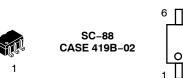
onsemi

3-Input AND Gate with Schmitt-Trigger Inputs

NL17SZS11


The NL17SZS11 is a single three-input AND Gate with Schmitt-Trigger inputs in a tiny footprint package.

Features

- Designed for 1.65 V to 5.5 V V_{CC} Operation
- 2.7 ns t_{PD} at $V_{CC} = 5 V (Typ)$
- Inputs/Outputs Overvoltage Tolerant up to 5.5 V
- I_{OFF} Supports Partial Power Down Protection
- Source/Sink 24 mA at 3.0 V
- Available in SC-88 Package
- -Q Suffix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

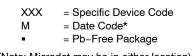


Figure 1. Logic Symbol

MARKING DIAGRAMS

(Note: Microdot may be in either location)

*Date Code orientation and/or position may vary depending upon manufacturing location.

ORDERING INFORMATION

See detailed ordering, marking and shipping information in the package dimensions section on page 7 of this data sheet.

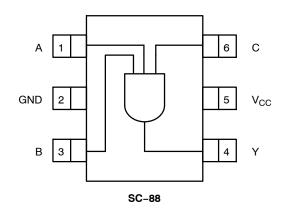


Figure 2. Pinout (Top View)

PIN ASSIGNMENT

Pin	Function
1	А
2	GND
3	В
4	Y
5	V _{CC}
6	С

FUNCTION TABLE (Y = ABC)

	Inputs				
Α	В	С	Y		
Х	Х	L	L		
Х	L	Х	L		
L	Х	Х	L		
Н	Н	Н	Н		

H = HIGH Logic Level L = LOW Logic Level X = Either LOW or HIGH Logic Level

MAXIMUM RATINGS

Symbol	Chara	cteristics	Value	Unit
V _{CC}	DC Supply Voltage		-0.5 to +6.5	V
V _{IN}	DC Input Voltage		-0.5 to +6.5	V
V _{OUT}	DC Output Voltage	Active-Mode (High or Low State) Tri-State Mode (Note 1) Power-Down Mode (V _{CC} = 0 V)	$\begin{array}{c} -0.5 \text{ to } V_{CC} + 0.5 \\ -0.5 \text{ to } +6.5 \\ -0.5 \text{ to } +6.5 \end{array}$	V
I _{IK}	DC Input Diode Current	V _{IN} < GND	-50	mA
I _{OK}	DC Output Diode Current	V _{OUT} < GND	-50	mA
IOUT	DC Output Source/Sink Current		±50	mA
I _{CC} or I _{GND}	DC Supply Current per Supply Pin or C	around Pin	±100	mA
T _{STG}	Storage Temperature Range		-65 to +150	°C
ΤL	Lead Temperature, 1 mm from Case for	or 10 secs	260	°C
TJ	Junction Temperature Under Bias		+150	°C
θ_{JA}	Thermal Resistance (Note 2)	SC-88	377	°C/W
PD	Power Dissipation in Still Air at 85°C	SC-88	332	mW
MSL	Moisture Sensitivity		Level 1	-
F _R	Flammability Rating	Oxygen Index: 28 to 34	UL 94 V-0 @ 0.125 in	-
V_{ESD}	ESD Withstand Voltage (Note 3)	Human Body Model Charged Device Mode	>2000 >1000	V
I _{Latchup}	Latchup Performance (Note 4)		±100	mA

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Applicable to devices with outputs that may be tri-stated.

 Measured with minimum pad spacing on an FR4 board, using 10mm-by-1inch, 2 ounce copper trace no air flow per JESD51-7.
HBM tested to ANSI/ESDA/JEDEC JS-001-2017. CDM tested to EIA/JESD22-C101-F. JEDEC recommends that ESD qualification to EIA/JESD22-A115-A (Machine Model) be discontinued per JEDEC/JEP172A.

4. Tested to EIA/JESD78 Class II.

RECOMMENDED OPERATING CONDITIONS

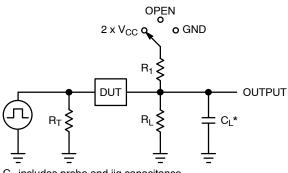
Symbol	Chara	cteristics	Min	Max	Unit
V _{CC}	Positive DC Supply Voltage		1.65	5.5	V
V _{IN}	DC Input Voltage		0	5.5	V
V _{OUT}	DC Output Voltage	Active-Mode (High or Low State) Tri-State Mode (Note 1) Power-Down Mode (V _{CC} = 0 V)	0 0 0	V _{CC} 5.5 5.5	
T _A	Operating Temperature Range		-55	+125	°C
t _r , t _f	Input Rise and Fall Time		0	No Limit	ns/V

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

			V _{CC}	Τ,	ς = 25°C	;	–55°C ≤ T	λ ≤ 125°C	
Symbol	Parameter	Condition	(V)	Min	Тур	Max	Min	Max	Units
V _{T+}	Positive Input Threshold Voltage		1.65 2.3 2.7 3.0 4.5 5.5	- - - - -	1.0 1.5 1.7 1.9 2.9 3.3	1.4 1.8 2.0 2.2 3.1 3.6	- - - - -	1.4 1.8 2.0 2.2 3.1 3.6	V
V _{T-}	Negative Input Threshold Voltage		1.65 2.3 2.7 3.0 4.5 5.5	0.2 0.4 0.5 0.6 1.0 1.2	0.5 0.75 0.87 1.0 1.5 1.9	- - - - -	0.2 0.4 0.5 0.6 1.0 1.2	- - - - -	V
V _H	Negative Input Threshold Voltage		1.65 2.3 2.7 3.0 4.5 5.5	0.1 0.25 0.3 0.4 0.6 0.7	0.48 0.75 0.83 0.93 1.2 1.4	0.9 1.1 1.15 1.2 1.5 1.7	0.1 0.25 0.3 0.4 0.6 0.7	0.9 1.1 1.15 1.2 1.5 1.7	V
V _{OH}	High-Level Output Voltage		1.65 to 5.5 1.65 2.3 2.7 3.0 3.0 4.5	V _{CC} - 0.1 1.29 1.9 2.2 2.4 2.3 3.8	V _{CC} 1.4 2.1 2.4 2.7 2.5 4.0		V _{CC} - 0.1 1.29 1.9 2.2 2.4 2.3 3.8		V
V _{OL}	Low-Level Output Voltage		1.65 to 5.5 1.65 2.3 2.7 3.0 3.0 4.5	- - - - - - -	0 0.08 0.2 0.22 0.28 0.38 0.42	0.1 0.24 0.3 0.4 0.4 0.55 0.55		0.1 0.24 0.3 0.4 0.4 0.55 0.55	V
I _{IN}	Input Leakage Current	V_{IN} = 5.5 V or GND	1.65 to 5.5	-	-	±0.1	-	±1.0	μA
I _{OFF}	Power Off Leakage Current	V _{IN} = 5.5 V or V _{OUT} = 5.5 V	0	-	-	1.0	-	10	μΑ
I _{CC}	Quiescent Supply Current	$V_{IN} = V_{CC}$ or GND	5.5	-	-	1.0	-	10	μΑ

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

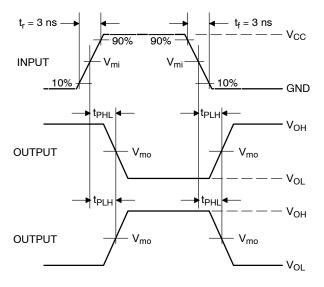

AC ELECTRICAL CHARACTERISTICS

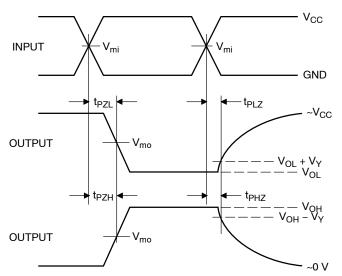
				Ţ	A = 25°	С	– 55°C ≤ 1	Γ _A ≤ 125°C	
Symbol	Parameter	Condition	V _{CC} (V)	Min	Тур	Max	Min	Max	Units
t _{PLH,}	Propagation Delay	R_L = 1 M Ω , C_L = 50 pF	1.65 to 1.95	-	6.0	18.5	-	19.0	ns
t _{PHL}	(A or B or C) to Y (Figure 3 and 4)	R_L = 1 MΩ, C_L = 15 pF	2.3 to 2.7	-	3.8	11.0	-	11.5	
		$R_L = 1 M\Omega$, $C_L = 15 pF$	3.0 to 3.6	-	2.9	8.5	-	9.0	
		$R_L = 500 \Omega$, $C_L = 50 pF$		-	3.3	7.0	-	7.5	
		$R_L = 1 M\Omega$, $C_L = 15 pF$	4.5 to 5.5	-	2.4	7.5	-	8.0	
		$R_L = 500 \Omega$, $C_L = 50 pF$		-	2.7	5.5	-	6.0	

CAPACITIVE CHARACTERISTICS

Symbol	Parameter	Condition	Typical	Units
C _{IN}	Input Capacitance	V_{CC} = 5.5 V, V_{IN} = 0 V or V_{CC}	2.5	pF
C _{OUT}	Output Capacitance	V_{CC} = 5.5 V, V_{IN} = 0 V or V_{CC}	2.5	pF
C _{PD}	Power Dissipation Capacitance (Note 5)	10 MHz, V_{CC} = 3.3 V, V_{IN} = 0 V or V_{CC} 10 MHz, V_{CC} = 5.5 V, V_{IN} = 0 V or V_{CC}	9.0 11	pF

5. C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: $I_{CC(OPR)} = C_{PD} \bullet V_{CC} \bullet f_{in} + I_{CC}$. C_{PD} is used to determine the no–load dynamic power consumption; $P_D = C_{PD} \bullet V_{CC}^2 \bullet f_{in} + I_{CC} \bullet V_{CC}$.




Test	Switch Position	C _L , pF	R_{L}, Ω	R ₁ , Ω	
t _{PLH} / t _{PHL}	Open	See AC Characteristics Table			
t _{PLZ} / t _{PZL}	$2 \times V_{CC}$	50	500	500	
t_{PHZ} / t_{PZH}	GND	50 500 500			
V Den't Car					

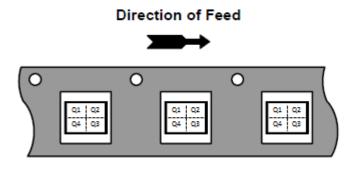
X = Don't Care

 C_L includes probe and jig capacitance R_T is Z_{OUT} of pulse generator (typically 50 $\Omega)$ f = 1 MHz

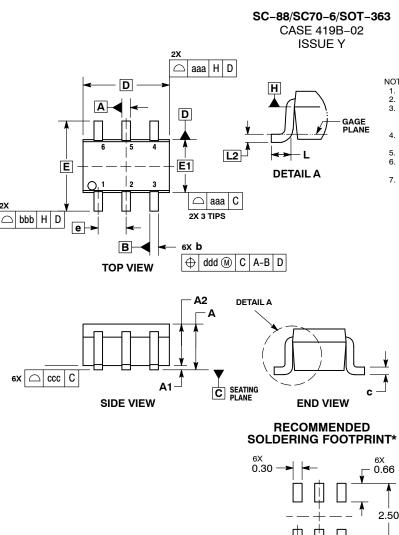
Figure 3. Test Circuit

Figure 4. Switching Waveforms

		Vm		
V _{CC} , V	V _{mi} , V	t _{PLH} , t _{PHL}	t _{PZL} , t _{PLZ} , t _{PZH} , t _{PHZ}	V _Y , V
1.65 to 1.95	V _{CC} /2	V _{CC} /2	V _{CC} /2	0.15
2.3 to 2.7	V _{CC} /2	V _{CC} /2	V _{CC} /2	0.15
3.0 to 3.6	V _{CC} /2	V _{CC} /2	V _{CC} /2	0.3
4.5 to 5.5	V _{CC} /2	V _{CC} /2	V _{CC} /2	0.3


DEVICE ORDERING INFORMATION

Device	Packages	Specific Device Code	Pin 1 Orientation (See below)	Shipping [†]
NL17SZS11DFT2G (Please contact onsemi)	SC-88	ZFM	Q4	3000 / Tape & Reel
NL17SZS11DFT2G-Q*	SC-88	ZFM	Q4	3000 / Tape & Reel


+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. *-Q Suffix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP

Capable.

PIN 1 ORIENTATION IN TAPE AND REEL

PACKAGE DIMENSIONS

T

- NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2
- CONTROLLING DIMENSION: MILLIMETERS. DIMENSIONS D AND E1 DO NOT INCLUDE MOLD FLASH, 3
- PROTRUSIONS, OR GATE BURRS. MOLD FLASH, PROTRU-SIONS, OR GATE BURRS SHALL NOT EXCEED 0.20 PER END. SIONS, OH GATE BURHS SHALL NOT EACEED 0.20 PER END. DIMENSIONS D AND ET AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY AND DATUM H. DATUMS A AND B ARE DETERMINED AT DATUM H. DIMENSIONS b AND c APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN 0.08 AND 0.15 FROM THE TIP. DIMENSION & DOTS MOT UNCUDE C DAMAGE DEDOTION
- 6
- DIMENSION b DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 TOTAL IN 7. EXCESS OF DIMENSION b AT MAXIMUM MATERIAL CONDI-TION. THE DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OF THE FOOT.

	MILLIMETERS			INCHES		
DIM	MIN	NOM	MAX	MIN	NOM	MAX
Α			1.10			0.043
A1	0.00		0.10	0.000		0.004
A2	0.70	0.90	1.00	0.027	0.035	0.039
b	0.15	0.20	0.25	0.006	0.008	0.010
С	0.08	0.15	0.22	0.003	0.006	0.009
D	1.80	2.00	2.20	0.070	0.078	0.086
Е	2.00	2.10	2.20	0.078	0.082	0.086
E1	1.15	1.25	1.35	0.045	0.049	0.053
е		0.65 BS	С	0.026 BSC		
Г	0.26	0.36	0.46	0.010	0.014	0.018
L2		0.15 BS	SC	0.006 BSC		
aaa	0.15			0.006		
bbb	0.30			0.012		
ccc	0.10			0.004		
ddd		0.10			0.004	

DIMENSIONS: MILLIMETERS *For additional information on our Pb-Free strategy

and soldering details, please download the onsemi Soldering and Mounting

0.65 PITCH

Techniques Reference Manual, SOLDERRM/D.

onsemi. OnSemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries. LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and calcular performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems. or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sale