

OP-15, OP-16, OP-17

Precision JFET-Input Operational Amplifiers

The PMI JFET-input series of devices offer clear advantages over industry-generic devices and are superior in both cost and performance to many dielectrically-isolated and hybrid op amps. All devices offer offset voltages as low as 0.5mV with TCV_{OS} guaranteed to 5μ V/C. A unique input bias cancellation circuit reduces the I_B by a factor of 10 over conventional designs. In addition, PMI specifies I_B and I_{OS} with the devices warmed up and operating at 25°C ambient.

These devices were designed to provide real precision performance along with high speed. Although they can be nulled, the design objective was to provide low offset-voltage without nulling. Systems generally become more cost effective as the number of trim circuits is decreased. PMI achieves this performance by use of an improved Bipolar compatible JFET process coupled with on-chip, zener-zap offset trimming.

Rochester Electronics Manufactured Components Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All recreations are done with the approval of the OCM.	 Quality Overview ISO-9001 AS9120 certification Qualified Manufacturers List (QML) MIL-PRF-38535 Class Q Military Class V Space Level Qualified Suppliers List of Distributors (QSLD) Rochester is a critical supplier to DLA and meets all industry and DLA standards.
Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceeds the OCM data sheet.	Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OEM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

Precision JFET-Input Operational Amplifiers OP-15/0P-16/0P-17

FEATURES (All Devices)

•	Significant Performance Advantages over LF155, 156 and
	157 Devices.

- Low Input Offset Voltage Drift 2.0µV/°C
- Minimum Slew Rate Guaranteed on All Models
- Temperature-Compensated Input Blas Currents
- Guaranteed Input Blas Current @ 125°C
- Bias Current Specified WARMED UP Over Temperature
- Internal Compensation

- Models With MIL-STD-883 Processing Available
- 125°C Temperature Tested DICE

OP-15

٠	156 Speed With 155 Dissipation	(qv7
٠	Wide Bandwidth	MHz
٠	High Slew Rate	V/µs
٠	Fast Settling to $\pm 0.1\%$	Ons
•	Available in Die Form	
0	DP-16	
٠	Higher Slew Rate	V/µs
•	Faster Settling to $\pm 0.1\%$	0ns
•	Wider Bandwidth 8 Available in Die Form 8	MHz
0)P-17	
•	Highest Slew Rate 60	V/µs
•	Fastest Settling to ±0.1% 60) 0ns
٠	Highest Gain Bandwidth Product (Avcl = 5 Min)	
		/Hz

Available in Die Form

GENERAL DESCRIPTION

The PMI JFET-input series of devices offer clear advantages over industry-generic devices and are superior in both cost and performance to many dielectrically-isolated and hybrid

op amps. All devices offer offset voltages as low as 0.5mV with TCV_{OS} guaranteed to 5μ V/°C. A unique input bias cancellation circuit reduces the I_B by a factor of 10 over conventional designs. In addition, PMI specifies I_B and I_{OS} with the devices warmed up and operating at 25°C ambient.

These devices were designed to provide real precision performance along with high speed. Although they can be nulled, the design objective was to provide low offset-voltage without nulling. Systems generally become more cost effective as the number of trim circuits is decreased. PMI achieves this performance by use of an improved Bipolar compatible JFET process coupled with on-chip, zener-zap offset trimming.

The OP-15 provides an excellent combination of high speed and low input offset voltage. In addition, the OP-15 offers the speed of the 156A op amp with the power dissipation of a 155A. The combination of a low input offset voltage of 500μ V, slew rate of $13V/\mu$ s, and settling time of 1200ns to 0.1% makes the OP-15 an op amp of both precision and speed. The additional features of low supply current coupled with an input bias current of 9nA at 125°C ambient (not junction) temperature makes the OP-15 ideal for a wide range of applications.

The OP-16 features a slew rate of $25W\mu$ s and a settling time of 900ns to 0.1% which represents a significant improvement in speed over the 156. Also, the OP-16 has all the DC features of the OP-15.

The OP-17 has a slew rate of $60V/\mu$ s and is the best choice for applications requiring high closed-loop gain with high speed. See the OP-42 data sheet for unity gain applications and the OP-215 data sheet for a dual configuration of the OP-15.

SIMPLIFIED SCHEMATIC

ORDERING INFORMATION[†]

		PACKAGE										
V _{OS} MAX (mV)	TO-99	CERDIP 8-PIN	PLASTIC 8-PIN	SO 8-PIN	TEMPERATURE RANGE							
·	OP15AJ*	OP15AZ*	-	-								
0.5	OP16AJ*	-	-	-	MIL							
	OP17AJ*	OP17AZ*	-	-								
-	OP15EJ	OP15EZ	_	_								
0.5	OP16EJ	OP16EZ	-	-	COM							
	OP17EJ	OP17EZ	-	-								
	OP158J/863	OP15BZ/883	-	-								
1.0	OP16BJ/883	OP16BZ/883	-	-	MIL							
	OP17BJ*	OP17BZ	-	-								
	OP15FJ	OP15FZ	OP15FP	-								
1.0	OP16FJ	OP16FZ	OP16FP	-	COM							
	-	-	OP17FP	-								
	-	OP17CZ/883	-	_								
3.0	OP17CJ/883C	-	-	-	MIL							
	OP15GJ	OP15GZ	OP15GP	OP15GS								
3.0	OP16GJ	OP16GZ	OP16GP	OP16GS	XIND							
	OP17GJ	OP17GZ	OP17GP	OP17GS								

 For devices processed in total compliance to MIL-STD-883, add /883 after part number. Consult factory for 883 data sheet.

Burn-in is available on commercial and industrial temperature range parts in CerDIP, plastic DIP, and TO-can packages.

PIN CONNECTIONS

BURN-IN CIRCUIT

ABSOLUTE MAXIMUM RATINGS (Note 1)

Supply Voltage
All Devices Except C, G (Packaged) & GR Grades ±22V
C, G (Packaged) & GR Grades ±18V
Operating Temperature
A, B, & C Grades55°C to +125°C
E & F Grades 0°C to +70°C
G Grade40°C to +85°C
Maximum Junction Temperature +150°C
DICE Junction Temperature (T,)65°C to +150°C
Differential Input Voltage
All Devices Except C, G (Packaged) & GR Grades ±40V
C, G (Packaged) & GR Grades ±30V
Input Voltage (Note 2)
All Devices Except C, G (Packaged) & GR Grades ±20V
C, G (Packaged) & GR Grades ±16V
Input Voltage
OP-15A, OP-15B, OP-15E, OP-15F ±20V
OP-15G ±16V
OP-16A, OP-16B, OP-16E, OP-16F ±20V
OP-16C, OP-16G ±16V
OP-17A, OP-17B, OP-17E, OP-17F ±20V
OP-17C, OP-17G ±16V
Output Short-Circuit Duration Indefinite
Storage Temperature Range65°C to +150°C
Lead Temperature Range (Soldering, 60 sec) +300°C

PACKAGE TYPE	Θ _{JA} (Note 3)	θ _{jc}	UNITS
TO-99 (J)	150	18	°C/W
8-Pin Hermetic DIP (Z)	148	16	°C/W
8-Pin Plastic DIP (P)	103	43	°C/W
8-Pin SO (S)	158	43	°C/W
NOTER			

NOTES:

 Absolute maximum ratings apply to both DICE and packaged parts, unless otherwise noted.

2. Unless otherwise specified the absolute maximum negative input voltage is equal to the negative power-supply voltage.

 θ_{jA} is specified for worst case mounting conditions, i.e., θ_{jA} is specified for device in socket for TO, CerDIP and P-DIP packages; θ_{jA} is specified for device soldered to printed circuit board for SO package.

ELECTRICAL CHARACTERISTICS at $V_S = \pm 15V$, $T_A = 25^{\circ}C$, unless otherwise noted.

		· · ·			OP-154 OP-164 OP-174	/E /E /E		OP-15E OP-16E OP-17E	3/F 3/F 3/F		OP-15 OP-16C OP-17C	G ;/G ;/G	
PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
Input Offset Voltage	Vos	R _S = 50Ω			0.2	0.5	—	0.4	1.0	_	0.5	3.0	mV
		T _j = 25°C (Note 1)	OP-15	_	3	10	-	6	20	-	12	50	
Input Offset Current	los	Device Operating	01 10	-	5	22	_	10	40	—	20	100	рA
	03	T _j = 25°C (Note 1) Device Operating	OP-16/OP-17	_	3 5	10 25	_	6 10	20 50		12 20	50 125	
		Tr = 25°C (Note 1)			+ 15	+50		+30	+ 100		+60	+ 200	
		Device Operating	OP-15	_	±18	±110		±40	±200	_	±80	±400	
Input Bias Current	B	T _i = 25°C (Note 1)		_	±15	±50	-	±30	±100	_	±60	±200	рА
		Device Operating	OP-16/OP-17		±20	±130		±40	±250		±80	±500	
Input Resistance	R _{IN}			—	10 ¹²	-		10 ¹²			10 ¹²		n
Large-Signal Voltage Gain	Avo	$R_L \ge 2k\Omega$ $V_\Omega = \pm 10V$		100	240	_	75	220	_	50	200	_	V/mV
Output Voltage		$R_1 = 10k\Omega$		±12	±13	_	±12	±13	s	± 12	±13		
Swing	vo	$R_L = 2k\Omega$		±11	±12.7	—	±11	±12.7		±11	±12.7	—	v
Quantu Quanta			OP-15	_	2.7	4.0	_	2.7	4.0	_	2.8	5.0	m A
Supply Current	'SY		OP-16/OP-17	-	4.6	7.0		4.6	7.0	—	4.8	8.0	
		A = +1 (Note 3)	OP-15	10	13	—	7.5	11	_	5	9	-	
Slew Rate	SR	AVCL - +1 (Note 3)	OP-16	18	25	_	12	21	—	9	17	-	V/µs
		A _{VCL} = +5 (Note 3)	OP-17	45	60		35	50		25	40		
Gain Bandwidth			OP-15	4.0	6.0	—	3.5	5.7	_	3.0	5.4	—	
Product	GBW	(Note 3)	OP-16	6.0	8.0	_	5.5	7.6	-	5.0	7.2	<u> </u>	MHz
			00-17	20			15	20			20		
Closed-Loop		A _{VCL} = +1	OP-15	_	14	_	_	13	_	_	12	_	MIL)-
Bandwidth	CLBW	$A_{\rm MOI} = \pm 5$	OP-18 OP-17	_	11	_	_	10	_	_	9	_	IVITIZ
		to 0.01%			4.5			4.5			4.7		
		to 0.05% (Note 2)	OP-15	_	1.5	_	_	1.5	_	-	1.6	_	
		to 0.10%	•••••	_	1.2	-	_	1.2	-	-	1.3	-	
		to 0.01%		_	3.8	_	_	3.8	_	_	4.0	_	-
Settling Time	ts	to 0.05% (Note 2)	OP-16	_	1.2	-	_	1.2	-	-	1.3	-	μs
		to 0.10%		-	0.9	-		0.9	-	-	1.0		_
		to 0.01%		—	1.5	_	-	1.5	—	-	1.6	—	
		to 0.05% (Note 4)	OP-17		0.7	-	-	0.7	_		0.8	-	
		to 0.10%			0.6			0.6		-	0.7	-	
Input Voltage Range	IVR	• <u>-</u>		± 10.5	-		±10.5	-		± 10.3	-	-	V
Common-Mode Rejection Ratio	CMRR	$V_{CM} = \pm 10.5V$ $V_{CM} = \pm 10.3V$		86 —	100	_	86 	100	_			_	dB
Power Supply Rejection Ratio	PSRR	$V_{S} = \pm 10V$ to $\pm 18V$ $V_{S} = \pm 10V$ to $\pm 15V$			10 —	51 		10 —	51 —		— 10	 80	μV/V
Input Noise Voltage Density	en	f _O = 100Hz f _O = 1000Hz		_	20 15	_	-	20 15			20 15	_	nV/√Hz
Input Noise	in	f _O = 100Hz		-	0.01	_	_	0.01	_	_	0.01	_	pA/√Hz
Current Density				_	0.01		_	0.01			0.01	_	
Input Capacitance				—	3	_		3	_	_	3		pr

NOTES:

- 1. Input bias current is specified for two different conditions. The $T_j = 25^{\circ}C$ specification is with the junction at ambient temperature; the Device Operating specification is with the device operating in a warmed-up condition at 25°C ambient. The warmed-up bias current value is correlated to the junction temperature value via the curves of $I_B vs T_j and I_B vs T_A$. PMI has a bias current compensation circuit which gives improved bias current over the standard JFET input op amps. $I_B and I_{OS}$ are measured at $V_{CM} = 0$.
- 2. Settling time is defined here for a unity gain inverter connection using $2k\Omega$ resistors. It is the time required for the error voltage (the voltage at the

inverting input pin on the amplifier) to settle to within a specified percent of its final value from the time a 10V step input is applied to the inverter. See settling time test circuit.

3. Sample tested.

4. Settling time is defined here for a A_V=-5 connection with R_F=2k Ω . It is the time required for the error voltage (the voltage at the inverting input pin on the amplifier) to settle to within 0.01% of its final value from the time a 2V step input is applied to the inverter. See settling time test circuit.

ELECTRICAL CHARACTERISTICS at $V_S = \pm 15V$, $-55^{\circ}C \le T_A \le 125^{\circ}C$, unless otherwise noted.

		3		OP-15A OP-16A OP-17A				OP-15B OP-16B OP-17B			OP-16C OP-17C		
PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	X MIN	TYP	MAX	MIN	TYP	MAX	UNITS
Input Offset Voltage	Vos	R _S = 50Ω		_	0.4	0.9	_	0.7	2.0	-	0.9	4.5	mV
Average Input Offset Voltage Drift Without External	TOV	(Note 2)		_	2	5		3	10	_	4	15	
Trim With External Trim	TCV _{OS}	$R_{P} = 100k\Omega$		_	2	_	_	3	_	_	4	-	μV/°C
		T _i = 125°C			0.6	4.0	_	0.8	6.0	_	1.0	9.0	
Input Offset Current (Note 1)		T _A = 125°C Device Operating	OP-15	-	0.8	7.0	_	1.2	11	_	1.5	17	
	IOS	T _j = 125°C		_	0.6	4.0	_	0.8	6.0		1.0	9.0	' nA
		T _A = 125°C Device Operating	OP-16/OP-17	_	1.0	8.5	-	1.3	14.5	-	1.7	22	
		T _j = 125°C		-	±1.2	±5.0	_	±1.5	±7.5	_	±1.8	±10	· · · ·
Input Bias		T _A = 125°C Device Operating	OP-15	_	±1.7	±9.0	_	±2.2	±14	_	±2.7	± 19	
Current (Note 1)	ⁱ B	T _j = 125°C		_	±1.2	±5.0	· <u> </u>	±1.5	±7.5	_	±1.8	±10	nA
		T _A = 125°C Device Operating	OP-16/OP-17	—	±2.0	±11	_	±2.5	±18		±3.0	±25	
Input Voltage Range	IVR			±10.4	-	-	± 10.4	-		± 10.25	_	—	v
Common-Mode Rejection Ratio	CMRR	V _{CM} = ±10.4V V _{CM} = ±10.25V		85 —	97	_	85 —	97	_	 80	93	_	dB
Power Supply Rejection Ratio	PSRR	$V_S = \pm 10V \text{ to } \pm 18V$ $V_S = \pm 10V \text{ to } \pm 15V$		_	15 —	57	-	15 —	57	_	23	100	μV/V
Large-Signal Voltage Gain	Avo	$R_L \ge 2k\Omega$ $V_0 = \pm 10V$		35	120	_	30	110	_	25	100	_	V/mV
Output Voltage Swing	vo	$R_L \ge 10k\Omega$		±12	±13	_	± 12	±13	_	± 12	±13	_	v

NOTES:

1. Input bias current is specified for two different conditions. The $T_i = 25^{\circ}C$ specification is with the junction at ambient temperature; the Device Operating specification is with the device operating in a warmed-up condition at 25°C ambient. The warmed-up bias current value is correlated to the junction temperature value via the curves of I_{B} vs T_{j} and I_{B} vs T_A. PMI has a bias current compensation circuit which gives improved bias current over the standard JFET input op amps. I_B and I_{OS} are measured at V_{CM} = 0. 2. Sample tested.

ELECTRICAL CHARACTERISTICS at $V_s = \pm 15V$, 0°C $\leq T_A \leq 70$ °C for E and F, -40 $\leq T_A \leq +85$ °C for G grade, unless otherwise noted.

					OP-15 OP-16 OP-17	Ē		OP-15 OP-16 OP-17	iF iF iF		OP-15 OP-16 OP-17	G G G	
PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	MIN	ТҮР	MAX	MIN	TYP	MAX	UNITS
Input Offset Voltage	Vos	R _S = 50Ω		_	0.3	0.75	_	0.55	1.5	_	0.7	3.8	mV
Average Input Offset Voltage Drift									(Note 2)				
Without External Trim	TCV _{OS}			_	2	5	-	3	10	-	4	30	μV/° C
With External Trim	TCV _{OSn}	$R_{P} = 100 k\Omega$		_	2	-	_	3	-	-	4	—	••••
		T _i = 70° C		_	0.04	0.30	_	0.06	0.45	_	0.08	0.65	
Input Offset Current (Note 1)		T _A = 70° C Device Operating	OP-15	_	0.06	0.55	-	0.08	0.80	_	0.10	1.2	
	los	T _i = 70° C		_	0.04	0.30		0.06	0.45	-	0.08	0.65	nA
		T _A = 70° C OP-16/OP- Device Operating	OP-16/OP-17	_	0.07	0.70	_	0.10	1.1	_	0.15	1.7	
		T _j = 70° C		_	±0.10	±0.40	_	±0.12	±0.60	_	±0.14	±0.80	
Input Bias		T _A = 70° C Device Operating	OP-15	_	±0.13	±0.75	_	±0.16	±1.1	_	±0.19	±1.5	
Current (Note 1)	в	T _i = 70° C		_	±0.10	±0.40	_	±0.12	±0.60		±0.14	±0.80	nA
		T _A = 70° C Device Operating	OP-16/OP-17	_	±0.15	±0.90	_	±0.20	±1.4	_	±0.25	±2.0	
Input Voltage Range	IVR			±10.4	_		± 10.4	-		±10.25		_	<u>v</u>
Common-Mode Rejection Ratio	CMRR	$V_{CM} = \pm 10.4V$ $V_{CM} = \pm 10.25V$		8 5 —	98 —	_	85	98 —	_		 94	_	dB
Power Supply Rejection Ratio	PSRR	$V_S = \pm 10V$ to $\pm 18V$ $V_S = \pm 10V$ to $\pm 15V$		-	13	57 —	-	13 —	57 —	-	 20	 100	μV/V
Large-Signal Voltage Gain	A _{vo}	$R_{L} \ge 2k\Omega$ $V_{O} = \pm 10V$		65	200	_	50	180	_	35	160	_	V/mV
Output Voltage Swing	vo	$R_L \ge 10k\Omega$		±12	±13	_	±12	±13		±12	±13	_	v

NOTES:

1. Input bias current is specified for two different conditions. The $T_j = 25^{\circ}C$ specification is with the junction at ambient temperature; the Device Operating specification is with the device operating in a warmed-up condition at 25°C ambient. The warmed-up bias current value is correlated to the junction temperature value via the curves of I_B vs T_j and I_B vs T_A . PMI has a bias current compensation circuit which gives improved bias current over the standard JFET input op amps. I_B and I_{OS} are measured at $V_{CM} = 0$.

2. Sample tested.

DICE CHARACTERISTICS (125°C TESTED DICE AVAILABLE)

WAFER TEST LIMITS at $V_S = \pm 15V$, $T_A = 25^{\circ}$ C for OP-15/16/17N, OP-15/16/17G and OP-15/16/17GR devices; $T_A = 125^{\circ}$ C for OP-15/16/17NT and OP-15/16/17GT devices, unless otherwise noted.

PARAMETER	SYMBOL	CONDITIONS	OP-15NT OP-16NT OP-17NT LIMIT	OP-15N OP-16N OP-17N LIMIT	OP-15GT OP-16GT OP-17GT LIMIT	OP-15G OP-16G OP-17G LIMIT	OP-15GR OP-16GR OP-17GR LIMIT	UNITS
Input Offset Voltage	Vos	$R_{S} = 50\Omega$	0.9	0.5	2.0	1.0	3.0	mV MAX
Large-Signal Voltage Gain	A _{vo}	$V_0 = \pm 10V$ $R_L = 2k\Omega$	35	100	30	75	50	₩mV MIN
Input Voltage Range	IVR		± 10.4	± 10.5	± 10.4	± 10.5	± 10.3	V MIN
Common-Mode Rejection Ratio	CMRR	V _{CM} = ±IVR	85	86	85	86	82	dB MIN
Power Supply Rejection Ratio	PSRR	$V_{S} = \pm 10V$ to $\pm 20V$ $V_{S} = \pm 10V$ to $\pm 15V$	57 —	51 —	57 —	51 —		μ ν/ν ΜΑΧ
Output Voltage Swing	vo	$R_L = 10k\Omega$ $R_L = 2k\Omega$	± 12 —	±12 ±11	±12 —	±12 ±11	± 12 ± 11	V MIN
Supply Current	I _{SY}	OP-15 OP-16, OP-17		4	_	4 7	5 8	mA MAX
Input Bias Current	I _B	OP-15 OP-16, OP-17	±9 ±11	_	±14 ±18	_	_	nA MAX
Input Offset Current	I _{OS}	OP-15 OP-16, OP-17	7.0 8.5	_	11.0 14.5	_	_	nA MAX

NOTES:

For 25°C characteristics of OP-15/16/17NT and OP-15/16/17GT, see OP-15/16/17N

and OP-15/16/17G characteristics, respectively.

Electrical tests are performed at wafer probe to the limits shown. Due to variations in assembly methods and normal yield loss, yield after packaging is not guaranteed for standard product dice. Consult factory to negotiate specifications based on dice lot qualification through sample lot assembly and testing.

TYPICAL ELECTRICAL CHARACTERISTICS at $V_S = \pm 15V$, $T_A = +25^{\circ}$ C, unless otherwise noted.

PARAMETER	SYMBOL	CONDITIO	NS	OP-15NT OP-16NT OP-17NT TYPICAL	OP-15N OP-16N OP-17N TYPICAL	OP-15GT OP-16GT OP-17GT	OP-15G OP-16G OP-17G	OP-15GR OP-16GR OP-17GR	
Average Input Offset Drift Unnulled	TCVos			2	2	3	3	4	
Average Input Offset Drift Nulled	TCV _{OSn}	R _P = 100kΩ		2	2	3	3	4	μV∕°C
Input Offset Current	I _{OS}			3	3	3	3	3	nA
Input Bias Current	l _B		1-1	±15	±15	± 15	± 15	+ 15	<u></u>
Slew Rate	SR	$A_{VCL} = +1$ $A_{VCL} = +5$	OP-15 OP-16 OP-17	13 25 60	13 25 60	11 21 50	11 21 50	9 17 40	 V/µs
		to 0.01% to 0.05% to 0.10%	OP-15	4.5 1.5 1.2	4.5 1.5 1.2	4.5 1.5 1.2	4.5 1.5 1.2	4.7 1.6 1.3	
Settling Time (see settling time test circuits)	t _S	to 0.01% to 0.05% to 0.10%	OP-16	3.8 1.2 0.9	3.8 1.2 0.9	3.8 1.2 0.9	3.8 1.2 0.9	4.0 1.3 1.0	μs
		to 0.01% to 0.05% to 0.10%	OP-17	1.5 0.7 0.6	1.5 0.7 0.6	1.5 0.7 0.6	1.5 0.7 0.6	1.6 0.8 0.7	-
Gain Bandwidth Product	GBW		OP-15 OP-16 OP-17	6.0 8.0 30	6.0 8.0 30	5.7 7.6 28	5.7 7.6 28	5.4 7.2 26	MHz
Closed-Loop Bandwidth	CLBW	$A_{VCL} = +1$ $A_{VCL} = +5$	OP-15 OP-16 OP-17	14 19 11	14 19 11	13 18 10	13 18 10	12 17 9	MHz
Input Noise Voltage Density	en	f = 100Hz f = 1000Hz		20 15	20 15	20 15	20 15	20 15	nV∕√Hz
Input Noise Current Density	i _n	f = 100Hz f = 1000Hz		0.01 0.01	0.01 0.01	0.01 0.01	0.01 0.01	0.01 0.01	pA/√Hz
Input Capacitance	CIN			3	3	3	3	3	pF

NOTES:

For 25°C characteristics of OP-15/16/17NT and OP-15/16/17GT, see OP-15/16/17N and OP-15/16/17G characteristics, respectively.

TYPICAL PERFORMANCE CHARACTERISTICS (OP-15/OP-16/OP-17)

COMMON-MODE INPUT

OPEN-LOOP VOLTAGE GAIN

SOURCE RESISTANCE 1000 TA = 25°C Vs = ±15V 100 INPUT NOISE VOLTAGE (µV) 100Hz < f < 10kHz 10Hz ≤ f ≤ 10kHz FOR Rs > 4MΩ 10 -1 $(\mathbf{3})$ AMPLIFIER NOISE 0.1 JOHNSON RESISTOR NOISE WITH SOURCE RESISTOR ſī 0.01 1M 10M 100M 100k 1G 10G SOURCE RESISTANCE (Ω)

VOLTAGE NOISE vs

OUTPUT VOLTAGE SWING vs SUPPLY VOLTAGE

INPUT BIAS CURRENT VS AMBIENT TEMPERATURE (UNITS ARE WARMED-UP IN FREE AIR)

-12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12

-10 -20

-30

OFFSET VOLTAGE DRIFT vs TEMPERATURE OF REPRESENTATIVE UNITS

-8-

90 110 130 150

TYPICAL PERFORMANCE CHARACTERISTICS (OP-15/OP-16/OP-17)

TYPICAL PERFORMANCE CHARACTERISTICS (OP-15)

LARGE-SIGNAL TRANSIENT RESPONSE

ALC: NO

SMALL-SIGNAL **TRANSIENT RESPONSE**

±15

±20

TYPICAL PERFORMANCE CHARACTERISTICS (OP-15)

MAXIMUM OUTPUT SWING **vs** FREQUENCY 28 V_S = ±15V PEAK TO PEAK OUTPUT SWING (VOLTS) T_A AV = 25°C = +1 24 20 16 12 8 0 L... 100k 1M 10M FREQUENCY (Hz)

vs TEMPERATURE 70 60 50 'A_V = +1 V_S = ±15V SLEW RATE (V/µmoc) NEGATIVE 40 30 POSITIVE 20 10 0 -50 -25 0 25 50 75 100 125 AMBIENT TEMPERATURE (°C)

SLEW RATE

COMMON-MODE REJECTION RATIO vs FREQUENCY

OUTPUT IMPEDANCE vs FREQUENCY 100 10 A_V = ЦШШ g 10 OUTPUT IMPEDANCE 1111 A١ = 1 1 Vs = ±15V T_A = 25°C 0 10M 1k 10k 100k 1M EREQUENCY (Hz)

TYPICAL PERFORMANCE CHARACTERISTICS (OP-16)

SMALL-SIGNAL TRANSIENT RESPONSE

10M FREQUENCY (Hz)

OPEN-LOOP GAIN vs FREQUENCY 120 Vs = ±15V 100 TA = 25°C (**9**P) 80 **OPEN-LOOP VOLTAGE GAIN** 60 40 20 0 -20 10 100 1k 10k 100k 1M 10M 100M FREQUENCY (Hz)

COMMON-MODE REJECTION RATIO vs FREQUENCY

TYPICAL PERFORMANCE CHARACTERISTICS (OP-16)

TYPICAL PERFORMANCE CHARACTERISTICS (OP-17)

SMALL-SIGNAL **TRANSIENT RESPONSE**

10М

OPEN-LOOP

EREQUENCY (Hz)

TYPICAL PERFORMANCE CHARACTERISTICS (OP-17)

BASIC CONNECTIONS

SETTLING-TIME TEST CIRCUIT - OP-15/OP-16

. .

SETTLING-TIME TEST CIRCUIT - OP-17

TYPICAL APPLICATIONS

CURRENT-TO-VOLTAGE AMPLIFIER OUTPUT

APPLICATIONS INFORMATION

DYNAMIC OPERATING CONSIDERATIONS

As with most amplifiers, care should be taken with lead dress, component placement, and supply decoupling in order to ensure stability. For example, resistors from the output to an input should be placed with the body close to the input to minimize "pick-up" and maximize the frequency of the feedback pole by minimizing the capacitance from the input to ground.

A feedback pole is created when the feedback around any amplifier is resistive. The parallel resistance and capacitance

from the input of the device (usually the inverting input) to AC ground set the frequency of the pole. In many instances the frequency of this pole is much greater than the expected 3dB frequency of the closed-loop gain and consequently there is negligible effect on stability margin. However, if the feedback pole is less than approximately six times the expected 3dB frequency, a lead capacitor should be placed from the output to the negative input of the op amp. The value of the added capacitor should be such that the RC timeconstant of this capacitor and the resistance it parallels is greater than, or equal to, the original feedback pole time constant.