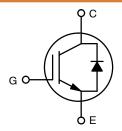


IGBT for Automotive Applications

650 V, 40 A

AFGB40T65RQDN

Using novel field stop IGBT technology, **onsemi**'s new series of FS4 IGBTs offer the optimum performance for automotive applications. This technology is Short circuit rated and offers high figure of merit with low conduction and switching losses.


Features

- Maximum Junction Temperature: $T_J = 175^{\circ}C$
- Positive Temperature Coefficient for Easy Parallel Operation
- High Current Capability
- Low Saturation Voltage: $V_{CE(Sat)} = 1.55 \text{ V (Typ.)}$ @ $I_C = 40 \text{ A}$
- 100% of the Parts Tested for ILM (Note 2)
- High Input Impedance
- Fast Switching
- Tightened Parameter Distribution
- This Device is Pb-Free and RoHS Compliant

Typical Applications

- E-compressor for HEV/EV
- PTC Heater for HEV/EV

BV _{CES}	V _{CE(sat)} TYP	I _C
650 V	1.55 V	40 A

MARKING DIAGRAM

&Y = Logo

&Z = Assembly Plant Code &3 = 3-Digit Date Code

&K = 2-Digit Lot Traceability Code

AFGB40T65RQDN = Specific Device Code

ORDERING INFORMATION

Device	Package	Shipping [†]
AFGB40T65RQDN	D2PAK (TO-263)	800 Units / Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

MAXIMUM RATINGS ($T_C = 25^{\circ}C$ unless otherwise stated)

Parameter	Symbol	Value	Unit
Collector to Emitter Voltage	V _{CES}	650	V
Gate to Emitter Voltage Transient Gate to Emitter Voltage $T_{pulse} = 5 \ \mu s, \ D < 0.10$	V _{GES}	±20 ±30	V
Collector Current (Note 1) $@T_C = 25^{\circ}C$ $@T_C = 100^{\circ}C$	I _C	68 40	A
Pulsed Collector Current (Note 2)	I _{LM}	160	Α
Pulsed Collector Current (Note 3)	I _{CM}	160	Α
Diode Forward Current (Note 1) $@T_C = 25^{\circ}C$ $@T_C = 100^{\circ}C$	I _F	68 40	А
Pulsed Diode Maximum Forward Current	I _{FM}	160	Α
Non-Repetitive Forward Surge Current (Half – Sine Pulse, tp = 8.3 ms, T_C = 25°C) (Half – Sine Pulse, tp = 8.3 ms, T_C = 150°C)	I _{F,} SM	136 118	А
Short Circuit Withstand Time V_{GE} = 15 V, V_{CC} = 400 V, T_{C} = 150°C	T _{SC}	5	μs
Maximum Power Dissipation $@T_C = 25^{\circ}C$ $@T_C = 100^{\circ}C$	P _D	339.37 169.68	W
Operating Junction and Storage Temperature Range	T _J , T _{STG}	- 55 to +175	°C
Maximum Lead Temp. for Soldering Purposes, 1/8" from case for 5 seconds	T _L	265	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Value limited by bond wire.

- 2. V_{CC} = 400 V, V_{GE} = 15 V, I_{C} = 120 A, R_{G} = 100 Ω , Inductive Load, 100% Tested. 3. Repetitive rating: pulse width limited by max. Junction temperature.

THERMAL RESISTANCE RATINGS

Parameter	Symbol	Min	Тур	Max	Unit
Thermal Resistance Junction-to-Case, for IGBT	$R_{ heta JC}$	_	0.34	0.44	°C/W
Thermal Resistance Junction-to-Case, for Diode	$R_{ heta JC}$	-	0.79	1.03	
Thermal Resistance Junction-to-Ambient	$R_{\theta JA}$	-	-	40	

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise stated)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
OFF CHARACTERISTICS	-	•		_		_
Collector-to-Emitter Breakdown Voltage, Gate-Emitter Short-Circuited	BV _{CES}	V _{GE} = 0 V, I _C = 1 mA	650	-	-	V
Temperature Coefficient of Breakdown Voltage	$\Delta BV_CES / \Delta T_J$	V _{GE} = 0 V, I _C = 1 mA	_	0.62	-	V/°C
Collector–Emitter Cut–Off Current, Gate–Emitter Short–Circuited	I _{CES}	$V_{CE} = V_{CES}$, $V_{GE} = 0$ V	_	_	30	μΑ
Gate Leakage Current, Collector-Emitter Short-Circuited	I _{GES}	V _{GE} = V _{GES} , V _{CE} = 0 V	-	_	±400	nA
ON CHARACTERISTICS		•	•			•
Gate-Emitter Threshold Voltage	V _{GE(th)}	$V_{GE} = V_{CE}$, $I_C = 40 \text{ mA}$	3.75	4.90	6.05	V
Collector-Emitter Saturation Voltage	V _{CE(sat)}	I _C = 40 A, V _{GE} = 15 V, T _J = 25°C	-	1.55	1.82	V
		I _C = 40 A, V _{GE} = 15 V, T _J = 175°C	-	1.90	_	V
DYNAMIC CHARACTERISTICS						
Input Capacitance	C _{ies}	V _{CE} = 30 V, V _{GE} = 0 V, f = 1 MHz	-	2100	-	pF
Output Capacitance	C _{oes}		-	71	-	
Reverse Transfer Capacitance	C _{res}]	-	9	-	
Gate Resistance	Rg	FREQ = 1 MHz	-	14	-	Ω
Gate Charge Total	Qg	V _{CE} = 400 V, I _C = 40 A, V _{GE} = 15 V	-	51	-	nC
Gate-Emitter Charge	Q _{ge}	1	-	17	-	
Gate-Collector Charge	Q _{gc}		-	14	_	
SWITCHING CHARACTERISTICS, INDUC	TIVE LOAD					
Turn-On Delay Time	t _{d(on)}	$T_J = 25^{\circ}C$, $V_{CC} = 400 \text{ V}$, $I_C = 20 \text{ A}$,	_	21	_	ns
Rise Time	t _r	$R_g = 3 \Omega$, $V_{GE} = 15 V$, Inductive Load	_	21	_	
Turn-Off Delay Time	t _{d(off)}	1	_	77	_	1
Fall Time	t _f]	_	94	_	
Turn-On Switching Loss	E _{on}	1	_	0.47	_	mJ
Turn-Off Switching Loss	E _{off}]	_	0.42	_	
Total Switching Loss	E _{ts}]	_	0.89	_	
Turn-On Delay Time	t _{d(on)}	$T_J = 25^{\circ}C$, $V_{CC} = 400$ V, $I_C = 40$ A,	_	22	_	ns
Rise Time	t _r	$R_g = 3 \Omega$, $V_{GE} = 15 V$, Inductive Load	_	45	_	
Turn-Off Delay Time	t _{d(off)}]	_	66	_	
Fall Time	t _f		-	74	-	1
Turn-On Switching Loss	E _{on}		-	1.18	-	mJ
Turn-Off Switching Loss	E _{off}		-	0.75	-	
Total Switching Loss	E _{ts}		-	1.93	-	
Turn-On Delay Time	t _{d(on)}	T _J = 175°C, V _{CC} = 400 V, I _C = 20 A,	-	20	-	ns
Rise Time	t _r	$R_g = 3 \Omega$, $V_{GE} = 15 V$, Inductive Load	-	24	-	
Turn-Off Delay Time	t _{d(off)}		-	96	-]
Fall Time	t _f		-	192	-	1
Turn-On Switching Loss	E _{on}		-	0.79	-	mJ
Turn-Off Switching Loss	E _{off}		-	0.88	-	
Total Switching Loss	E _{ts}	1	_	1.67	_	1

ELECTRICAL CHARACTERISTICS (T_{.J} = 25°C unless otherwise stated) (continued)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
SWITCHING CHARACTERISTICS, IND	UCTIVE LOAD		•	•		•
Turn-On Delay Time	t _{d(on)}	$T_J = 175^{\circ}C$, $V_{CC} = 400 \text{ V}$, $I_C = 40 \text{ A}$,	_	24	_	ns
Rise Time	t _r	$R_g = 3 \Omega$, $V_{GE} = 15 V$, Inductive Load	_	51	_	1
Turn-Off Delay Time	t _{d(off)}		_	80	_	
Fall Time	t _f		_	152	_	
Turn-On Switching Loss	E _{on}		_	1.71	_	mJ
Turn-Off Switching Loss	E _{off}		_	1.37	_	
Total Switching Loss	E _{ts}		_	3.08	_	
DIODE CHARACTERISTICS						
Diode Forward Voltage	V _F	T _J = 25°C, I _F = 40 A	-	1.68	2.10	V
	T _J = 175°C, I _F = 40 A		-	1.75	-	
DIODE SWITCHING CHARACTERISTIC	C, INDUCTIVE L	LOAD				
Reverse Recovery Energy	E _{REC}	$T_J = 25^{\circ}C, V_R = 400 V,$	-	59	-	μJ
Diode Reverse Recovery Time	T _{rr}	I _F = 20 A, di _F /dt = 1000 A/μs	-	40	-	ns
Diode Reverse Recovery Charge	Q _{rr}		_	413	-	nC
Reverse Recovery Energy	E _{REC}	$T_J = 25^{\circ}C, V_R = 400 \text{ V},$	-	85	-	μJ
Diode Reverse Recovery Time	T _{rr}	$I_F = 40 \text{ A}, \text{ di}_F/\text{dt} = 1000 \text{ A}/\mu\text{s}$	_	52	-	ns
Diode Reverse Recovery Charge	Q _{rr}		_	543	-	nC
Reverse Recovery Energy	E _{REC}	T _J = 175°C, V _R = 400 V,	-	203	-	μJ
Diode Reverse Recovery Time	T _{rr}	$I_F = 20 \text{ A, di}_F/\text{dt} = 1000 \text{ A/}\mu\text{s}$	-	73	=	ns
Diode Reverse Recovery Charge	Q _{rr}		-	984	=	nC
Reverse Recovery Energy	E _{REC}	T _J = 175°C, V _R = 400 V,	-	282	-	μJ
Diode Reverse Recovery Time	T _{rr}	I _F = 40 A, di _F /dt = 1000 A/μs	-	96	=	ns
Diode Reverse Recovery Charge	Q _{rr}	7	_	1334	-	nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

TYPICAL CHARACTERISTICS

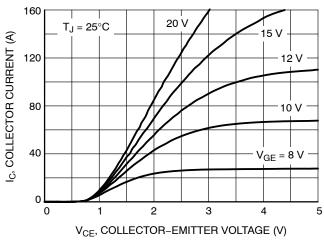


Figure 1. Typical Output Characteristics (25°C)

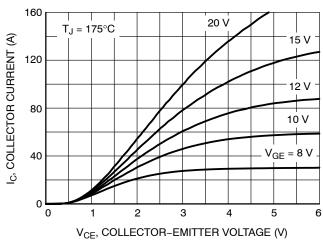


Figure 2. Typical Output Characteristics (175°C)

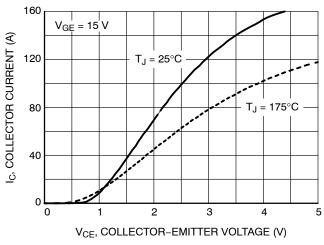
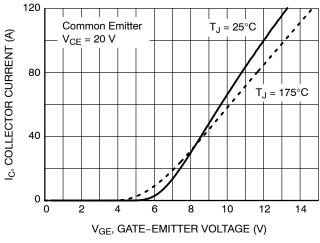



Figure 3. Typical Saturation Voltage Characteristics

Figure 4. Typical Transfer Characteristics

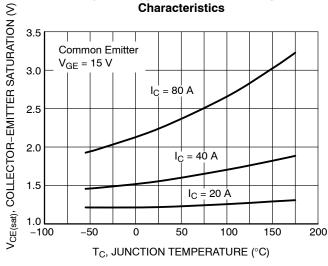


Figure 5. Saturation Voltage vs. Case

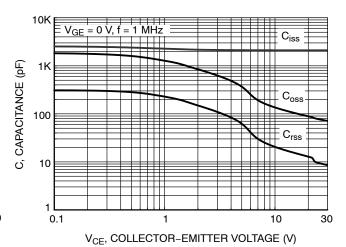


Figure 6. Capacitance Characteristics

TYPICAL CHARACTERISTICS (Continued)

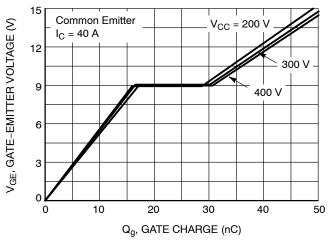


Figure 7. Gate Charge Characteristics

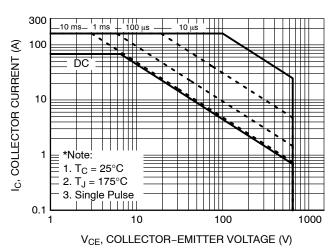


Figure 8. SOA Characteristics

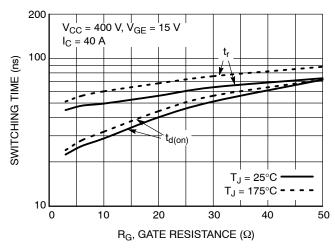


Figure 9. Turn-On Characteristics vs. Gate Resistance

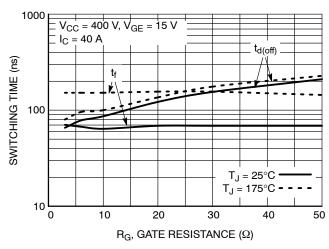


Figure 10. Turn-Off Characteristics vs. Gate Resistance

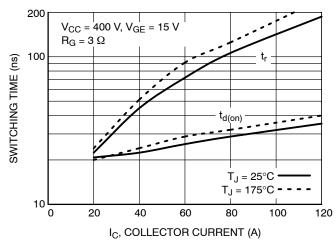


Figure 11. Turn-On Characteristics vs. Collector Current

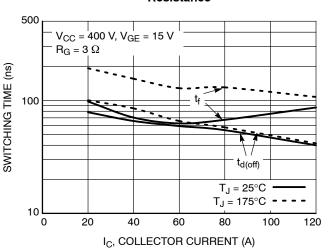


Figure 12. Turn-Off Characteristics vs.
Collector Current

TYPICAL CHARACTERISTICS (Continued)

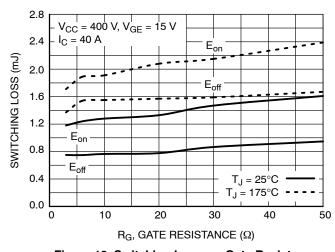


Figure 13. Switching Loss vs. Gate Resistance

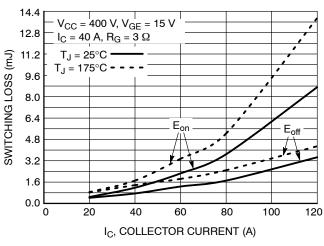


Figure 14. Switching Loss vs. Collector Current

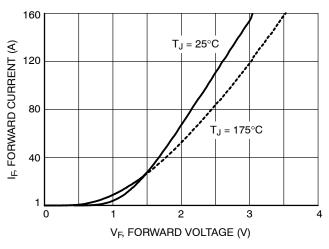
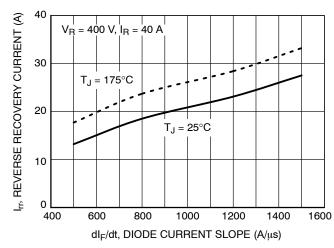



Figure 15. Forward Characteristics

Figure 16. Reverse Recovery Current

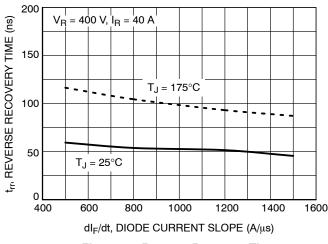


Figure 17. Reverse Recovery Time

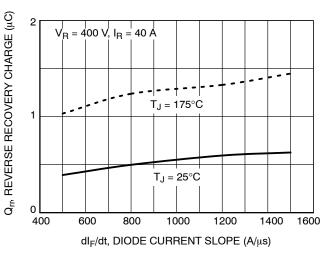


Figure 18. Stored Charge

TYPICAL CHARACTERISTICS (Continued)

Figure 19. Transient Thermal Impedance of IGBT

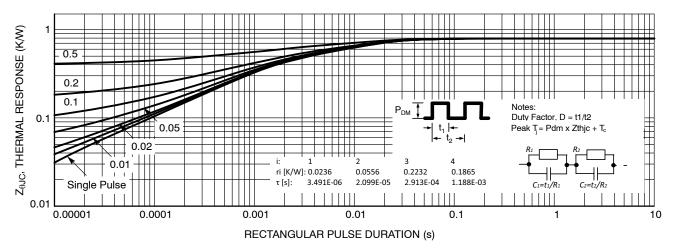
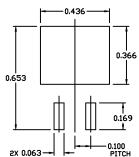
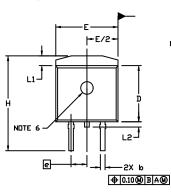
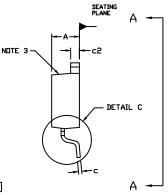



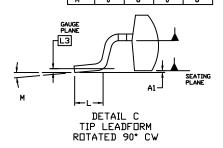
Figure 20. Transient Thermal Impedance of Diode

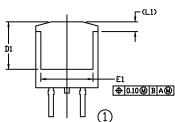
D²PAK-3 (TO-263, 3-LEAD) CASE 418AJ ISSUE F

DATE 11 MAR 2021

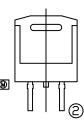

RECOMMENDED MOUNTING FOOTPRINT

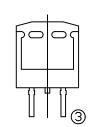

For additional information on our Pb-Free strategy and soldering details, please download the IN Seniconductor Soldering and Mounting Techniques Reference Manual, SILIERRM/D.

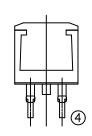

NOTES


- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2009.
- 2. CONTROLLING DIMENSION: INCHES
- 3. CHAMFER OPTIONAL.
- 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH.
 MOLD FLASH SHALL NOT EXCEED 0.005 PER SIDE.
 THESE DIMENSIONS ARE MEASURED AT THE OUTERMOST
 EXTREMES OF THE PLASTIC BODY AT DATUM H.
- 5. THERMAL PAD CONTOUR IS OPTIONAL WITHIN DIMENSIONS E, L1, D1, AND E1.
- 6. OPTIONAL MOLD FEATURE.
- 7. ①,② ... DPTIONAL CONSTRUCTION FEATURE CALL DUTS.

	INCHES		MILLIN	ETERS
DIM	MIN.	MAX.	MIN.	MAX.
Α	0.160	0.190	4.06	4.83
A1	0.000	0.010	0.00	0.25
b	0.020	0.039	0.51	0.99
С	0.012	0.029	0.30	0.74
c2	0.045	0.065	1.14	1.65
D	0.330	0.380	8.38	9.65
D1	0.260		6.60	
E	0.380	0.420	9.65	10.67
E1	0.245		6.22	
e	0.100 BSC		2.54 BSC	
Н	0.575	0.625	14.60	15.88
L	0.070	0.110	1.78	2.79
L1		0.066		1.68
L5		0.070		1.78
L3	0.010	BSC	0.25 BSC	
м	0+	8*	n•	8.







VIEW A-A

VIEW A-A

OPTIONAL CONSTRUCTIONS

GENERIC MARKING DIAGRAMS*

XXXXXX = Specific Device Code A = Assembly Location

 WL
 = Wafer Lot

 Y
 = Year

 WW
 = Work Week

 W
 = Week Code (SSG)

 M
 = Month Code (SSG)

 G
 = Pb-Free Package

 AKA
 = Polarity Indicator

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " •", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:

98AON56370E

Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.

DESCRIPTION:

D²PAK-3 (TO-263, 3-LEAD)

PAGE 1 OF 1

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer pu

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative