MOSFET - SiC Power, Single N-Channel, D2PAK-7L 900 V, 60 mΩ, 44 A

NTBG060N090SC1

Features

- Typ. $R_{DS(on)} = 60 \text{ m}\Omega$
- Ultra Low Gate Charge $(Q_{G(tot)} = 88 \text{ nC})$
- High Speed Switching with Low Capacitance (Coss = 115 pF)
- 100% Avalanche Tested
- $T_J = 175^{\circ}C$
- RoHS Compliant

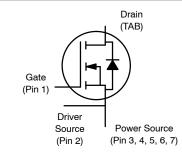
Typical Applications

- UPS
- DC/DC Converter
- Boost Inverter

MAXIMUM RATINGS ($T_J = 25^{\circ}C$ unless otherwise noted)

Parameter			Symbol	Value	Unit
Drain-to-Source Voltage			V_{DSS}	900	V
Gate-to-Source Voltage			V_{GS}	-10/+19	V
Recommended Operation Values of Gate-to-Source Voltage T _C < 175°C		V_{GSop}	-5/+15	V	
Continuous Drain Current (Note 2)	Steady	Steady T 0500		44	Α
Power Dissipation (Note 2)	State T _C = 25°C		P _D	211	W
Continuous Drain Current (Notes 1, 2)	Steady	T 25°C	I _D	5.8	Α
Power Dissipation (Notes 1, 2)	State	T _A = 25°C	P _D	3.6	W
Pulsed Drain Current (Note 3)	T _A = 25°C		I _{DM}	176	Α
Single Pulse Surge Drain Current Capa- bility	T _A = 25°	$^{\circ}$ C, $t_{p} = 10 \mu s$, $t_{i} = 4.7 \Omega$	I _{DSC}	320	Α
Operating Junction and Storage Temperature Range			T _J , T _{stg}	–55 to +175	°C
Source Current (Body Diode)			IS	21	Α
Single Pulse Drain-to-Source Avalanche Energy (I _{L(pk)} = 18 A, L = 1 mH) (Note 4)			E _{AS}	162	mJ
Maximum Lead Temperature for Soldering (1/8" from case for 5 s)			TL	245	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.


- 1. Surface mounted on a FR-4 board using1 in2 pad of 2 oz copper.
- The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted.
- 3. Repetitive rating, limited by max junction temperature.
- 4. EAS of 162 mJ is based on starting $T_J = 25^{\circ}\dot{C}$; L = 1 mH, $I_{AS} = 18$ A, $V_{DD} = 100$ V, $V_{GS} = 15$ V.

ON Semiconductor®

www.onsemi.com

V _{(BR)DSS}	R _{DS(ON)} MAX	I _D MAX
900 V	84 mΩ @ 15 V	44 A

N-CHANNEL MOSFET

D2PAK-7L CASE 418BJ

MARKING DIAGRAM

AYWWZZ NTBG 060090SC1

A = Assembly Location

Y = Year WW = Work Week ZZ = Lot Traceability

NTBG060090SC1 = Specific Device Code

ORDERING INFORMATION

Device	Package	Shipping [†]
NTBG060N090SC1	D2PAK-7L	800 / Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

THERMAL RESISTANCE MAXIMUM RATINGS

Parameter	Symbol	Max	Unit
Junction-to-Case - Steady State (Note 2)	$R_{ heta JC}$	0.70	°C/W
Junction-to-Ambient - Steady State (Notes 1, 2)	$R_{\theta JA}$	41	

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise specified)

	V _{(BR)DSS} (BR)DSS/T _J I _{DSS}	$V_{GS} = 0 \text{ V, } I_D = I_D = 1 \text{ mA, reference}$ $V_{GS} = 0 \text{ V,}$ $V_{DS} = 900 \text{ V}$	ed to 25°C	900			
Drain-to-Source Breakdown Voltage Temperature Coefficient Zero Gate Voltage Drain Current Gate-to-Source Leakage Current ON CHARACTERISTICS (Note 3) Gate Threshold Voltage Recommended Gate Voltage Drain-to-Source On Resistance Forward Transconductance CHARGES, CAPACITANCES & GATE RESIST Input Capacitance Output Capacitance Reverse Transfer Capacitance Total Gate Charge Threshold Gate Charge Gate-to-Source Charge	(BR)DSS/T _J	I_D = 1 mA, reference V_{GS} = 0 V, V_{DS} = 900 V	ed to 25°C	900			
Drain-to-Source Breakdown Voltage Temperature Coefficient Zero Gate Voltage Drain Current Gate-to-Source Leakage Current ON CHARACTERISTICS (Note 3) Gate Threshold Voltage Recommended Gate Voltage Drain-to-Source On Resistance Forward Transconductance CHARGES, CAPACITANCES & GATE RESIST Input Capacitance Output Capacitance Reverse Transfer Capacitance Total Gate Charge Threshold Gate Charge Gate-to-Source Charge	(BR)DSS/T _J	V _{GS} = 0 V, V _{DS} = 900 V					V
Gate-to-Source Leakage Current ON CHARACTERISTICS (Note 3) Gate Threshold Voltage Recommended Gate Voltage Drain-to-Source On Resistance Forward Transconductance CHARGES, CAPACITANCES & GATE RESIST Input Capacitance Output Capacitance Reverse Transfer Capacitance Total Gate Charge Threshold Gate Charge Gate-to-Source Charge		V _{DS} = 900 V			502		mV/°C
ON CHARACTERISTICS (Note 3) Gate Threshold Voltage Recommended Gate Voltage Drain-to-Source On Resistance Forward Transconductance CHARGES, CAPACITANCES & GATE RESIST Input Capacitance Output Capacitance Reverse Transfer Capacitance Total Gate Charge Threshold Gate Charge Gate-to-Source Charge	I _{GSS}	V _{DS} = 900 V	$T_J = 25^{\circ}C$			100	μΑ
ON CHARACTERISTICS (Note 3) Gate Threshold Voltage Recommended Gate Voltage Drain-to-Source On Resistance Forward Transconductance CHARGES, CAPACITANCES & GATE RESIST Input Capacitance Output Capacitance Reverse Transfer Capacitance Total Gate Charge Threshold Gate Charge Gate-to-Source Charge	I _{GSS}		T _J = 175°C			250	μΑ
Gate Threshold Voltage Recommended Gate Voltage Drain-to-Source On Resistance Forward Transconductance CHARGES, CAPACITANCES & GATE RESIST Input Capacitance Output Capacitance Reverse Transfer Capacitance Total Gate Charge Threshold Gate Charge Gate-to-Source Charge		V _{GS} = +19/-10 V, V _{DS} = 0 V				±1	μΑ
Recommended Gate Voltage Drain-to-Source On Resistance Forward Transconductance CHARGES, CAPACITANCES & GATE RESIST Input Capacitance Output Capacitance Reverse Transfer Capacitance Total Gate Charge Threshold Gate Charge Gate-to-Source Charge							
Drain-to-Source On Resistance Forward Transconductance CHARGES, CAPACITANCES & GATE RESIST Input Capacitance Output Capacitance Reverse Transfer Capacitance Total Gate Charge Threshold Gate Charge Gate-to-Source Charge	V _{GS(TH)}	$V_{GS} = V_{DS}, I_D$	= 5 mA	1.8	2.7	4.3	V
Forward Transconductance CHARGES, CAPACITANCES & GATE RESIST Input Capacitance Output Capacitance Reverse Transfer Capacitance Total Gate Charge Threshold Gate Charge Gate—to—Source Charge	V _{GOP}			-5		+15	V
CHARGES, CAPACITANCES & GATE RESIST Input Capacitance Output Capacitance Reverse Transfer Capacitance Total Gate Charge Threshold Gate Charge Gate—to—Source Charge	R _{DS(on)}	V _{GS} = 15 V, I _D = 20 .	A, T _J = 25°C		60	84	mΩ
CHARGES, CAPACITANCES & GATE RESIST Input Capacitance Output Capacitance Reverse Transfer Capacitance Total Gate Charge Threshold Gate Charge Gate—to—Source Charge		V _{GS} = 15 V, I _D = 20 A	A, T _J = 175°C		76	135	
Input Capacitance Output Capacitance Reverse Transfer Capacitance Total Gate Charge Threshold Gate Charge Gate-to-Source Charge	9FS	V _{DS} = 20 V, I _D	= 20 A		16		S
Output Capacitance Reverse Transfer Capacitance Total Gate Charge Threshold Gate Charge Gate-to-Source Charge	ANCE						
Reverse Transfer Capacitance Total Gate Charge Threshold Gate Charge Gate-to-Source Charge	C _{ISS}	V _{GS} = 0 V, f = 1 MHz, V _{DS} = 450 V			1800		pF
Total Gate Charge Threshold Gate Charge Gate-to-Source Charge	C _{OSS}				115		
Threshold Gate Charge Gate-to-Source Charge	C _{RSS}				12		1
Gate-to-Source Charge	Q _{G(TOT)}	$V_{GS} = -5/15 \text{ V}, V_{DS} = 720 \text{ V},$ $I_{D} = 10 \text{ A}$ $f = 1 \text{ MHz}$			88		nC
	Q _{G(TH)}				16		
Gate-to-Drain Charge	Q _{GS}				27		
	Q_{GD}				28		
Gate-Resistance	R_G				3.0		Ω
SWITCHING CHARACTERISTICS, VGS = 10 \	/ (Note 5)				-		
Turn-On Delay Time	t _{d(ON)}				24	40	ns
Rise Time	t _r	V_{GS} = -5/15 V, V_{DS} = 720 V, I_{D} = 20 A, R_{G} = 2.5 Ω inductive load			23	66	
Turn-Off Delay Time	t _{d(OFF)}				35	74	
Fall Time	t _f				11	20	
Turn-On Switching Loss	E _{ON}				410		μJ
Turn-Off Switching Loss	E _{OFF}				19		1
Total Switching Loss	E _{tot}				429		1
DRAIN-SOURCE DIODE CHARACTERISTICS	;						
Continuous Drain-Source Diode Forward Current	I _{SD}	V _{GS} = -5 V, T _J = 25°C				21	Α
Pulsed Drain-Source Diode Forward Current (Note 3)	I _{SDM}					176	
Forward Diode Voltage	V _{SD}	Vac - 5 V I 10	A, T _J = 25°C		3.9		V

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise specified) (continued)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit	
DRAIN-SOURCE DIODE CHARACTERISTICS (continued)							
Reverse Recovery Time	t _{RR}			18		ns	
Reverse Recovery Charge	Q _{RR}			80		nC	
Reverse Recovery Energy	E _{REC}	V _{GS} = -5/15 V, I _{SD} = 30 A,		1.0		μJ	
Peak Reverse Recovery Current	I _{RRM}	$V_{GS} = -5/15 \text{ V}, I_{SD} = 30 \text{ A},$ $dI_S/dt = 1000 \text{ A}/\mu\text{s}, V_{DS} = 720 \text{ V}$		9.0		Α	
Charge Time	t _a			10		ns	
Discharge Time	t _b			8.0		ns	

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

5. Switching characteristics are independent of operating junction temperature

TYPICAL CHARACTERISTICS

6.0

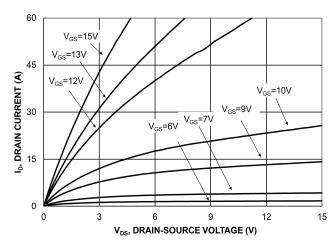
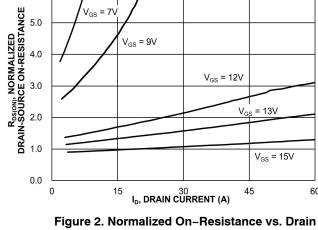



Figure 1. On-Region Characteristics

Current and Gate Voltage

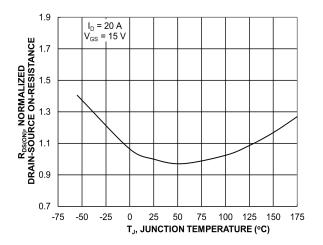


Figure 3. On-Resistance Variation with **Temperature**

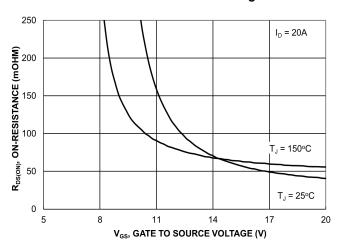


Figure 4. On-Resistance vs. Gate-to-Source Voltage

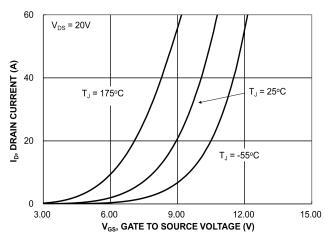


Figure 5. Transfer Characteristics

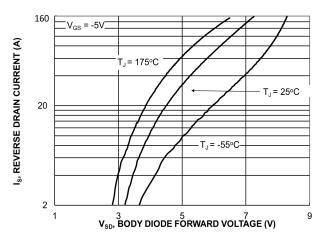


Figure 6. Diode Forward Voltage vs. Current

TYPICAL CHARACTERISTICS

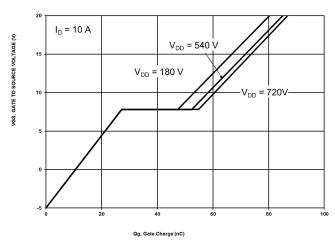


Figure 7. Gate-to-Source Voltage vs. Total Charge

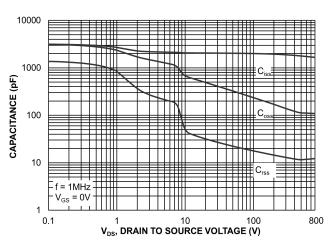


Figure 8. Capacitance vs. Drain-to-Source Voltage

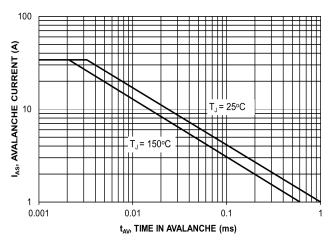


Figure 9. Unclamped Inductive Switching Capability

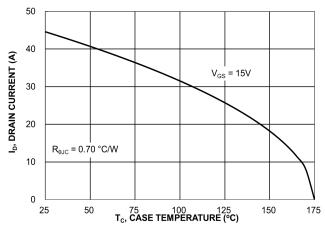


Figure 10. Maximum Continuous Drain Current vs. Case Temperature

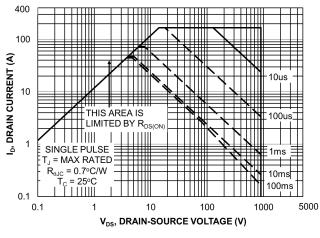


Figure 11. Maximum Rated Forward Biased Safe Operating Area

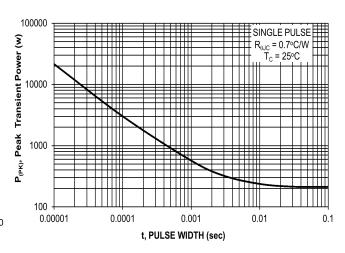


Figure 12. Single Pulse Maximum Power Dissipation

TYPICAL CHARACTERISTICS

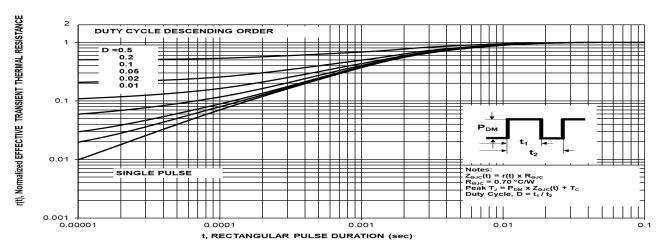
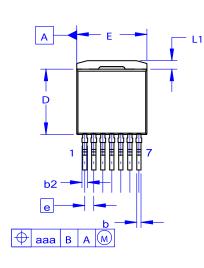
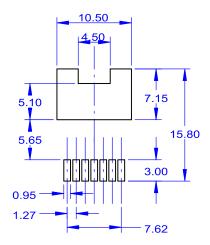
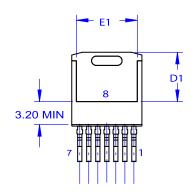
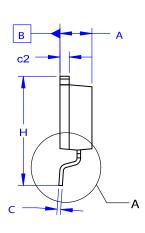
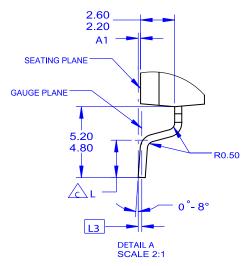




Figure 13. Junction-to-Case Transient Thermal Response Curve


PACKAGE DIMENSIONS


D²PAK7 (TO-263-7L HV) CASE 418BJ ISSUE A

LAND PATTERN RECOMMENDATION


NOTES:

- A. PACKAGE CONFORMS TO JEDEC TO-263 VARIATION CB EXCEPT WHERE NOTED. B. ALL DIMENSIONS ARE IN MILLIMETERS.
- OUT OF JEDEC STANDARD VALUE.

 D. DIMENSION AND TOLERANCE AS PER ASME Y14.5-2009.

 E. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH AND TIE BAR PROTRUSIONS.

	MILLIMETERS					
DIM	MIN	NOM	MAX			
Α	4.30	4.50	4.70			
A1	0.00	0.10	0.20			
b2	0.60	0.70	0.80			
b	0.51	0.60	0.70			
С	0.40	0.50	0.60			
c2	1.20	1.30	1.40			
D	9.00	9.20	9.40			
D1	6.75	6.95	7.15			
Е	9.70	9.90	10.20			
E1	7.70	7.90	8.10			
е	l	1.27	?			
Η	15.10	15.40	15.70			
L	2.44	2.64	2.84			
L1	1.00	1.20	1.40			
L3	1	0.25	~			
aaa	~	~	0.25			

ON Semiconductor and III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.

Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative