\circ}$ C	600	-	-	V	
Drain-to-Source Breakdown Voltage Temperature Coefficient	$\Delta V_{(BR)DSS}/ \Delta T_J$	$I_D = 10 \text{ mA}$, Referenced to 25°C	-	630	-	mV/°C	
Zero Gate Voltage Drain Current	I _{DSS}	V_{GS} = 0 V, V_{DS} = 600 V, T_{J} = 25°C	-	-	1	μΑ	
Gate-to-Source Leakage Current	I _{GSS}	V_{GS} = ±20 V, V_{DS} = 0 V	-	-	±5	μΑ	
ON CHARACTERISTICS		·	-				
Drain-to-Source On Resistance	R _{DS(on)}	V_{GS} = 10 V, I_{D} = 5.5 A, T_{J} = 25 $^{\circ}C$	-	224	280	mΩ	
Gate Threshold Voltage	V _{GS(th)}	V_{GS} = V_{DS} , I_D = 1 mA, T_J = 25°C	2.4	-	4	V	
Forward Trans-conductance	9fs	V_{DS} = 20 V, I _D = 5.5 A	-	10.6	-	S	
CHARGES, CAPACITANCES & GATE	RESISTANCE	·	-				
Input Capacitance	C _{ISS}	V_{DS} = 400 V, V_{GS} = 0 V, f = 250 kHz	-	978	-	pF	
Output Capacitance	C _{OSS}		-	16.8	-		
Time Related Output Capacitance	C _{OSS(tr)}	$I_{D} = Constant, V_{DS} = 0 V to 400 V, \\ V_{GS} = 0 V$	-	276	-		
Energy Related Output Capacitance	C _{OSS(er)}	V_{DS} = 0 V to 400 V, V_{GS} = 0 V	-	30.5	-		
Total Gate Charge	Q _{G(TOT)}	V_{DD} = 400 V, I_{D} = 5.5 A, V_{GS} = 10 V	-	17.9	-	nC	
Gate-to-Source Charge	Q _{GS}		-	4.53	-		
Gate-to-Drain Charge	Q _{GD}		-	4.8	-	1	
Gate Resistance	R _G	f = 1 MHz	-	5.11	-	Ω	
SWITCHING CHARACTERISTICS		·	-				
Turn-On Delay Time	t _{d(ON)}	$V_{GS} = 0/10 \text{ V}, V_{DD} = 400 \text{ V},$	_	15.5	_	ns	
Rise Time	t _r	l _D = 5.5 A, R _G = 12 Ω	-	4.27	-	1	
Turn-Off Delay Time	t _{d(OFF)}	1	-	52	-		
Fall Time	t _f	1	-	4.53	-		
SOURCE-TO-DRAIN DIODE CHARA	CTERISTICS						
Forward Diode Voltage	V _{SD}	I_{SD} = 5.5 A, V_{GS} = 0 V, T_J = 25°C	-	-	1.2	V	

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

t_{RR}

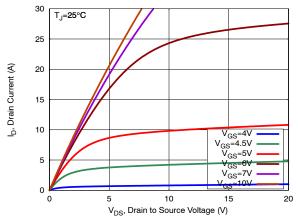
 Q_{RR}

 $\label{eq:VGS} \begin{array}{l} V_{GS} = 0 \ V, \ I_{SD} = 5.5 \ A, \\ dI/dt = 100 \ A/\mu s, \ V_{DD} = 400 \ V \end{array}$

229

2114

ns


nC

_

_

_

TYPICAL CHARACTERISTICS

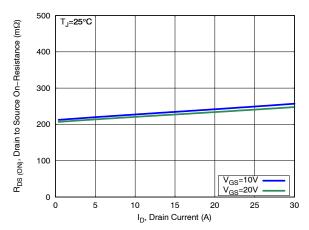


Figure 3. On-Resistance Variation vs. Drain **Current and Gate Voltage**

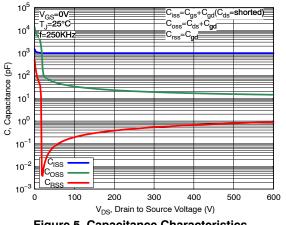


Figure 5. Capacitance Characteristics

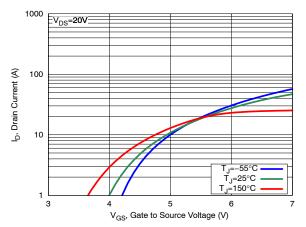
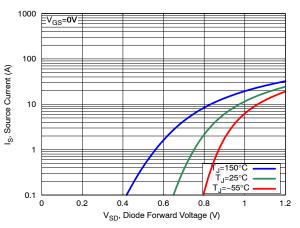
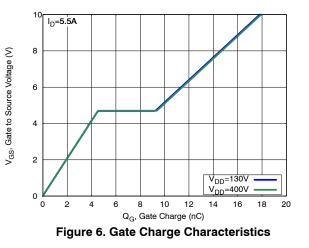
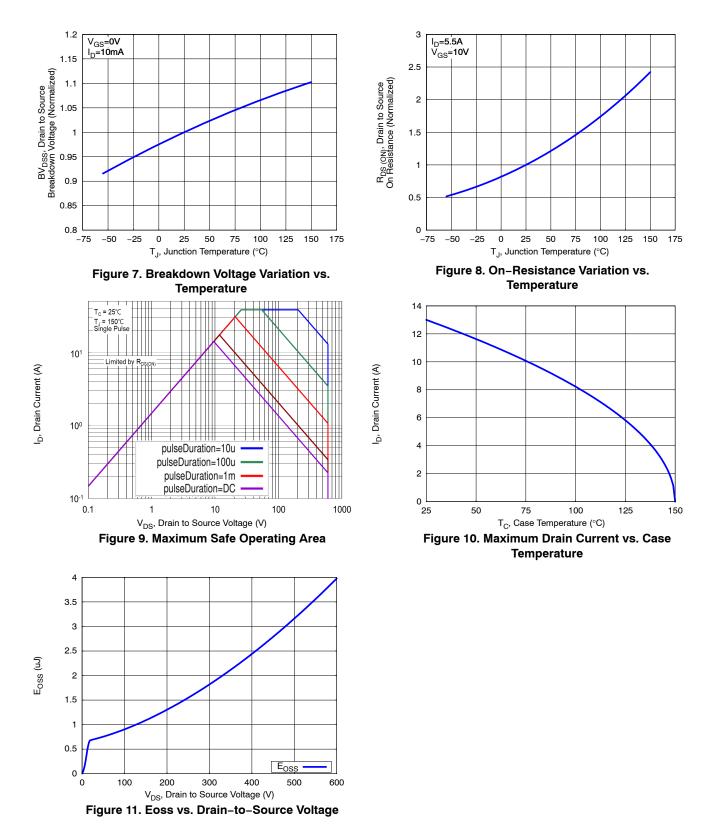
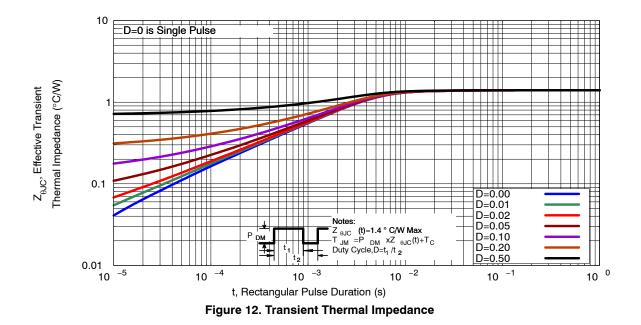


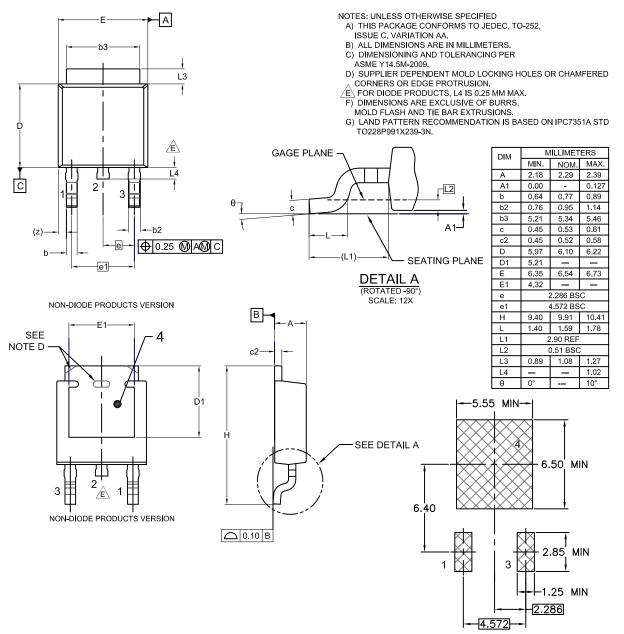
Figure 2. Transfer Characteristics


Figure 4. Diode Forward Voltage vs. Source Current

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS



SUPERFET is a registered trademark of Semiconductor Components Industries, LLC or its subsidiaries in the United States and/or other countries.

PACKAGE DIMENSIONS

DPAK3 (TO-252 3 LD) CASE 369AS

LAND PATTERN RECOMMENDATION

*FOR ADDITIONAL INFORMATION ON OUR PB-FREE STRATEGY AND SOLDERING DETAILS, PLEASE DOWNLOAD THE ON SEMICONDUCTOR SOLDERING AND MOUNTING TECHNIQUES REFERENCE MANUAL, SOLDERRM/D.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

onsemi Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 **Europe, Middle East and Africa Technical Support:** Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative