
Operational Amplifier, 36 V, 3 MHz, 0.95 mV Input Offset Voltage, Rail-to-Rail

NCS20231, NCV20231, NCS20232, NCV20232, NCS20234, NCV20234

The NCS2023x series of op amps feature a wide supply range of 2.7 V to 36 V with an input offset voltage as low as $\pm 0.95 \text{ mV}$ max. These op amps are available in single, dual, and quad channel configurations. Automotive qualified options are available under the NCV prefix with an optional extended operating temperature range from -40°C to 150°C . All other versions are specified over the operating temperature range from -40°C to 125°C .

Features

Supply Voltage Range: 2.7 V to 36 V
Temperature Range: -40°C to 150°C

• Unity Gain Bandwidth: 3 MHz

• Offset Voltage: ± 1.5 mV max, $T_A = -40$ to 150°C

• Offset Drift: ±2 μV/°C max

• Common-Mode Input Voltage Range

• Optimal: $V_{SS} - 0.1$ to $V_{DD} - 2 V$

• Functional: $V_{SS} - 0.1$ to $V_{DD} + 0.1$ V

 NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable

 These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

Applications

- Telecom Equipment
- Power Supply Designs
- Diesel Injection Control
- Automotive
- Motor Control

ON Semiconductor®

www.onsemi.com

SC-88A / SC70-5 CASE 419A-02

TSOP-5 CASE 483

SOT-553, 5 LEAD CASE 463B

UDFN8 CASE 517AW

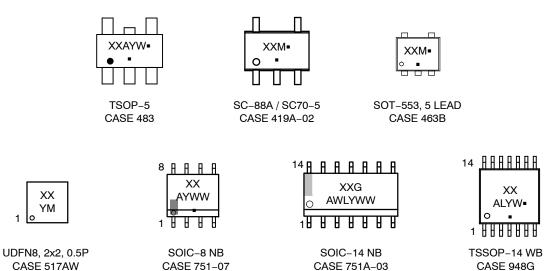
SOIC-14 NB CASE 751A-03

SOIC-8 NB CASE 751-07

DEVICE MARKING INFORMATION

See general marking information in the device marking section on page 2 of this data sheet.

PIN CONNECTIONS


See pin connections on page 3 of this data sheet.

ORDERING INFORMATION

See detailed ordering and shipping information on page 2 of this data sheet.

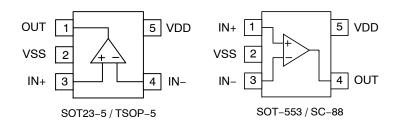
This document contains information on a product under development. ON Semiconductor reserves the right to change or discontinue this product without notice.

DEVICE MARKING INFORMATION

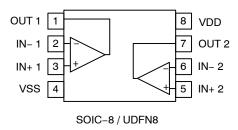
XX = Specific Device Code A = Assembly Location

Y = Year
W = Work Week
M = Date Code
G or = Pb-Free Package

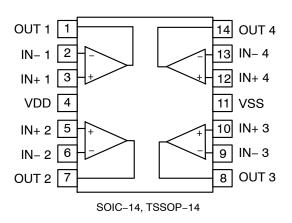
(Note: Microdot may be in either location)


ORDERING INFORMATION

Temperature	Channels	Package	Device Part Number	Marking	Shipping
Industrial and Com	mercial		·		
-40°C to 125°C	Single	TSOP-5	NCS20231SN2T1G		
		SC-88	NCS20231SQ3T2G		
		SOT-553	NCS20231		
	Dual	SOIC-8	NCS20232DR2G		
		UDFN-8	NCS20232		
	Quad	SOIC-14	NCS20234DR2G		
		TSSOP-14	NCS20234DBR2G		
Automotive Qualifie	ed, Grade 1		·		
-40°C to 150°C	Single	TSOP-5	NCV20231SN2T1G		
		SC-88	NCV20231SQ3T2G		
		SOT-553	NCV20231		
	Dual	SOIC-8	NCV20232DR2G		
	Quad	SOIC-14	NCV20234DR2G		
		TSSOP-14	NCV20234DBR2G		


[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

PIN CONNECTIONS


Single Channel

Dual Channel

Quad Channel

ABSOLUTE MAXIMUM RATINGS (Note 1)

Parameter	Symbol	Value	Unit
Supply Voltage Range (V _{DD} – V _{SS})	V _S	-0.3 to 40	V
Input Common-Mode Range	V _{CM}	V _{SS} – 0.2 to V _{DD} + 0.2	V
Differential Input Voltage	V_{ID}	±V _S	V
Maximum Input Current	I _I	±10	mA
Maximum Output Current	I _O	±100	mA
Continuous Total Power Dissipation	P _D	200	mW
Maximum Junction Temperature	T _{J(max)}	150	°C
Storage Temperature Range	T _{STG}	-65 to 150	°C
ESD Capability, Human Body Model (Note 2)	НВМ	±2000	V
ESD Capability, Charge Device Model (Note 2)	CDM	±1000	V
Latch Up Rating (Note 3)		100	mA
Moisture Sensitivity Level	MSL	Level 1	
Lead Temperature Soldering Reflow (SMD Styles Only), Pb-Free Versions (Note 4)	T _{SLD}	260	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

- 1. Refer to ELECTRICAL CHĂRACŤERISTICS and APPLICATION INFORMATION for Safe Operating Area
- 2. This device series incorporates ESD protection and is tested by the following methods:
 - ESD Human Body Model tested per JEDEC standard JS-001-2017 (AEC-Q100-002)
- ESD Charged Device Model tested per JEDEC standard JS-002-2014 (AEC-Q100-011)

 3. Latch-up Current tested per JEDEC standard JESD78E (AEC-Q100-004)
- 4. For information, please refer to our Soldering and Mounting Techniques Reference Manual, SOLDERRM/D

THERMAL CHARACTERISTICS

Parameter	Symbol	Package	Value	Unit
Thermal Resistance, Junction-to-Air	θЈА	TSOP-5	TBD	°C/W
(Note 5)		SC88-5	TBD	
		UDFN-8	TBD	
		SOIC-8	TBD	
		SOIC-14	TBD	
		TSSOP-14	TBD	

^{5.} Values based on copper area of 645 mm² (or 1 in²) of 1 oz copper thickness and FR4 PCB substrate

RECOMMENDED OPERATING RANGES (Note 6)

Parameter	Symbol	Min	Max	Unit
Supply Voltage	V _S	2.7	36	V
Differential Input Voltage	V_{ID}		±V _S	V
Input Common-Mode Range	V _{CM}	V _{SS} – 0.1	V _{DD} + 0.1	V

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

6. Refer to ELECTRICAL CHARACTERISTICS and APPLICATION INFORMATION for Safe Operating Area

ELECTRICAL CHARACTERISTICS (V_S = 2.7 V to 36 V)

At $T_A = +25^{\circ}C$, $R_L = 10 \text{ k}\Omega$ connected to midsupply, $V_{CM} = V_{OUT} = \text{midsupply}$, unless otherwise noted. **Boldface** limits apply over the specified temperature range, guaranteed by characterization and/or design.

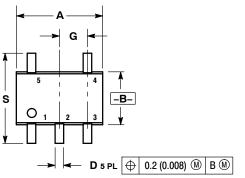
Parameter	Symbol	Conditions	Supply Voltage (V)	Temp (°C)	Min	Тур	Max	Unit			
INPUT CHARACTERI	STICS		•			•	•				
Offset Voltage	Vos	V _{CM} = mid-supply	2.7, 5, 10, 36	25		±0.3	±0.95	mV			
				-40 to 125			±1.5				
				-40 to 150			±1.5				
		$V_{CM} = V_{DD} - 2 V \text{ to}$ $V_{DD} + 0.1$		25		±7					
Offset Voltage Drift	dV _{OS} /dT	V _{CM} = mid-supply	2.7, 5, 10, 36	-40 to 125		±1	±2	μV/°C			
over temp				-40 to 150		±1	±5				
		$V_{CM} = V_{DD} - 2 V \text{ to}$ $V_{DD} + 0.1$		-40 to 125		±12					
Input Bias Current	I _{IB}		2.7	25		±5	±200	pА			
				-40 to 125			±1500				
				-40 to 150			±9400				
			5, 10, 36	25		±1	±60				
				-40 to 125			±800				
				-40 to 150			±9400				
Input Offset Current	Ios		2.7	25		±2	±75	pА			
				-40 to 125			±500				
				-40 to 150			±6000				
							5, 10, 36	25		±0.5	±60
				-40 to 125			±800				
				-40 to 150			±6000				
Channel Separation		NCS20232,	2.7	25		TBD		dB			
		NCS20234	5, 10, 36	25		100					
Input Capacitance	C _{IN}	Common mode	2.7, 36	25		TBD		pF			
		Differential	2.7, 36	25		TBD					
Common Mode	CMRR	V _{CM} = V _{SS} - 0.1 V to	2.7	25	96	116		dB			
Rejection Ratio		V _{DD} – 2 V		-40 to 125	69						
				-40 to 150	69						
			5, 10, 36	25	102	125					
				-40 to 125	80						
				-40 to 150	80						
		$V_{CM} = V_{DD} - 2 V$ to $V_{DD} + 0.1 V$	2.7, 5, 10, 36	25		65		dB			
EMI Rejection Ratio	EMIRR	f= 400 MHz	2.7, 36	25		70		dB			
		f = 5 GHz	2.7, 36	25		90					

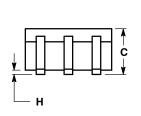
ELECTRICAL CHARACTERISTICS ($V_S = 2.7 \text{ V to } 36 \text{ V}$) (continued) At $T_A = +25 \,^{\circ}\text{C}$, $R_L = 10 \text{ k}\Omega$ connected to midsupply, $V_{CM} = V_{OUT} =$ midsupply, unless otherwise noted. **Boldface** limits apply over the specified temperature range, guaranteed by characterization and/or design.

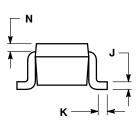
Parameter	Symbol	Conditions	Supply Voltage (V)	Temp (°C)	Min	Тур	Max	Unit
OUTPUT CHARACTE	ERISTICS							
Open Loop Voltage	A_{VOL}	V _{CM} = mid-supply	2.7	25	96	120		dB
Gain				-40 to 125	86			
				-40 to 150	86			
			5	25	96	120		
				-40 to 125	86			
				-40 to 150	86			
			10	25	96	120		
				-40 to 125	86			
				-40 to 150	86			
			36	25	96	120		
				-40 to 125	86			
				-40 to 150	86			
		$V_{CM} = V_{DD} - 2 V$ to $V_{DD} + 0.1 V$	2.7, 5, 10, 36	25		60		
Open Loop Output Impedance	Z _{OUT}					See Figure		Ω
High Level Output	V _{DD} -V _{OH}	$R_L = 10 \text{ k}\Omega$	2.7, 5, 10, 36	25		13	200	mV
Voltage Swing from V _{DD}				-40 to 125			250	- - - - - -
•00		R _L = 1 mA		-40 to 150			250	
			2.7, 5, 10, 36	25		74	100	
				-40 to 125			150	
				-40 to 150			350	
		R _L = 5 mA	10	25		250	200	
				-40 to 125		350	400	
				-40 to 150			400	
Low Level Output	V _{OL} -V _{SS}	$R_L = 10 \text{ k}\Omega$	2.7, 5, 10	25		10	100	mV
Voltage Swing from V _{SS}				-40 to 125			150	
- 55				-40 to 150			150	1
			36	25		10	200	
				-40 to 125			250	- - - -
				-40 to 150			250	
		R _L = 1 mA	2.7, 5, 10, 36	25		65	100	
				-40 to 125			300	
				-40 to 150			300	
		R _L = 5 mA	10	25		180	200	
	11[- 3 11]			-40 to 125		250	300	
				-40 to 150		1	300	1

ELECTRICAL CHARACTERISTICS ($V_S = 2.7 \text{ V to } 36 \text{ V}$) (continued) At $T_A = +25 \,^{\circ}\text{C}$, $R_L = 10 \text{ k}\Omega$ connected to midsupply, $V_{CM} = V_{OUT} =$ midsupply, unless otherwise noted. **Boldface** limits apply over the specified temperature range, guaranteed by characterization and/or design.

Parameter	Symbol	Conditions	Supply Voltage (V)	Temp (°C)	Min	Тур	Max	Unit
OUTPUT CHARACTE	RISTICS							
Output Current	l _{out}	Output to V _{DD} rail,	2.7	25		35		mA
Capability		sinking current	5	25		35		
			10	25		35		
			36	25		35		
		Output to V _{SS} rail,	2.7	25		35		
		sourcing current	5	25		35		
			10	25		35		
			36	25		35		
Capacitive Load Drive	C _L		2.7 to 36	25		180		pF
DYNAMIC PERFORM	ANCE							
Gain Bandwidth	GWBP	C _L = 25 pF	2.7, 5, 10, 36	25		3		MHz
Product		C _L = 25 pF, V _{CM} = V _{DD} - 2 V to V _{DD} + 0.1 V				0.7		
Gain Margin	A _m	C _L = 25 pF	2.7, 5, 10, 36	25		14		dB
Phase Margin	Φ_{m}	C _L = 25 pF	2.7, 5, 10, 36	25		50		0
Slew Rate	SR	Unity gain, $R_L = 2 \text{ k}\Omega$	2.7, 5, 10, 36	25		2.7		V/μs
		Unity gain, V _{CM} = V _{DD} - 2 V to V _{DD} + 0.1 V				0.7		
Settling Time to 0.1	t _s	V _{IN} = 1 V step	2.7	25		1.9		μs
%		V _{IN} = 3 V step	5	25		1.2		1
		V _{IN} = 8 V step	10	25		3.4		1
		V _{IN} = 10 V step	36	25		3.2		
Settling Time to 0.01	t _s	V _{IN} = 1 V step	2.7	25		3.2		μs
%		V _{IN} = 3 V step	5	25		5.6		
		V _{IN} = 8 V step	10	25		6.8		
		V _{IN} = 10 V step	36	25		7		
NOISE PERFORMAN	CE		•					
Total Harmonic Distortion + Noise	THD+ N	$V_{IN} = 0.5 V_{pp},$ f = 1 kHz, A _V = 1	2.7	25		0.009		%
		$V_{IN} = 2.5 V_{pp},$ f = 1 kHz, A _V = 1	5	25		0.009		
		$V_{IN} = 7.5 V_{pp},$ f = 1 kHz, A _V = 1	10	25		0.004		
		$V_{IN} = 28.5 V_{pp},$ f = 1 kHz, A _V = 1	36	25		0.004		
Voltage Noise		f = 1 kHz	2.7, 5, 10, 36	25		30		nV/√Hz
Density	e _n	f = 1 kHz, V _{CM} = V _{DD} – 2 V to V _{DD} + 0.1 V				30		
		f = 10 kHz				20		1
Current Noise Density	i _n	f = 1 kHz	2.7, 5, 10, 36	25		90		fA/√Hz
Voltage Noise, Peak	e _{pp}	f _{IN} = 0.1 Hz to 10 Hz	2.7, 5, 10, 36	25		TBD		μV _{pp}
to Peak	''	f _{IN} = 0.01 Hz to 1 Hz	1	25		TBD		

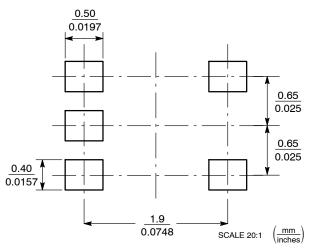

ELECTRICAL CHARACTERISTICS ($V_S = 2.7 \text{ V to } 36 \text{ V}$) (continued) At $T_A = +25 \,^{\circ}\text{C}$, $R_L = 10 \text{ k}\Omega$ connected to midsupply, $V_{CM} = V_{OUT} =$ midsupply, unless otherwise noted. **Boldface** limits apply over the specified temperature range, guaranteed by characterization and/or design.


Parameter	Symbol	Conditions	Supply Voltage (V)	Temp (°C)	Min	Тур	Max	Unit
POWER SUPPLY								
Power Supply	PSRR	Vs = 2.7 V to 36 V	2.7, 36	25	114	135		dB
Rejection Ratio				-40 to 125	100			
				-40 to 150	90			
Quiescent Current	IQ	No load, per channel	2.7, 5	25		0.475	0.595	mA
				-40 to 125			0.650	
				-40 to 150			0.7	
			10	25		0.475	0.595	
				-40 to 125			0.650	
				-40 to 150			0.75	
			36	25		0.475	0.595	
				-40 to 125			0.650	
				-40 to 150			0.8	


Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

PACKAGE DIMENSIONS

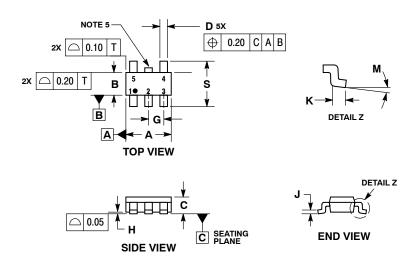
SC-88A (SC-70-5/SOT-353) CASE 419A-02 ISSUE L



- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: INCH.
 3. 419A-01 OBSOLETE. NEW STANDARD 419A-02.
 4. DIMENSIONS A AND B DO NOT INCLUDE MOID ELASH PROTRI ISIONS OR GATE

MOLI BURI		i, prot	RUSION	NS, OR (SATE			
INCHES MILLIMETERS								
DIM	M MIN MAX MIN MAX							
					I			

1	INC	-neo	WILLIN	IEIEKO
DIM	MIN	MAX	MIN	MAX
Α	0.071	0.087	1.80	2.20
В	0.045	0.053	1.15	1.35
С	0.031	0.043	0.80	1.10
D	0.004	0.012	0.10	0.30
G	0.026	BSC	0.65	BSC
Н		0.004		0.10
J	0.004	0.010	0.10	0.25
K	0.004	0.012	0.10	0.30
N	0.008	REF	0.20	REF
S	0.079	0.087	2.00	2.20


SOLDER FOOTPRINT

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

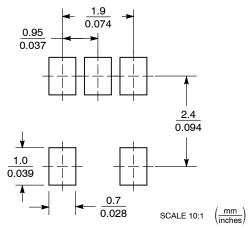
PACKAGE DIMENSIONS

TSOP-5 **CASE 483** ISSUE M

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. CONTROLLING DIMENSION: MILLIMETERS.

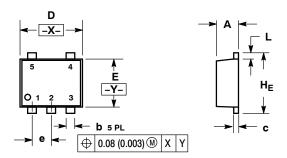
- 2. CONTROLLING DIMENSION: MILLIMETERS.


 3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL.

 4. DIMENSIONS A AND B DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.15 PER SIDE. DIMENSION A.

 5. OPTIONAL CONSTRUCTION: AN ADDITIONAL
- TRIMMED LEAD IS ALLOWED IN THIS LOCATION. TRIMMED LEAD NOT TO EXTEND MORE THAN 0.2

	MILLIMETERS						
DIM	MIN MAX						
Α	2.85	3.15					
В	1.35	1.65					
С	0.90	1.10					
D	0.25	0.50					
G	0.95	BSC					
Н	0.01	0.10					
J	0.10	0.26					
K	0.20	0.60					
М	0°	10 °					
S	2.50	3.00					


SOLDERING FOOTPRINT*

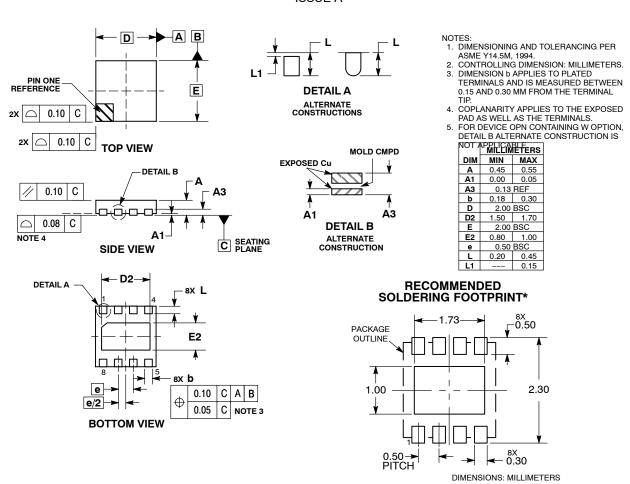
*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS

SOT-553, 5 LEAD CASE 463B ISSUE C

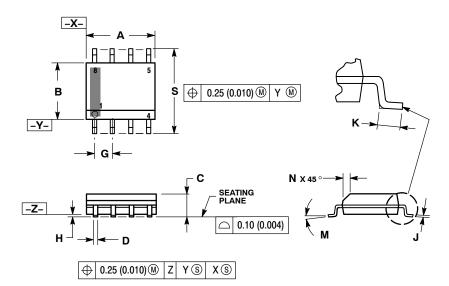
- IES:
 DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 CONTROLLING DIMENSION: MILLIMETERS
 MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH
 THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM
 THICKNESS OF BASE MATERIAL.

	М	ILLIMETE	RS	INCHES			
DIM	MIN	NOM	MAX	MIN	NOM	MAX	
Α	0.50	0.55	0.60	0.020	0.022	0.024	
b	0.17	0.22	0.27	0.007	0.009	0.011	
С	0.08	0.13	0.18	0.003	0.005	0.007	
D	1.55	1.60	1.65	0.061	0.063	0.065	
E	1.15	1.20	1.25	0.045	0.047	0.049	
е		0.50 BSC			0.020 BSC		
L	0.10	0.20	0.30	0.004	0.008	0.012	
HE	1.55	1.60	1.65	0.061	0.063	0.065	


RECOMMENDED SOLDERING FOOTPRINT*

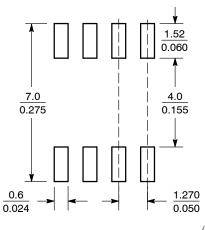
*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS


UDFN8, 2x2 CASE 517AW ISSUE A

^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

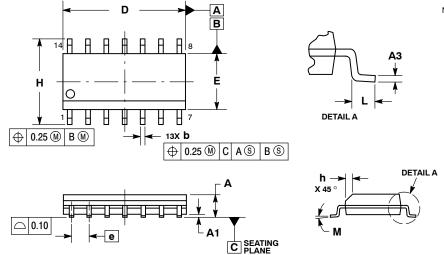
PACKAGE DIMENSIONS


SOIC-8 NB CASE 751-07 **ISSUE AK**

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 CONTROLLING DIMENSION: MILLIMETER.
- DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.
- MAXIMUM MOLD PROTRUSION 0.15 (0.006)
- PER SIDE.
 DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR
 PROTRUSION SHALL BE 0.127 (0.005) TOTAL
 IN EXCESS OF THE D DIMENSION AT
 MAXIMUM MATERIAL CONDITION.
- 751–01 THRU 751–06 ARE OBSOLETE. NEW STANDARD IS 751–07.

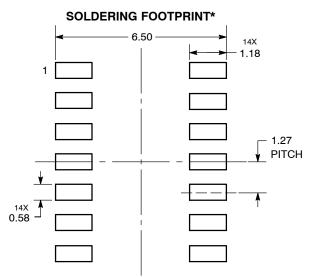
	MILLIMETERS		INCHES	
DIM	MIN	MAX	MIN	MAX
Α	4.80	5.00	0.189	0.197
В	3.80	4.00	0.150	0.157
С	1.35	1.75	0.053	0.069
D	0.33	0.51	0.013	0.020
G	1.27 BSC		0.050 BSC	
Н	0.10	0.25	0.004	0.010
J	0.19	0.25	0.007	0.010
K	0.40	1.27	0.016	0.050
M	0 °	8 °	0 °	8 °
N	0.25	0.50	0.010	0.020
S	5.80	6.20	0.228	0.244

SOLDERING FOOTPRINT*



 $\left(\frac{\text{mm}}{\text{inches}}\right)$ SCALE 6:1

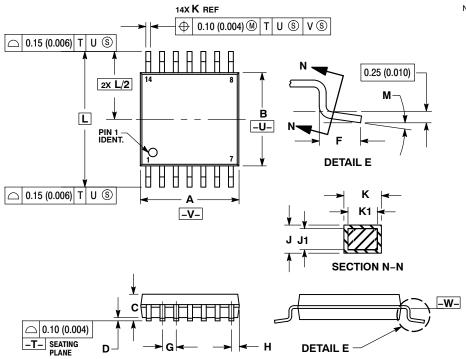
^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.


PACKAGE DIMENSIONS

SOIC-14 NB CASE 751A-03 **ISSUE L**

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER
 ASME Y14.5M, 1994.
 2. CONTROLLING DIMENSION: MILLIMETERS.
- 2. CONTROLLING DIMENSION: MILLIMETERS.
 3. DIMENSION 6 DOES NOT INCLUDE DAMBAR PROTRUSION ALLOWABLE PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS OF AT MAXIMUM MATERIAL CONDITION.
 4. DIMENSIONS 0 AND E DO NOT INCLUDE MOLD PROTRUSIONS.
 5. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE

	MILLIMETERS		INCHES	
DIM	MIN	MAX	MIN	MAX
Α	1.35	1.75	0.054	0.068
A1	0.10	0.25	0.004	0.010
АЗ	0.19	0.25	0.008	0.010
b	0.35	0.49	0.014	0.019
D	8.55	8.75	0.337	0.344
Е	3.80	4.00	0.150	0.157
е	1.27 BSC		0.050 BSC	
Н	5.80	6.20	0.228	0.244
h	0.25	0.50	0.010	0.019
L	0.40	1.25	0.016	0.049
М	0 °	7°	0 °	7 °



DIMENSIONS: MILLIMETERS

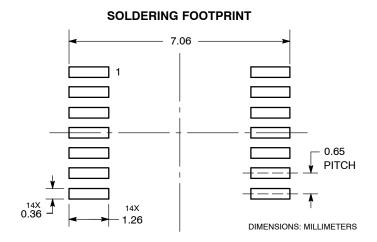
^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS

TSSOP-14 WB CASE 948G **ISSUE C**

NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- ANSI 1 14.5W, 1962. CONTROLLING DIMENSION: MILLIMETER. DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT
- MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.


 1. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE.

 5. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION.

 6. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.
- REFERENCE ONLY.

 7. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-.

	MILLIMETERS		INCHES	
DIM	MIN	MAX	MIN	MAX
Α	4.90	5.10	0.193	0.200
В	4.30	4.50	0.169	0.177
С		1.20		0.047
D	0.05	0.15	0.002	0.006
F	0.50	0.75	0.020	0.030
G	0.65 BSC		0.026 BSC	
Н	0.50	0.60	0.020	0.024
J	0.09	0.20	0.004	0.008
J1	0.09	0.16	0.004	0.006
K	0.19	0.30	0.007	0.012
K1	0.19	0.25	0.007	0.010
L	6.40 BSC		0.252 BSC	
М	°	8 °	0 °	8 °

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor date sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify an

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com

ON Semiconductor Website: www.onsemi.com

TECHNICAL SUPPORT
North American Technical Support:
Voice Mail: 1 800-282-9855 Toll Free USA/Canada

Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative